共查询到20条相似文献,搜索用时 15 毫秒
1.
SHI Yue-Feng WU Wen-Liang MENG Fan-Qiao ZHENG Liang WANG Da-Peng YE Hui DING Guang-Wei 《土壤圈》2014,24(4):487-497
Addressing concerns about mitigating greenhouse gas (GHG) emissions while maintaining high grain yield requires improved management practices that achieve sustainable intensification of cereal production systems. In the North China Plain, a field experiment was conducted to measure nitrous oxide (N2O) and methane (CH4) fluxes during the maize (Zea mays L.) season under various agricultural management regimes including conventional treatment (CONT) with high N fertilizer application at a rate of 300 kg N ha-1 and overuse of groundwater by flood irrigation, optimal fertilization 1 treatment (OPTIT), optimal fertilization 2 treatment (OPT2T), and controlled-release urea treatment (CRUT) with reduced N fertilizer application and irrigation, and a control (CK) with no N fertilizer. In contrast to CONT, balanced N fertilization treatments (OPT1T, OPT2T, and CRUT) and CK demonstrated a significant drop in cumulative N20 emission (1.70 v.s. 0.43-1.07 kg N ha-l), indicating that balanced N fertilization substantially reduced N20 emission. The vMues of the N20 emission factor were 0.42%, 0.29%, 0.32%, and 0.27% for CONT, OPTIT, OPT2T, and CRUT, respectively. Global warming potentials, which were predominantly determined by N20 emission, were estimated to be 188 kg CO2-eq ha-1 for CK and 419-765 kg CO2-eq ha-1 for the N fertilization treatments. Global warming potential intensity calculated by considering maize yield was significantly lower for OPT1T, OPT2T, CRUT, and CK than for CONT. Therefore, OPTIT, OPT2T, and CRUT were recommended as promising management practices for sustaining maize yield and reducing GHG emissions in the North China Plain. 相似文献
2.
太湖地区不同水旱轮作方式下稻季甲烷和氧化亚氮排放研究 总被引:15,自引:0,他引:15
为准确编制我国稻田温室气体排放清单及制定合理减排措施提供基础数据,选择太湖地区典型水稻种植区江苏省苏州市,研究设计了休闲水稻(对照,CK)、紫云英水稻(T1)、黑麦草水稻(T2)、小麦水稻(T3)和油菜水稻(T4)5种水旱轮作方式,采用静态箱气相色谱法,开展了不同水旱轮作方式下水稻生长季田间甲烷(CH4)和氧化亚氮(N2O)排放监测试验。试验结果表明:不同水旱轮作方式下水稻生长季CH4排放通量呈先升高后降低的变化趋势,CH4排放峰值出现在水稻生育前期,移栽至有效分蘖临界叶龄期CH4累积排放量占全生育期排放总量的比例为65%~81%,而N2O仅在水稻烤田期间有明显排放。水旱轮作方式对稻季CH4和N2O排放有极显著(P 0.01)影响,CH4季节总排放量表现为T1(283.2 kg.hm 2)CK(139.5 kg.hm 2)T3(123.4kg.hm 2)T4(114.7 kg.hm 2)T2(100.8 kg.hm 2),N2O季节总排放量顺序为T1 T4 T3 T2 CK,依次为1.06kg.hm 2、0.87 kg.hm 2、0.81 kg.hm 2、0.72 kg.hm 2和0.53 kg.hm 2。T1处理稻季排放CH4和N2O产生的增温潜势最高[7 396 kg(CO2).hm 2],显著(P 0.05)高于其他处理,比CK[3 646 kg(CO2).hm 2]增加103%,T2[2 735kg(CO2).hm 2]较CK减少25%(P 0.05)。紫云英水稻轮作方式增加了太湖地区水稻生长季的温室效应。 相似文献
3.
