首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The objective of this two-year field experiment was to study the effects of irrigation amount, N rate, and irrigation water salinity on cotton growth and the fate of N fertilizer. The movement of N through the plant-soil system was traced using 15N-labeled urea. The study consisted of twelve treatments, including two irrigation amounts (405 and 540?mm, I405 and I540, respectively); two N application rates (240 and 360?kg?N/ha, N240 and N360, respectively); and three irrigation water salinity levels [0.35, 4.61 and 8.04?dS/m, representing fresh water (FW), brackish water (BW), and saline water (SW), respectively]. A randomized complete block design was used with three replications. The results showed that cotton biomass, N uptake, and yield increased as irrigation amount and N amount increased; however, all three variables were significantly less in SW than in FW and BW. Plant 15N recovery rates were greater (i) in the I540 treatments than in the I405 treatments and (ii) in the N360 treatments than in the N240 treatments. Plant 15N recovery rates in BW were 7.98% and 30.01% greater than those in FW and SW, respectively. Residual soil 15N increased as N fertilizer amount increased but declined as irrigation amount increased. Residual soil 15N in BW and SW was 6.02% and 21.44% greater, respectively, than in FW. Total 15N recovery was significant greater in BW than in FW and SW. The 15N leaching losses increased significantly with increases in irrigation amount, irrigation water salinity, and N rate. Our study suggests that if appropriate amounts of irrigation water and N fertilizer are used, then brackish irrigation water (4.61?dS/m) will not affect cotton growth, yield and N recovery. In contrast, saline irrigation water (EC?>?8?dS/m) reduces cotton growth, yield, and N use efficiency.  相似文献   

3.
The magnitude of crop growth and yield depends on the salinity level, the toxic ions present, and the irrigation system used. In order to study the effect of saline sprinkler irrigation on soybean growth and ionic accumulation in plant tissues a pot experiment was set up. There were three irrigation water quality treatments [electrical conductivity (EC) 0, 2, and 4 dS m?1]. Soybean aerial biomass was 25% lower than the Control when irrigation salinity was 4 dS m?1. Clearly salinity entering via leaves affected the grain filling stage and severely reduced soybean grain production (80% reduction) when salinity in irrigation water surpassed 2 dS m?1. Sprinkler irrigation aggravates soybean's low salinity tolerance and restricts its cropping in such conditions. For early stages two linear relationships between leaf chloride (Cl?) concentration (Y = 14.2–2x) or potassium (K+)/ sodium (Na+) ratio (Y = 5.3x?3.4) and soybean grain yield were found. Both relationships may be used as diagnostic tools for soybean growing under saline sprinkler irrigation.  相似文献   

4.
To determine the effects of irrigation water quality, plants were irrigated with normal potable water [0.25 dS m?1 electrical conductivity (EC), 25 mg L?1 sodium (Na), 55 mg L?1 chloride (Cl)], treated effluent (0.94 dS m?1 EC, 122 mg L?1 Na, 143 mg L?1 Cl) and saline water with low salinity (1.24 dS m?1 EC, 144 mg L?1 Na and 358 mg L?1 Cl) and high salinity (2.19 dS m?1 EC, 264 mg L ?1Na and 662 mg L?1 Cl) for snow peas, and high salinity (3.07 dS m?1 EC, 383 mg L?1 Na and 965 mg L?1 Cl) and very high salinity (5.83 dS m?1 EC, 741 mg L?1 Na and 1876 mg L?1 Cl) for celery. The greater salts build up in the soil and ion toxicity (Cl and Na) with saline water irrigation contributed to significantly greater reduction in root and shoot biomass, water use, yield and water productivity (yield kg kL?1 of water used) of snow peas and celery compared with treated effluent and potable water irrigation. There was 8%, 56% and 74% reduction in celery yield respectively with treated effluent, high salinity and very high salinity saline water irrigation compared with potable water irrigation. The Na concentration in snow peas shoots increased by 54%, 234% and 501% with treated effluent, low and high salinity saline water irrigation. Similarly, the increases in Na concentration in celery shoots were 19%, 35% and 82%. The treated effluent irrigation also resulted in a significant increase in soil EC, nitrogen (N) and phosphorus (P) content compared with potable water irrigation. The heavy metals besides salts build up appears to have contributed to yield reductions with treated effluent irrigation. The study reveals strong implications for the use of saline water and treated effluent for irrigation of snow peas and celery. The salt build up within the root zone and soil environment would be critical in the long-run with the use of saline water and treated effluent for irrigation of crops. To minimize the salinity level in rhizosphere, an alternate irrigation of potable water with treated effluent or low salinity level water may be better option.  相似文献   

