首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accelerated sea-level rise from West Antarctica   总被引:1,自引:0,他引:1  
Recent aircraft and satellite laser altimeter surveys of the Amundsen Sea sector of West Antarctica show that local glaciers are discharging about 250 cubic kilometers of ice per year to the ocean, almost 60% more than is accumulated within their catchment basins. This discharge is sufficient to raise sea level by more than 0.2 millimeters per year. Glacier thinning rates near the coast during 2002-2003 are much larger than those observed during the 1990s. Most of these glaciers flow into floating ice shelves over bedrock up to hundreds of meters deeper than previous estimates, providing exit routes for ice from further inland if ice-sheet collapse is under way.  相似文献   

2.
Rapid wastage of Alaska glaciers and their contribution to rising sea level   总被引:1,自引:0,他引:1  
We have used airborne laser altimetry to estimate volume changes of 67 glaciers in Alaska from the mid-1950s to the mid-1990s. The average rate of thickness change of these glaciers was -0.52 m/year. Extrapolation to all glaciers in Alaska yields an estimated total annual volume change of -52 +/- 15 km3/year (water equivalent), equivalent to a rise in sea level (SLE) of 0.14 +/- 0.04 mm/year. Repeat measurements of 28 glaciers from the mid-1990s to 2000-2001 suggest an increased average rate of thinning, -1.8 m/year. This leads to an extrapolated annual volume loss from Alaska glaciers equal to -96 +/- 35 km3/year, or 0.27 +/- 0.10 mm/year SLE, during the past decade. These recent losses are nearly double the estimated annual loss from the entire Greenland Ice Sheet during the same time period and are much higher than previously published loss estimates for Alaska glaciers. They form the largest glaciological contribution to rising sea level yet measured.  相似文献   

3.
Recent sea-level contributions of the Antarctic and Greenland ice sheets   总被引:1,自引:0,他引:1  
After a century of polar exploration, the past decade of satellite measurements has painted an altogether new picture of how Earth's ice sheets are changing. As global temperatures have risen, so have rates of snowfall, ice melting, and glacier flow. Although the balance between these opposing processes has varied considerably on a regional scale, data show that Antarctica and Greenland are each losing mass overall. Our best estimate of their combined imbalance is about 125 gigatons per year of ice, enough to raise sea level by 0.35 millimeters per year. This is only a modest contribution to the present rate of sea-level rise of 3.0 millimeters per year. However, much of the loss from Antarctica and Greenland is the result of the flow of ice to the ocean from ice streams and glaciers, which has accelerated over the past decade. In both continents, there are suspected triggers for the accelerated ice discharge-surface and ocean warming, respectively-and, over the course of the 21st century, these processes could rapidly counteract the snowfall gains predicted by present coupled climate models.  相似文献   

4.
Measurements of time-variable gravity show mass loss in Antarctica   总被引:7,自引:0,他引:7  
Using measurements of time-variable gravity from the Gravity Recovery and Climate Experiment satellites, we determined mass variations of the Antarctic ice sheet during 2002-2005. We found that the mass of the ice sheet decreased significantly, at a rate of 152 +/- 80 cubic kilometers of ice per year, which is equivalent to 0.4 +/- 0.2 millimeters of global sea-level rise per year. Most of this mass loss came from the West Antarctic Ice Sheet.  相似文献   

5.
Aircraft laser-altimeter surveys over southern Greenland in 1993 and 1998 show three areas of thickening by more than 10 centimeters per year in the southern part of the region and large areas of thinning, particularly in the east. Above 2000 meters elevation the ice sheet is in balance but thinning predominates at lower elevations, with rates exceeding 1 meter per year on east coast outlet glaciers. These high thinning rates occur at different latitudes and at elevations up to 1500 meters, which suggests that they are caused by increased rates of creep thinning rather than by excessive melting. Taken as a whole, the surveyed region is in negative balance.  相似文献   

6.
Aircraft laser-altimeter surveys over northern Greenland in 1994 and 1999 have been coupled with previously reported data from southern Greenland to analyze the recent mass-balance of the Greenland Ice Sheet. Above 2000 meters elevation, the ice sheet is in balance on average but has some regions of local thickening or thinning. Thinning predominates at lower elevations, with rates exceeding 1 meter per year close to the coast. Interpolation of our results between flight lines indicates a net loss of about 51 cubic kilometers of ice per year from the entire ice sheet, sufficient to raise sea level by 0.13 millimeter per year-approximately 7% of the observed rise.  相似文献   