Seiichi Nishimura Kenji Kimiwada Atsushi Yagioka Satoshi Hayashi Norikuni Oka 《Soil Science and Plant Nutrition》2020,66(2):360-368
ABSTRACT Emission of methane (CH4), a major greenhouse gas, from submerged paddy soils is generally reduced by introducing intermittent drainage in summer, which is a common water management in Japan. However, such a practice is not widely conducted in Hokkaido, a northern region in Japan, to prevent a possible reduction in rice grain yield caused by cold weather. Therefore, the effects of intermittent drainage on CH4 emission and rice grain yield have not been investigated comprehensively in Hokkaido. In this study, we conducted a three-year field experiment in Hokkaido and measured CH4 and nitrous oxide (N2O) fluxes and rice grain yield to elucidate whether the reduction in CH4 emission can be achieved in Hokkaido as well as other regions in Japan. Four experimental treatments, namely, two soil types [soils of light clay (LiC) and heavy clay (HC) textures] and two water management [continuous flood irrigation (CF), and intermittent drainage (ID)], were used, and CH4 and N2O fluxes were measured throughout the rice cultivation periods from 2016 to 2018. Cumulative CH4 emissions in 2016 were markedly low, suggesting an initially low population of methanogens in the soils presumably due to no soil submergence or crop cultivation in the preceding years, which indicates a possible reduction in CH4 emission by introducing paddy-upland crop rotation. Cumulative CH4 emissions in the ID-LiC and ID-HC plots were 21–91% lower than those in the CF-LiC and CF-HC plots, respectively, whereas the cumulative N2O emissions did not significantly differ between the different water managements. The amount of CH4 emission reduction by the intermittent drainage was largest in 2018, with a comparatively long period of the first drainage for 12 days in summer. Rice grain yields did not significantly differ between the different water managements for the entire 3 years, although the percentage of well-formed rice grains was reduced by the intermittent drainage in 2018. These results suggest that CH4 emission from paddy fields can be reduced with no decrease in rice grain yield by the intermittent drainage in Hokkaido. In particular, the first drainage for a long period in summer is expected to reduce CH4 emission markedly. 相似文献
4.
基于DNDC模型模拟江汉平原稻田不同种植模式条件下温室气体排放 总被引:3,自引:0,他引:3
稻田被认为是温室气体CH_4和N_2O的主要排放源之一。湖北省江汉平原地区水稻常年种植面积约8×105 hm2,占湖北省水稻种植面积的40%左右。研究江汉平原地区稻田温室气体排放特征,对于评估区域稻田温室气体排放以及稻田温室气体减排具有重要意义。目前,DNDC模型已被广泛应用于模拟和估算田间尺度的温室气体排放,DNDC模型与地理信息系统(Arc GIS)结合,可进行区域尺度的温室气体排放模拟与估算。本研究以湖北省典型稻作区江汉平原为研究区域,运用DNDC模型模拟和估算江汉平原稻田区域尺度的温室气体排放。设置大田定点观测试验,监测中稻-小麦(RW)、中稻-油菜(RR)、中稻-冬闲(RF)3种种植模式下稻田温室气体CH_4和N_2O的周年排放特征。通过田间观测值与DNDC模拟值的比较进行模型验证,并利用获取DNDC模型所需的气象、土壤、作物及田间管理等区域数据,模拟江汉平原稻田不同种植模式下温室气体CH_4和N_2O的排放量。田间试验表明,江汉平原稻田RW、RR和RF模型的CH_4排放通量为-2.80~39.78 mg·m-2·h-1、-1.74~42.51 mg·m-2·h-1和-1.57~55.64 mg·m-2·h-1,N_2O周年排放通量范围分别为0~1.90 mg·m-2·h-1、0~1.76mg·m-2·h-1和0~1.49 mg·m-2·h-1;CH_4排放量RW和RR模式显著高于RF模式,N_2O排放量为RF显著低于RW和RR模式。模型验证结果表明,不同种植模式温室气体排放实测值与模拟值比较的决定系数(R2)为0.85~0.98,相对误差绝对值(RAE)为8.29%~16.42%。根据DNDC模型模拟和估算的结果,江汉平原区域稻田CH_4周年的排放量为0.292 9 Tg C,N_2O周年的排放量为0.009 2 Tg N,不同种植模式稻田CH_4排放量表现为RWRRRF,N_2O排放量表现为RWRFRR,增温潜势(GWP)表现为RWRRRF。不同地区稻田CH_4排放量表现为监利县荆门市公安县天门市仙桃市洪湖市松滋市汉川市潜江市石首市荆州市江陵县赤壁市嘉鱼县,N_2O排放量表现为监利县荆门市公安县洪湖市仙桃市天门市汉川市潜江市松滋市荆州市江陵县赤壁市石首市嘉鱼县。本研究结果表明DNDC模型能较好地应用于模拟江汉平原稻田温室气体排放,RR和RF模式相比RW模式可有效减少温室气体CH_4和N_2O的排放。 相似文献
5.