5.
Most important, yet least understood, question, how microbial activity in soil under saline water irrigation responds to carbon (C) varying qualitatively (most labile form to extreme recalcitrant form) with or without maintaining C/N ratio was investigated in an incubation experiment. Soil samples from a long-term saline-water (electrical conductivity, EC ≈ 0, 6, and 12 dS m?1)- irrigated field were incorporated with three different C substrates, viz., glucose, rice straw (RS), and biochar with or without nitrogen (N as ammonium sulfate, NH4SO4) and were incubated at 25 °C for 56 days. Cumulative respiration (CR), microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), and dehydrogenase activity (DEA) concentrations decreased with increasing EC (P < 0.05), but less so in soils amended with glucose followed by RS and biochar. The addition of N to soils amended with different C substrates significantly decreased CR, MBC, DEA, and available phosphorus (P) concentrations at a given EC level.  相似文献   

6.

Purpose

For an alkaline?Csaline region in Northwest China, we examined the responses of soil microbial communities to flue gas desulfurization gypsum by-products (FGDB), a new ameliorant for alkaline?Csaline soils. In 2009 and 2010, we collected soils from 0?C20?cm and 20?C40?cm depths along an experimental FGDB gradient (0, 0.74, 1.49, 2.25, and 3.00?kg FGDB m?2).

Materials and methods

As a measure of microbial community composition and biomass, we analyzed phospholipid fatty acids (PLFAs). We used real-time quantitative polymerase chain reaction (qPCR) to measure abundance of bacterial 16?S rRNA copy numbers. Additionally, physicochemical soil parameters were measured by common laboratory methods.

Results and discussion

Microbial community composition differed along the FGDB gradient; however, the microbial parameters did not follow a linear response. We found that, in 2009, total PLFA concentrations, and concentrations of total bacterial and Gram-negative bacterial PLFAs were slightly higher at intermediate FGDB concentrations. In 2010, total PLFA concentrations, and concentrations of total bacterial, Gram-positive bacterial, Gram-negative bacterial, and fungal PLFAs as well as the fungal:bacterial PLFA ratio were highest at 1.49?kg FGDB m?2 and 3.00?kg FGDB m?2. PLFA concentrations often differed between 2009 and 2010; however, the patterns varied across the gradient and across microbial groups. For both years, PLFA concentrations were generally higher at 0?C20?cm depth than at 20?C40?cm depth. Similar results were obtained for the 16?S rRNA copy numbers of bacteria at 0?C20?cm depth. FGDB addition resulted in an increase in soil Ca2+ and NO 3 ? ?CN and a decrease in pH and electrical conductivity (EC). Shifts in PLFA-based microbial community composition and biomass could partly be explained by pH, soil organic carbon, total nitrogen (TN), soil moisture, EC, inorganic nitrogen, C/N, and Ca2+. Indirect effects via shifts in abiotic soil properties, therefore, seem to be an important pathway through which FGDB affect soil microbial communities.

Conclusions

Our results demonstrate that addition of FGDB leads to significant changes in soil physicochemical and microbial parameters. As such, addition of FGDB can have large impacts on the functioning of soil ecosystems, such as carbon and nitrogen cycling processes.  相似文献   

7.
有机无机肥配施对盐渍化土壤微生物量和呼吸的影响   总被引:6,自引:5,他引:1  
微生物可以通过摄入能量合成有机渗透压物质来实现对盐度的适应,然而,不同程度盐渍土微生物对能量的需求可能会发生改变。因此,该研究于2018-2019年开展田间定位试验,选取河套灌区轻度盐渍土S1(电导率为0.46 dS/m)及中度盐渍土S2(电导率为1.07 dS/m)为研究对象,设置了6个处理,包括不施氮(CK),单施无机氮(U1)以及分别用有机氮(U3O1、U1O1、U1O3和O1)替代25%、50%、75%和100%的无机氮,监测了土壤微生物量碳氮及土壤呼吸在第二个生长季的动态状况。结果表明:土壤盐渍化程度增加会导致土壤微生物量及微生物活性下降,S2土壤较S1土壤微生物量碳下降12.01%~68.81%,土壤微生物量氮下降14.31%~58.58%,土壤呼吸速率下降11.75%~54.71%。不同盐分条件下,适当的有机肥施入比例可以显著提高土壤微生物量及微生物活性,S1和S2盐渍土分别以U1O1及O1处理较优,土壤微生物量碳、微生物量氮、土壤呼吸分别较U1处理提高48.44%、42.50%、31.74%,68.07%、48.99%、45.19%。相关性分析表明,土壤呼吸速率与土壤微生物量碳氮呈极显著正相关(P<0.01),土壤温度、土壤矿质氮与土壤微生物量碳氮、土壤呼吸速率呈显著正相关(P<0.05)。从玉米产量及改善土壤微生物生存环境角度,得到该地区适宜的施肥模式为,轻度盐渍土:有机氮替代50%无机氮;中度盐渍土:有机氮替代100%无机氮。  相似文献   