7.
Glaciers dominate eustatic sea-level rise in the 21st century   总被引:5,自引:0,他引:5  
Ice loss to the sea currently accounts for virtually all of the sea-level rise that is not attributable to ocean warming, and about 60% of the ice loss is from glaciers and ice caps rather than from the two ice sheets. The contribution of these smaller glaciers has accelerated over the past decade, in part due to marked thinning and retreat of marine-terminating glaciers associated with a dynamic instability that is generally not considered in mass-balance and climate modeling. This acceleration of glacier melt may cause 0.1 to 0.25 meter of additional sea-level rise by 2100.  相似文献   

8.
Impact of artificial reservoir water impoundment on global sea level   总被引:1,自引:0,他引:1  
Chao BF  Wu YH  Li YS 《Science (New York, N.Y.)》2008,320(5873):212-214
By reconstructing the history of water impoundment in the world's artificial reservoirs, we show that a total of approximately 10,800 cubic kilometers of water has been impounded on land to date, reducing the magnitude of global sea level (GSL) rise by -30.0 millimeters, at an average rate of -0.55 millimeters per year during the past half century. This demands a considerably larger contribution to GSL rise from other (natural and anthropogenic) causes than otherwise required. The reconstructed GSL history, accounting for the impact of reservoirs by adding back the impounded water volume, shows an essentially constant rate of rise at +2.46 millimeters per year over at least the past 80 years. This value is contrary to the conventional view of apparently variable GSL rise, which is based on face values of observation.  相似文献   

9.
Secular sea level trends extracted from tide gauge records of appropriately long duration demonstrate that global sea level may be rising at a rate in excess of 1 millimeter per year. However, because global coverage of the oceans by the tide gauge network is highly nonuniform and the tide gauge data reveal considerable spatial variability, there has been a well-founded reluctance to interpret the observed secular sea level rise as representing a signal of global scale that might be related to the greenhouse effect. When the tide gauge data are filtered so as to remove the contribution of ongoing glacial isostatic adjustment to the local sea level trend at each location, then the individual tide gauge records reveal sharply reduced geographic scatter and suggest that there is a globally coherent signal of strength 2.4 +/- 0.90 millimeters per year that is active in the system. This signal could constitute an indication of global climate warming.  相似文献   

10.
Changes in the velocity structure of the Greenland Ice Sheet   总被引:5,自引:0,他引:5  
Using satellite radar interferometry observations of Greenland, we detected widespread glacier acceleration below 66 degrees north between 1996 and 2000, which rapidly expanded to 70 degrees north in 2005. Accelerated ice discharge in the west and particularly in the east doubled the ice sheet mass deficit in the last decade from 90 to 220 cubic kilometers per year. As more glaciers accelerate farther north, the contribution of Greenland to sea-level rise will continue to increase.  相似文献   

11.
Grigg RW  Epp D 《Science (New York, N.Y.)》1989,243(4891):638-641
Coral islands drown when sea level rise exceeds the maximum potential of coral reefs to grow upward (about 10 millimeters per year). During the Holocene transgression (18,000 years ago to present) sea levels rose at rates of up to 10 to 20 millimeters per year, and most coral island reefs situated deeper than a critical depth of30 to 40 meters below present day sea level drowned. Coral islands that did not drown during the Holocene transgression apparently all developed on antecedent foundations shallower than critical depth. During low stands in sea level during the Pleistocene, these islands were elevated and subject to subaerial erosion. Today, in the Hawaiian Archipelago, the depth of drowned banks is inversely related to summit area; smaller banks are progressively deeper, evidently because of erosional truncation during low sea level stands. Bank summit area may therefore be an important factor determining the failure or success of coral islands.  相似文献   

12.
The TOPEX/POSEIDON satellite altimeter mission has measured global mean sea level every 10 days over the last 2 years with a precision of 4 millimeters, which approaches the requirements for climate change research. The estimated rate of sea level change is +3.9 +/- 0.8 millimeters per year. A substantial portion of this trend may represent a short-term variation unrelated to the long-term signal expected from global warming. For this reason, and because the long-term measurement accuracy requires additional monitoring, a longer time series is necessary before climate change signals can be unequivocally detected.  相似文献   

13.
Hydrographic time-series data recorded during the past 42 years in the upper 500 meters off the coast of southern California indicate that temperatures have increased by 0.8 degrees C uniformly in the upper 100 meters and that temperatures have risen significantly to depths of about 300 meters. The effect of warming the surface layer of the ocean and there by expanding the water column has been to raise sea level by 0.9 +/- 0.2 millimeter per year. Tide gauge records along the coast are coherent with steric height and show upward trends in sea level that vary from about 1 to 3 millimeters per year.  相似文献   