Abstract It is well known that some fungal species are remarkably tolerant of high copper concentration, although copper is toxic to most fungi (Garraway and Evans 1984). Bedford (1936) and Jurkowska (1952) reported that Penicillium and Aspergillus species can grow in liquid media saturated or nearly saturated with copper sulfate. Okamoto and Fuwa (1974) isolated Penicillium ochro-chloron from the laboratory air, and found that the fungus was able to grow in a medium saturated with copper sulfate. 相似文献
6.
《Soil Science and Plant Nutrition》2013,59(6):792-805
Abstract Nitrous oxide (N2O) emissions were measured monthly over 1 year in three ecosystems on tropical peatland of Sarawak, Malaysia, using a closed-chamber technique. The three ecosystems investigated were mixed peat swamp forest, sago (Metroxylon sagu) and oil palm (Elaeis guineensis) plantations. The highest annual N2O emissions were observed in the sago ecosystem with a production rate of 3.3 kg N ha?1 year?1, followed by the oil palm ecosystem at 1.2 kg N ha?1 year?1 and the forest ecosystem at 0.7 kg N ha?1 year?1. The N2O emissions ranged from –3.4 to 19.7 µg N m?2 h?1 for the forest ecosystem, from 1.0 to 176.3 µg N m?2 h?1 for the sago ecosystem and from 0.9 to 58.4 µg N m?2 h?1 for the oil palm ecosystem. Multiple regression analysis showed that N2O production in each ecosystem was regulated by different variables. The key factors influencing N2O emissions in the forest ecosystem were the water table and the NH+ 4 concentration at 25–50 cm, soil temperature at 5 cm and nitrate concentration at 0–25 cm in the sago ecosystem, and water-filled pore space, soil temperature at 5 cm and NH+ 4 concentrations at 0–25 cm in the oil palm ecosystem. R2 values for the above regression equations were 0.57, 0.63 and 0.48 for forest, sago and oil palm, respectively. The results suggest that the conversion of tropical peat swamp forest to agricultural crops, which causes substantial changes to the environment and soil properties, will significantly affect the exchange of N2O between the tropical peatland and the atmosphere. Thus, the estimation of net N2O production from tropical peatland for the global N2O budget should take into consideration ecosystem type. 相似文献
7.
Hiroko AKIYAMA Atsushi HAYAKAWA Shigeto SUDO Seiichiro YONEMURA Takeshi TANONAKA Kazuyuki YAGI 《Soil Science and Plant Nutrition》2009,55(3):435-440
We describe an automated gas sampling system for monitoring trace gas fluxes from soils. The sampling system allows automated collection of gas samples in glass vials using a syringe pump connected to an automated static chamber installed in the field. The gas samples are transferred to a laboratory and then analyzed using a gas chromatography system. Comparisons between manual and automated sampling of standard gases showed good agreement ( r 2 = 0.99996 for N2 O, r 2 = 0.999 for CH4 and r 2 = 0.998 for CO2 ). In a field test, replicated flux measurements using two chambers generally showed good agreement. The sampling system allows frequent and long-term monitoring of fluxes under a wide range of weather conditions (tested temperatures ranged from –6.5 to 40°C; 127 mm day−1 max precipitation). The major advantages of the system are its increased portability, ease of operation and cost effectiveness compared with on-line automated sampling/analytical systems. 相似文献
8.