8.

Background

Little is known about the effects of gypsum application to remediate saline–sodic soils in the tropics and the role of microbial indicators in soil reclamation.

Aims

Our study aimed at (1) remediating a highly weathered, irrigated sodic Lixisol under prolonged urban crop production by clean water and gypsum application and (2) to determine the remediation effects on soil microbial indices.

Methods

A three-factorial on-farm experiment with maize (Zea mays L.) was used to study effects on soil microbial biomass of (1) soil degradation at two levels of salinity, (2) irrigation with clean water and wastewater, and (3) the impact of added gypsum during a typical growing season.

Results

At the high-degradation site, the 0.5 M K2SO4 extractable carbon (C) content was 40% higher than at the low-degradation site. In addition, microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) were 20% lower than at the low-degradation site, while fungal ergosterol was even 40% lower, leading to a 33% lower ergosterol/MBC ratio. Wastewater irrigation increased MBN but decreased ergosterol content at the low-degradation site while having no effect at the high-degradation site. Gypsum amendment led to higher MBN at the low-degradation site but to lower MBN at the high-degradation site. Gypsum amendment always increased the ergosterol content whereby this increase was stronger at the low-degradation site, especially in combination with wastewater irrigation.

Conclusions

From a microbial perspective, high soil degradation levels should be avoided by treatment of a saline–sodic wastewater prior to its use for irrigation rather than relying on future remediation strategies of affected field sites.  相似文献   

9.
To compare the effects of the system of rice intensification (SRI) on yield, water use efficiency, and microbial biomass in associated rice soils, a field experiment was conducted in 2004 at the Agriculture Experimental Farm of Zhejiang University in Zhejiang Province, China. The treatments evaluated were traditional flooding (TF) vs. SRI cultivation methods. Grain yield in the SRI treatment was 26.4% greater than that in the TF treatment, reducing water use by 461.5 mm. Compared to TF, SRI increased water use efficiency by 91.3% and irrigation water use efficiency by 194.9%. Soil microbial indicators during the rice‐growing season also diverged between TF and SRI. Microbial biomass C (MBC) was in the range of 101–196 mg kg?1 for TF vs. 113–224 mg kg?1 for SRI; microbial biomass N (MBN) was in the range of 14–33 mg kg?1 for TF vs. 28–53 mg kg?1 in SRI. Compared to TF, SRI significantly increased both MBC and MBN, regardless of sampling date.  相似文献   

10.
The changes of microbial biomass carbon (MBC) and nitrogen (MBN) and microbial community in the topsoil of the abandoned agricultural land on the semi-arid Loess Plateau in China during the natural succession were evaluated to understand the relationship between microbial community and soil properties. MBC and MBN were measured using fumigation extraction, and microbial community was analyzed by the method of fatty acid methyl ester (FAME). The contents of organic C, total N, MBC, MBN, total FAME, fungal FAME, bacterial FAME and Gram-negative bacterial FAME at the natural succession sites were higher than those of the agricultural land, but lower than those of the natural vegetation sites. The MBC, MBN and total FAME were closely correlated with organic C and total N. Furthermore, organic C and total N were found to be positively correlated with fungal FAME, bacterial FAME, fungal/bacterial and Gram-negative bacterial FAME. Natural succession would be useful for improving soil microbial properties and might be an important alternative for sustaining soil quality on the semi-arid Loess Plateau in China.  相似文献   