14.
Shallow, seaward portions of modern coral reefs produce about 4 kilograms of calcium carbonate per square meter per year, and protected areas produce about 0.8 kilogram per square meter per year. The difference is probably largely a function of water motion. The more rapid rate, equivalent to a maximum vertical accretion of 3 to 5 millimeters per year, places an upper limit on the potential of modern coral reef communities to create a significant vertical structure on a rising sea.  相似文献   

15.
Satellite radar altimetry measurements indicate that the East Antarctic ice-sheet interior north of 81.6 degrees S increased in mass by 45 +/- 7 billion metric tons per year from 1992 to 2003. Comparisons with contemporaneous meteorological model snowfall estimates suggest that the gain in mass was associated with increased precipitation. A gain of this magnitude is enough to slow sea-level rise by 0.12 +/- 0.02 millimeters per year.  相似文献   

16.
Radioactive carbon determinations of the age of peat indicate that at Bermuda, southern Florida, North Carolina, and Louisiana the relative sea level has risen at approximately the same rate, 2.5 x 10(-3) foot per year (0.76 x 10(-3) meter per year), during the past 4000 years. It is proposed tentatively that this is the rate of eustatic change in sea level. The rise in sea level along the northeastern coast of the United States has been at a rate much greater than this, indicating local subsidence of the land. Between Cape Cod and northern Virginia, coastal subsidence of 13 feet appears to have occurred between 4000 and 2000 years ago and has continued at a rate of about 1 x 10(-3) foot per year since then. On the northeastern coast of Massachusetts, subsidence of 6 feet occurred between 4000 and 3000 years ago; since then sea level has risen at about the eustatic rate. Between 12,000 and 4000 years ago, sea level rose at an average of about 11 x 10(-3) foot per year. The part played by local subsidence or temporary departures from the average rate during this period is uncertain.  相似文献   

17.
Recent analyses of long time scale secular variations of sea level, based on tide gauge observations, have established that sea level is apparently rising at a globally averaged rate somewhat in excess of 1 millimeter per year. It has been suggested that the nonsteric component of this secular rate might be explicable in terms of ongoing mass loss from the small ice sheets and glaciers of the world. Satellite laser ranging and very long baseline interferometry data may be used to deliver strong constraints on this important scenario because of the information that these systems provide on variations of the length of day and of the position of the rotation pole with respect to the earth's surface geography. These data demonstrate that the hypothesis of mass loss is plausible if the Barents Sea was covered by a substantial ice sheet at the last maximum of the current ice age 18,000 years ago.  相似文献   

18.
Seasat and Geosat satellite altimeter measurements for the Greenland ice sheet (south of 72 degreesN latitude) show that surface elevations above 2000 meters increased at an average rate of only 1. 5 +/- 0.5 centimeters per year from 1978 to 1988. In contrast, elevation changes varied regionally from -15 to +18 centimeters per year, seasonally by +/-15 centimeters, and interannually by +/-8 centimeters. The average growth rate is too small to determine if the Greenland ice sheet is undergoing a long-term change due to a warmer polar climate.  相似文献   

19.
21st-century evolution of Greenland outlet glacier velocities   总被引:2,自引:0,他引:2  
Earlier observations on several of Greenland's outlet glaciers, starting near the turn of the 21st century, indicated rapid (annual-scale) and large (>100%) increases in glacier velocity. Combining data from several satellites, we produce a decade-long (2000 to 2010) record documenting the ongoing velocity evolution of nearly all (200+) of Greenland's major outlet glaciers, revealing complex spatial and temporal patterns. Changes on fast-flow marine-terminating glaciers contrast with steady velocities on ice-shelf-terminating glaciers and slow speeds on land-terminating glaciers. Regionally, glaciers in the northwest accelerated steadily, with more variability in the southeast and relatively steady flow elsewhere. Intraregional variability shows a complex response to regional and local forcing. Observed acceleration indicates that sea level rise from Greenland may fall well below proposed upper bounds.  相似文献   

20.
Earth's energy imbalance: confirmation and implications   总被引:2,自引:0,他引:2  
Our climate model, driven mainly by increasing human-made greenhouse gases and aerosols, among other forcings, calculates that Earth is now absorbing 0.85 +/- 0.15 watts per square meter more energy from the Sun than it is emitting to space. This imbalance is confirmed by precise measurements of increasing ocean heat content over the past 10 years. Implications include (i) the expectation of additional global warming of about 0.6 degrees C without further change of atmospheric composition; (ii) the confirmation of the climate system's lag in responding to forcings, implying the need for anticipatory actions to avoid any specified level of climate change; and (iii) the likelihood of acceleration of ice sheet disintegration and sea level rise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号