Tomoaki Morishita Kyotaro Noguchi Yongwon Kim Yojiro Matsuura 《Soil Science and Plant Nutrition》2013,59(1):98-105
AbstractForest fires can change the greenhouse gase (GHG) flux of borea forest soils. We measured carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes with different burn histories in black spruce (Picea mariana) stands in interior Alaska. The control forest (CF) burned in 1920; partially burned (PB) in 1999; and severely burned (SB1 and SB2) in 2004. The thickness of the organic layer was 22 ± 6 cm at CF, 28 ± 10 cm at PB, 12 ± 6 cm at SB1 and 4 ± 2 cm at SB2. The mean soil temperature during CO2 flux measurement was 8.9 ± 3.1, 6.4 ± 2.1, 5.9 ± 3.4 and 5.0 ± 2.4°C at SB2, SB1, PB and CF, respectively, and differed significantly among the sites (P < 0.01). The mean CO2 flux was highest at PB (128 ± 85 mg CO2-C m?2 h?1) and lowest at SB1 (47 ± 19 mg CO2-C m?2 h?1) (P < 0.01), and within each site it was positively correlated with soil temperature (P < 0.01). The CO2 flux at SB2 was lower than that at CF when the soil temperature was high. We attributed the low CO2 flux at SB1 and SB2 to low root respiration and organic matter decomposition rates due to the 2004 fire. The CH4 uptake rate was highest at SB1 [–91 ± 21 μg CH4-C m?2 h?1] (P < 0.01) and positively correlated with soil temperature (P < 0.01) but not soil moisture. The CH4 uptake rate increased with increasing soil temperature because methanotroph activity increased. The N2O flux was highest [3.6 ± 4.7 μg N2O-N m?2 h?1] at PB (P < 0.01). Our findings suggest that the soil temperature and moisture are important factors of GHG dynamics in forest soils with different fire history. 相似文献
9.
Nitrous oxide emissions from agricultural soils at low temperatures: a laboratory microcosm study 总被引:1,自引:0,他引:1
We studied in laboratory microcosms (intact soil cores) N2O and CO2 emissions from four different agricultural soil types (organic soil, clay, silt and loam) at low temperatures with or without freezing-thawing events. When the temperature of the frozen soil cores was increased stepwise from −8 °C the N2O emissions began to increase at −0.5 °C, and peaked at −0.1 °C in the organic, clay and silt soils, and at +1.6 °C in the loam soils. However, a stepwise decrease in soil temperature from +15 °C also induced an increase in the N2O emissions close to the 0 °C. These emissions peaked between −0.4 and +2.5 °C depending on the soil type and water content. However, the emission maxima were from 2 to 14.3% of those encountered in the experiments where frozen soils were thawed. Our results show that in addition to the well-documented thawing peak, soils also can have a maximum in their N2O emission near 0 °C when soil temperature decrease. These emissions, however, are less than those emitted from thawing soils. The correlations between the N2O and CO2 emissions were weak. Our results suggest that N2O is produced in soils down to a temperature of −6 °C. 相似文献
10.
农业土壤中的氧化亚氮排放: 为减排综述时空变化 总被引:3,自引:0,他引:3
This short review deals with soils as an important source of the greenhouse gas N2O. The production and consumption of N2O in soils mainly involve biotic processes: the anaerobic process of denitrification and the aerobic process of nitrification. The factors that significantly influence agricultural N2O emissions mainly concern the agricultural practices (N application rate, crop type, fertilizer type) and soil conditions (soil moisture, soil organic C content, soil pH and texture). Large variability of N2O fluxes is known to occur both at different spatial and temporal scales. Currently new techniques could help to improve the capture of the spatial variability. Continuous measurement systems with automatic chambers could also help to capture temporal variability and consequently to improve quantification of N2O emissions by soils. Some attempts for mitigating soil N2O emissions, either by modifying agricultural practices or by managing soil microbial functioning taking into account the origin of the soil N2O emission variability, are reviewed. 相似文献
11.