11.
ABSTRACT

The effectiveness of plant–soil synergies is largely modulated by interaction between cultivar and rhizosphere microbiome. We evaluated the agronomic performance of six durum wheat cultivars, in two semi-arid locations in Tunisia that differed in their irrigation water salinity: S1 (6 dS m?1) and S2 (12 dS m?1). The two-consecutive-year field experiments assessed the effects of the microbial biomass carbon (MBC), leaf phosphorus (LP) and rhizosphere phosphorus (P) on the grain yield (GY) and yield components at tillering and flowering stages. Overall, in saline conditions, cultivars differed in above- and below-ground traits, particularly, with tolerant cultivars presenting relatively greater MBC, P and LP. Furthermore, in S2, GY positively correlated with MBC (r = 0.69), LP (r = 0.80) and P (r = 0.79). Additionally, in S2, MBC positively correlated with P (r = 0.87) and LP (r = 0.85) at flowering. This result was further confirmed by multiple linear regression (step-wise) analysis, which revealed that MBC and LP were the determinant components of GY variability under S2. The present study demonstrates that LP and soil P are mandatory for improving the management of durum wheat. Salinity tolerance was largely affected by the cultivars’ rhizosphere MBC.  相似文献   

12.
为了研究引入秸秆碳源对根结线虫(Meloidogyne spp.)病害严重土壤中微生物生物量和原生动物的影响, 以番茄为供试作物, 设置4个梯度的小麦秸秆添加量[CK(0 g·kg-1), 1N(2.08 g·kg-1)、2N(4.16 g·kg-1)和4N(8.32 g·kg-1)], 研究不同种植时间(6个月和4个月)下土壤微生物生物量碳、氮和原生动物丰度的变化。研究结果表明: 添加秸秆对微生物生物量碳、氮和原生动物丰富度有明显促进作用, 添加的秸秆量越多, 这种促进作用越明显。不同秸秆添加量处理中, 微生物生物量碳、氮和原生动物丰度为: 4N>2N>1N>CK。秸秆对原生动物的群落结构也有显著影响, 在各处理中, 鞭毛虫和肉足虫占有绝大比例, 分别占总丰度的29.44%和66.19%, 纤毛虫仅占4.37%。在相同添加秸秆量条件下, 土壤原生动物丰度随种植时间的延长而提高, 而微生物生物量碳、氮量随种植时间的延长而降低。而在种植时间相同条件下, 随着秸秆量的增加土壤微生物生物量碳、氮量和微生物生物量碳氮比和原生动物总丰度相应增加。  相似文献   

13.
Greenhouse experiment was conducted to investigate the effect of different levels of irrigation water salinity (0.5, 2.5, 5 and 7.5 dS m?1) and wheat straw biochar (0%, 1.25%, 2.5%, and 3.75% w/w) on growth and yield of faba been using complete randomized design with three replications. Stomatal conductance (green canopy temperature) of faba bean increased (decreased) by application of biochar at each salinity level. The results showed increasing salinity to 2.5 dS m?1 at zero biochar application increased the seed yield through osmotic adjustment, while by declining the osmotic potential, the nutritional values of biochar caused the seed yield to increase by increasing salinity to 5 dS m?1. The root length density and root dry weight density in 0–8 cm soil layer declined under application of 3.75% w/w biochar in all salinity levels in comparison with that obtained in 2.5% w/w biochar, due to higher saline condition of the soil as result of higher biochar application. The results showed that addition of 2.5% w/w biochar can significantly mitigate salinity stress due to its high salt sorption capacity and by increasing potassium/sodium ratio in the soil. In general, since 2.5 % w/w biochar and salinity of 5 dS m?1 increased dry seed yield and irrigation water productivity compared with that obtained in control (B0S0.5), these levels are recommended to improve faba bean growth and yield; however, these levels have to be evaluated under field conditions.  相似文献   