不同施肥处理稻田甲烷和氧化亚氮排放特征 总被引:48,自引:14,他引:48
采用静态箱-气相色谱法对长期不同施肥处理(NPKS、CK、NPK和NKM)的稻田CH4和N2O排放进行了观测。结果表明,稻田CH4和N2O排放季节变化规律明显不同,二者排放通量季节变化呈显著负相关(p<0.01)。与单施化肥和CK相比,施用有机肥显著促进CH4排放,排放量最高的NPKS处理早晚稻田排放量分别是:526.68 kg/hm2和1072.92 kg/hm2。对于N2O排放,早稻田各处理间差异不显著,NPK处理排放量最大,为1.48 kg/hm2;晚稻田各处理差异极显著(p<0.01),NPKS处理排放量最大,为1.40 kg/hm2。晚稻田CH4排放通量和10 cm土层温度及土壤pH值相关极显著(p<0.01),并与二者存在显著的指数关系。没发现N2O排放通量与温度及pH值间存在显著相关。稻田CH4和N2O排放受多种因素影响,但对全球变暖的贡献率CH4远大于N2O。NPKS处理的增温潜势最大,NPK处理的最小。 相似文献
12.
典型菜地土壤剖面N2O、CH4与CO2分布特征研究 总被引:2,自引:0,他引:2
为探究菜地土壤剖面N2O、CH4与CO2时空分布特征,利用地下气体原位采集系统与气相色谱法,周年动态监测3种典型菜地,即休闲裸地、轮作地Ⅰ(芹菜?空心菜?小白菜?苋菜)以及轮作地Ⅱ(菜心?芹菜?空心菜?大青菜)7 cm、15 cm、30 cm与50 cm土层N2O、CH4与CO2浓度变化。结果表明,0~50 cm土层范围内,N2O、CH4与CO2 3种气体浓度周年变异性较大,变幅分别为0.63~1 657.0μL(N2O)?L?1、0.8~72.5μL(CH4)?L?1和0.41~36.6 m L(CO2)?L?1。轮作地Ⅰ与轮作地Ⅱ的N2O平均浓度随土壤深度增加而增加,休闲裸地则呈现先增加(0~30 cm)后降低(30~50 cm)的变化趋势。两种轮作菜地4个土层N2O平均浓度均显著高于休闲裸地,二者氮肥施用量不同并未造成相同土层间N2O平均浓度的显著差异。3种菜地CH4与CO2平均浓度均呈现50 cm30 cm15 cm7 cm的梯度特征。轮作地Ⅰ与轮作地Ⅱ0~15 cm土层CH4平均浓度均大于休闲裸地,而在15~50 cm土层则分别大于和小于休闲裸地。CO2浓度呈现明显的季节性变化,除轮作地Ⅰ50 cm土层外,两种轮作菜地其他土层CO2平均浓度均小于休闲裸地对应土层。可见,蔬菜地高氮肥施用、多频次耕作等复杂管理使得N2O、CH4与CO2表现出较大的时空变异特征,其中氮肥施用对N2O的影响大于CH4与CO2,CH4受施肥与耕作的影响均较小,CO2显著受土壤温度与耕作措施的影响,在此基础上需进一步探究N2O、CH4与CO2的其他影响因素。 相似文献
13.
Supika Vanitchung Ralf Conrad Narumon W. Harvey 《Soil Science and Plant Nutrition》2013,59(5):650-658
Nitrous oxide (N2O) emissions from the soil surface of five different forest types in Thailand were measured using the closed chamber method. Soil samples were also taken to study the N2O production pathways. The monthly average emissions (±SD, n?=?12) of N2O from dry evergreen forest (DEF), hill evergreen forest (HEF), moist evergreen forest (MEF), mixed deciduous forest (MDF) and acacia reforestation (ARF) were 13.0?±?8.2, 5.7?±?7.1, 1.2?±?12.1, 7.3?±?8.5 and 16.7?±?9.2?µg N m?2 h?1, respectively. Large seasonal variations in fluxes were observed. Emission was relatively higher during the wet season than during the dry season, indicating that soil moisture and denitrification were probably the main controlling factors. Net N2O uptake was also observed occasionally. Laboratory studies were conducted to further investigate the influence of moisture and the N2O production pathways. Production rates at 30% water holding capacity (WHC) were 3.9?±?0.2, 0.5?±?0.06 and 0.87?±?0.01?ng N2O-nitrogen (N) g-dw?1day?1 in DEF, HEF and MEF respectively. At 60% WHC, N2O production rates in DEF, HEF and MEF soils increased by factors of 68, 9 and 502, respectively. Denitrification was found to be the main N2O production pathway in these soils except in MEF. 相似文献
14.
Gianluigi Mazza Alessandro Elio Agnelli Maria Costanza Andrenelli Alessandra Lagomarsino 《Archives of Agronomy and Soil Science》2018,64(5):654-667
GHGs production and emission may vary depending on soil physical properties, water management and fertilization. Two paddy soils characterized by different texture were incubated to evaluate the impact of flooding (permanent or intermittent) and N addition on potential N2O, CH4 and CO2 production and release into atmosphere and soil solution. Relationships with volumetric water content (VWC) and water filled pore space (WFPS) were evaluated. Overall, the finer clayey soil (CL) produced 58% more CH4 than the coarser sandy soil (SA) and showed an earlier sink to source transition; the difference was lower with N addition. Permanent flooding favoured the amount of dissolved CH4. SA produced more N2O emissions than CL under permanent flooding (31.0 vs. 3.7%); an opposite pattern was observed for dissolved N2O (16.4 vs. 52.7%). Fertilization increased N2O emissions under dry conditions in CL and under flooding in SA.
Our findings showed that i) VWC had a larger influence on N2O and CH4 emissions than WFPS, ii) soil type influenced the gas release into atmosphere or soil solution and the timing of sink to source transition in CH4 emissions. Further investigation on timing of fertilization and drainage are needed to improve climate change mitigation strategies. 相似文献
15.
Rapid nitrogen(N) transformations and losses occur in the rice rhizosphere through root uptake and microbial activities. However,the relationships between rice roots and rhizosphere microbes for N utilization are still unclear. We analyzed different N forms(NH+4,NO-3, and dissolved organic N), microbial biomass N and C, dissolved organic C, CH4 and N2O emissions, and abundance of microbial functional genes in both rhizosphere and bulk soils after 37-d rice growth in a greenhouse pot experiment. Results showed that the dissolved organic C was significantly higher in the rhizosphere soil than in the non-rhizosphere bulk soil, but microbial biomass C showed no significant difference. The concentrations of NH+4, dissolved organic N, and microbial biomass N in the rhizosphere soil were significantly lower than those of the bulk soil, whereas NO-3in the rhizosphere soil was comparable to that in the bulk soil. The CH4 and N2O fluxes from the rhizosphere soil were much higher than those from the bulk soil. Real-time polymerase chain reaction analysis showed that the abundance of seven selected genes, bacterial and archaeal 16 S rRNA genes, amoA genes of ammonia-oxidizing archaea and ammonia-oxidizing bacteria, nosZ gene, mcrA gene, and pmoA gene, was lower in the rhizosphere soil than in the bulk soil, which is contrary to the results of previous studies. The lower concentration of N in the rhizosphere soil indicated that the competition for N in the rhizosphere soil was very strong, thus having a negative effect on the numbers of microbes. We concluded that when N was limiting, the growth of rhizosphere microorganisms depended on their competitive abilities with rice roots for N. 相似文献
16.