14.
We have compared the total microbial biomass and the fungal/bacterial ratio estimated using substrate-induced respiration (SIR) in combination with the selective inhibition technique and using the phospholipid fatty acid (PLFA) technique in a pH gradient (3.0-7.2) consisting of 53 mature broad-leaved forest soils. A fungal/bacterial biomass index using the PLFA technique was calculated using the PLFA 18:2ω6,9 as an indicator of fungal biomass and the sum of 13 bacterial specific PLFAs as indicator of the bacterial biomass. Good linear correlation (p<0.001) was found between the total microbial biomass estimated with SIR and total PLFAs (totPLFA), indicating that 1 mg biomass-C was equivalent to 130 nmol totPLFA. Both biomass estimates were positively correlated to soil pH. The fungal/bacterial ratio measured using the selective inhibition technique decreased significantly with increasing pH from about 9 at pH 3 to approximately 2 at pH 7, while the fungal/bacterial biomass index using PLFA measurements tended to increase slightly with increasing soil pH. Good correlation between the soil content of ergosterol and of the PLFA 18:2ω6,9 indicated that the lack of congruency between the two methods in estimating fungal/bacterial ratios was not due to PLFA 18:2ω6,9-related non-fungal structures to any significant degree. Several PLFAs were strongly correlated to soil pH (R2 values >0.8); for example the PLFAs 16:1ω5 and 16:1ω7c increased with increasing soil pH, while i16:0 and cy19:0 decreased. A principal component analysis of the total PLFA pattern gave a first component that was strongly correlated to soil pH (R2=0.85, p<0.001) indicating that the microbial community composition in these beech/beech-oak forest soils was to a large extent determined by soil pH.  相似文献   

15.
A field experiment was conducted in Southern Italy to evaluate the effects of different water quality and fertilizers on yield performance of tomato crop. In mineral nitrogen (N) fertilizer and irrigation with fresh water (Electrical Conductivity, EC, = 0.9 dS m?1) (FWF); mineral N fertilizer and irrigation with saline water (EC = 6.0 dS m?1) (SWF); municipal solid waste (MSW) compost and irrigation with fresh water (EC = 0.9 dS m?1) (FWC); MSW compost and irrigation with saline water (EC = 6.0 dS m?1) (SWC). At harvest, weight and number of fruits and refractometric index (°Brix) were measured, total and marketable yield and dry matter of fruit were calculated. The results indicated that MSW compost, applied as amendment, could substitute the mineral fertilizer. In fact, in the treatments based on compost application, the tomato average marketable yield increased by 9% compared with treatments with mineral fertilizer. The marketable yield in the SWF and SWC treatments (with an average soil EC in two years to about 3.5 dS m?1) decreased respectively of 20 and 10%, in respect to fresh water treatments. At the end of the experiment, application of compost significantly decreased the sodium absorption rate (SAR) of SWC treatment in respect of SWF (?29.9%). Significant differences were observed among the four treatments both on soil solution cations either exchangeable cations. In particular compost application increased the calcium (Ca) and potassium (K) contents in saturated soil paste respect to the SWF ones (31.4% and 59.5%, respectively). At the same time saturated soil paste sodium (Na) in SWC treatment recorded a decrease of 17.4% compared to SWF.  相似文献   

16.
A laboratory incubation experiment was conducted to evaluate the effect of magnesium chloride–induced salinity on carbon dioxide (CO2) evolution and nitrogen (N) mineralization in a silty loam nonsaline alkaline soil. Magnesium chloride (MgCl2) salinity was induced at 0, 4, 8, 12, 16, 20, 30, and 40.0 dS m?1 and measured CO2 evolution and N mineralization during 30 days of incubation. Both CO2 evolution and N mineralization decreased significantly with increasing salinity. The cumulative CO2 evolution decreased from 235 mg kg?1 soil at electrical conductivity (EC) 0.65 dS m?1 to 11.9 mg kg?1 soil at 40 dS m?1 during 30 days of incubation. Similarly, N mineralization decreased from 185.4 mg kg?1 at EC 0.65 dS m?1 to 34.45 mg kg?1 at EC 40.0 dS m?1 during the same period. These results suggested that increasing magnesium chloride salinity from 4 dS m?1 adversely affect microbial activity in terms of carbon dioxide evolution and N mineralization.  相似文献   