Angela Y.Y. Kong Steven J. Fonte Chris van Kessel Johan Six 《Soil & Tillage Research》2009,104(2):256-262
Few studies address nutrient cycling during the transition period (e.g., 1–4 years following conversion) from standard to some form of conservation tillage. This study compares the influence of minimum versus standard tillage on changes in soil nitrogen (N) stabilization, nitrous oxide (N2O) emissions, short-term N cycling, and crop N use efficiency 1 year after tillage conversion in conventional (i.e., synthetic fertilizer-N only), low-input (i.e., alternating annual synthetic fertilizer- and cover crop-N), and organic (i.e., manure- and cover crop-N) irrigated, maize–tomato systems in California. To understand the mechanisms governing N cycling in these systems, we traced 15N-labeled fertilizer/cover crop into the maize grain, whole soil, and three soil fractions: macroaggregates (>250 μm), microaggregates (53–250 μm) and silt-and-clay (<53 μm). We found a cropping system effect on soil Nnew (i.e., N derived from 15N-fertilizer or -15N-cover crop), with 173 kg Nnew ha−1 in the conventional system compared to 71.6 and 69.2 kg Nnew ha−1 in the low-input and organic systems, respectively. In the conventional system, more Nnew was found in the microaggregate and silt-and-clay fractions, whereas, the Nnew of the organic and low-input systems resided mainly in the macroaggregates. Even though no effect of tillage was found on soil aggregation, the minimum tillage systems showed greater soil fraction-Nnew than the standard tillage systems, suggesting greater potential for N stabilization under minimum tillage. Grain-Nnew was also higher in the minimum versus standard tillage systems. Nevertheless, minimum tillage led to the greatest N2O emissions (39.5 g N2O–N ha−1 day−1) from the conventional cropping system, where N turnover was already the fastest among the cropping systems. In contrast, minimum tillage combined with the low-input system (which received the least N ha−1) produced intermediate N2O emissions, soil N stabilization, and crop N use efficiency. Although total soil N did not change after 1 year of conversion from standard to minimum tillage, our use of stable isotopes permitted the early detection of interactive effects between tillage regimes and cropping systems that determine the trade-offs among N stabilization, N2O emissions, and N availability. 相似文献
17.
Moe Shimotsuma Yasuhiro Nakajima Hiroko Akiyama 《Soil Science and Plant Nutrition》2013,59(2):178-184
ABSTRACTLegumes, including hairy vetch (Vicia villosa Roth), are widely used as green manures. They fix nitrogen (N) and provide the N to other crops when they decompose, and thus are considered alternatives for chemical N fertilizers. However, N-rich plant residues, including hairy vetch, are also sources of soil nitrous oxide (N2O) emissions, a greenhouse gas. On one hand, rice (Oryza sativa L. ssp. japonica) husk biochar is widely used as a soil conditioner in Japan and has been reported as a tool to mitigate soil N2O emissions. We conducted a soil core incubation experiment (1.5 months) to compare the N2O emissions during the decomposition of surface-applied hairy vetch (0.8 kg dried hairy vetch m?2 soil) under semi-saturated soil moisture conditions (~100% water-filled pore space (WFPS)), using two soil types, namely Andosol and Fluvisol. Throughout the incubation period, the use of biochar suppressed soil NH4+-N concentrations in Andosol, whereas the effect of biochar on NH4+-N was not clear in Fluvisol. Biochar increased the nitrate (NO3?-N) levels both in Andosol and Fluvisol, suggesting a negative influence on denitrification and/or a positive influence on nitrification. Biochar application did not influence the cumulative N2O emissions. Our study suggests that rice husk biochar is not a good option to mitigate N2O emissions during the decomposition of surface-applied hairy vetch, although this study was performed under laboratory conditions without plants. However, the trends of the inorganic-N concentration changes followed by the addition of hairy vetch and biochar were markedly different between the two soil types. Thus, factors behind the differences need to be further studied. 相似文献
18.
The effects of elevated CO2 supply on N2O and CH4 fluxes and biomass production of Phleum pratense were studied in a greenhouse experiment. Three sets of 12 farmed peat soil mesocosms (10 cm dia, 47 cm long) sown with P. pratense and equally distributed in four thermo-controlled greenhouses were fertilised with a commercial fertiliser in order to add 2, 6 or 10 g N m−2. In two of the greenhouses, CO2 concentration was kept at atmospheric concentration (360 μmol mol−1) and in the other two at doubled concentration (720 μmol mol−1). Soil temperature was kept at 15 °C and air temperature at 20 °C. Natural lighting was supported by artificial light and deionized water was used to regulate soil moisture. Forage was harvested and the plants fertilised three times during the basic experiment, followed by an extra fertilisations and harvests. At the end of the experiment CH4 production and CH4 oxidation potentials were determined; roots were collected and the biomass was determined. From the three first harvests the amount of total N in the aboveground biomass was determined. N2O and CH4 exchange was monitored using a closed chamber technique and a gas chromatograph. The highest N2O fluxes (on average, 255 μg N2O m−2 h−1 during period IV) occurred just after fertilisation at high water contents, and especially at the beginning of the growing season (on average, 490 μg N2O m−2 h−1 during period I) when the competition of vegetation for N was low. CH4 fluxes were negligible throughout the experiment, and for all treatments the production and oxidation potentials of CH4 were inconsequential. Especially at the highest rates of fertilisation, the elevated supply of CO2 increased above- and below-ground biomass production, but both at the highest and lowest rates of fertilisation, decreased the total amount of N in the aboveground dry biomass. N2O fluxes tended to be higher under doubled CO2 concentrations, indicating that increasing atmospheric CO2 concentration may affect N and C dynamics in farmed peat soil. 相似文献
19.
Xingren Liu Yunshe Dong Jianqiang Ren Qingzhong Zhang 《Soil Science and Plant Nutrition》2013,59(4):416-423
Nitrous oxide (N2O) flux in the semi-arid Leymus chinensis (Trin.) Tzvel. grassland in Inner Mongolia, China was measured for two years (from January 2005 to December 2006) with the enclosed chamber technique. The measurements were made twice per month in the growing season and once per month in the non-growing season. To evaluate the effect of aboveground vegetation on N2O emission, the ecosystem N2O flux over the grassland was measured, and concurrently soil N2O flux was measured after the removal of all the aboveground biomass. The possible effect of water-heat factors on N2O fluxes was statistically examined. The ecosystem N2O flux ranged from 0.21 to 0.26?kg nitrous oxide-nitrogen (N2O–N) ha? 1 year? 1, indicating that the Leymus chinensis grassland of Inner Mongolia was a source for the atmospheric N2O. There was no significant difference between the ecosystem N2O flux and the soil N2O flux. The ecosystem N2O flux was under similar environmental control as the soil N2O flux. Soil moisture was the primary driving factor of the N2O fluxes in the growing season of both years; the changes in water–filled pore space (WFPS) of soil surface layers could explain 45–67% of the variations in N2O fluxes. The high seasonal variation of the N2O fluxes in the growing seasons was regulated by the distribution of effective rainfall, rather than the precipitation intensity. While in the non-growing season, the N2O fluxes were restricted much more by air temperature or soil temperature, and 83–85% of the variations of the N2O fluxes were induced by changes in temperature conditions. 相似文献
20.
《Communications in Soil Science and Plant Analysis》2012,43(13-14):1889-1903
Abstract Methane (CH4) and nitrous oxide (N2O) emissions from an irrigated rice field under continuous flooding and intermittent irrigation water management practices in northern China were measured in situ by the static chamber technique during May to October in 2000. The intermittent irrigation reduced total growing‐season CH4 emission by 24.22% but increased N2O emission by 23.72%, when compared with the continuous flooding. Soil Eh and four related bacterial groups were also measured to clarify their effects on gaseous emissions. Three ranges of soil redox potential were related to gas emissions: below ?100 mV with vigorous CH4 emission, above +100 mV with significant N2O emission, and +100 to ?100 mV with little CH4 and N2O emissions. Intermittently draining the field increased soil oxidation, with a decrease in CH4 emission and an increase in N2O emission. In general the mid‐season drainage slightly increased the populations of methanotrophs, nitrifiers, and denitrifiers but decreased that of methanogens. 相似文献