17.
适宜咸水滴灌提高棉花水氮利用率   总被引:5,自引:0,他引:5  
通过田间试验研究了不同灌溉水盐度和灌溉量对棉花水氮利用效率的影响。试验设置三种灌溉水盐度(电导率EC):0.35(淡水)、4.61(微咸水)和8.04 dS/m(咸水),分别以FW、BW和SW表示;两个灌溉量405和540 mm,分别以I405、I540表示。结果表明微咸水灌溉棉花干物质质量最高,其次是淡水灌溉,咸水灌溉最低。咸水灌溉棉花的氮素吸收量、产量显著降低,但微咸水与淡水灌溉差异不显著。农田蒸散量随灌溉水量的增加而增加,随灌溉水盐度的增加而降低。微咸水灌溉对滴灌棉田蒸散量和水分生产率影响不大,但咸水灌溉导致蒸散量和水分生产率显著降低。15N同位素标记试验结果表明,三种灌溉水盐度下,高灌量处理(540 mm)较低灌量处理(405 mm)棉花15N回收率平均增加7.51%,土壤15N回收率降低13.20%,15N淋洗损失率增加29.47%。不同灌溉水盐度处理棉花15N回收率为47.02%~59.86%,微咸水灌溉棉花15N回收率与淡水灌溉差异不大,但咸水灌溉棉花15N回收率较淡水和微咸水灌溉分别降低了10.17%和15.23%。不同灌溉水盐度对土壤15N残留率的影响较小,为16.75%~22.41%。15N的淋洗损失率为1.56%~4.71%,表现为随灌溉水盐度的增加而显著增加,咸水和微咸水灌溉15N淋洗损失率平均较淡水灌溉分别增加了80.53%和136.00%。上述结果说明适宜盐度和灌溉量的微咸水滴灌对棉花生长、产量以及水氮利用率影响不大,但高盐度咸水灌溉会导致棉花减产,水氮利用率显著降低。滴灌条件下,氮素的淋洗损失也是氮肥损失的重要途径,尤其是咸水和微咸水灌溉会加剧氮肥的淋洗损失风险。因此,咸水微咸水灌溉条件下减少氮肥的淋洗损失是提高氮肥利用率的重要方面。  相似文献   

18.
19.
Parts of paddy fields in Mazandaran Province, northern Iran, are confronted with soil and water salinity. To screen proper rice cultivars, an experiment was performed with eight modified rice cultivars under four levels of irrigation water salinity (1, 2, 4 and 6 dS m?1) with three replications, in Amol, northern Iran. The objective of the present study was the evaluation of eight screening indices for identifying salinity tolerance of these cultivars, so that suitable cultivars can be recommended for the cultivation with saline irrigation water in paddy fields. To evaluate the resistance of these cultivars to salinity stress, different indices were calculated. The results showed that Khazar cultivar was the most salt-sensitive cultivar in all salinity levels. In the irrigation salinity levels of 2 and 4 dS m?1 Neda cultivar and in the level of 6 dS m?1 Dasht cultivar were the most salt-resistant cultivars. In the two irrigation salinity levels of 4 and 6 dS m?1, the mean productivity index was the most effective in the screening of salt-resistant cultivars. Harmonic mean, geometric mean productivity, stress tolerance index and mean productivity indices were found to be the best indices in screening resistant cultivars.  相似文献   

20.
《Applied soil ecology》2007,35(3):535-545
Water availability is known to influence many aspects of microbial growth and physiology, but less is known about how complex soil microbial communities respond to changing water status. To understand how long-term enhancement of soil water availability (without flooding) influences microbial communities, we measured the seasonal dynamics of several community-level traits following >7 years of irrigation in a drought-prone tallgrass prairie soil. From late May to mid-September, water was supplied to the irrigated treatments based on calculated plant water demand. Phospholipid fatty acids (PLFA) were used to assess changes in microbial community structure and physiology. To assess the community-level physiological profile, microbial utilization of BIOLOG substrates was determined. After incubation for 2 days, the distribution of added 13C-glucose in microbial and respired pools was used as an index of substrate utilization efficiency. We also measured the relative contribution of fungi and bacteria to soil microbial biomass via substrate-induced respiration (SIR). Multivariate analysis of mol% PLFA and BIOLOG substrate utilization indicated that both water availability and sampling time influenced both the physiological and structural characteristics of the soil microbial community. Specific change in biomarker PLFA revealed a decreased ratio of cyclopropyl to ω7-precursors due to water addition, suggesting community-level stresses were reduced. Over the growing season, continuously greater water availability resulted in a 53% greater ratio of fungal to bacterial biomass using SIR, and a 65% increase in fungal PLFA. The number of substrates utilized by the cultivable microbial community tended to be greater in continuously wetted soil, especially during periods of low rainfall. While water dynamics appeared to be associated with some of the shifts in microbial community activity, structural and functional changes in the community appeared to be more closely linked to the cumulative effects of water regime on ecosystem properties. Seasonality strongly influenced microbial communities. The environmental factors associated with seasonal change need to be more closely probed to better understand the drivers of community structure and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号