首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 172 毫秒
1.
本试验在实验室模拟土壤淹水条件下,研究微生物对久效磷残留及降解的影响。结果表明:在未经灭菌的土壤中,久效磷及其降解物的消失比在灭菌土壤中快,相应的回归方程为C_WT=5.4502e~(-0.0254)t,C_YT=5.8509—0.0423t,残留半衰期分别为27.3和69.2天。久效磷在淹水土壤中降解为甲醇可抽提态和不可抽提态残留物,对甲醇可抽提态残留物经TLC和红外光谱分析表明,其降解物为磷酸三酯、N-去甲基久效磷、O,O-二甲基乙烯基磷酸酯,0-去甲基久效磷,以及O,C-去甲基久效磷,但主要为磷酸三酯,其含量由母液中的5%增加到28—83%,这种降解过程,在未灭菌土壤中比在灭菌土壤中快。  相似文献   

2.
采用气相色谱法测定林丹在土壤中的残留动态。在自然状况下,林丹在土壤中的降解很快,20d后,灌淤土和灰漠土中降解率分别为3991%与4122%,两个月后降解分别达9959%和9969%。棉花种子及油菜种子经林丹拌种后,在土壤中的残留量很低,与不拌种的土壤残留相近。用干种子重量的015%林丹拌种,拌种棉田土壤中林丹的平均残留量为00042mg/kg,不拌种土壤中为00027mg/kg;油菜种子拌种土壤中平均残留量为00038mg/kg,不拌种的土壤中为00010mg/kg。棉花、油菜采用林丹拌种对土壤的污染是微不足道的。试验结果还表明,林丹在土壤中的残留量随用药浓度的提高而增加。  相似文献   

3.
水稻全耕层一次性基施氮肥增产的机理   总被引:3,自引:0,他引:3  
帅稼夫  杨廉泉 《核农学报》1988,2(3):167-172
本试验应用15_N示踪技术研究了氮肥不同施用方法对水稻增产的机理。结果表明:全层一次基施法与一次面施法或分次表施法相比,植株对氮素的吸收增多,碳铵利用率提高30.2—84.2%,尿素利用率提高13.8—23.7%;在土壤中的残留率,碳铵增加9.4—29.6%,尿素增加11.4—12.8%,从而有利于提高稻谷产量。  相似文献   

4.
~(14)C-氟乐灵在土壤中的迁移和降解   总被引:2,自引:0,他引:2  
郑麟  王福钧 《核农学报》1993,7(1):37-44
在实验室条件下,用放射性同位素示踪技术研究了~(14)C-氟乐灵(Trifluralin)在土壤中的吸附、迁移和降解。结果表明:氟乐灵在土壤中的吸附性很强,在不同土壤中的吸附率为73.89%~90.66%。土壤有机质含重对吸附有重要影响。氟乐灵在有机质丰富、粘粒含量较高的草甸黑土中淋溶很低,而在砂土中淋溶较高,易向下迁移。在厌氧条件的土壤中,氟乐灵降解较快,30天在土壤提取态中有60.2%~64.2%降解,610天有90.0%~94.7%降解,主要降解产物为R_f值等于0.06,0.15和0.42的化合物。  相似文献   

5.
为了评价林丹在环境介质中的持久性,对林丹的土壤降解、水解、光解与快速生物降解性进行了试验研究。结果表明,林丹的土壤降解半衰期为36.9~68.6d,水解半衰期为8.94~2310d,对光反应稳定,难以快速生物降解。林丹对斑马鱼的96h—LC50为4.22μg·L^-1,对环境生物具有极高的毒性;林丹在金鱼体内的生物富集系数BCF〉1000,具有较高的生物富集性。根据试验结果推断,林丹在环境介质中具有极强的稳定性,很容易在食物链中发生生物积累。  相似文献   

6.
应用~(14)C-杀螟松研究该农药在模拟稻/鱼生态系统中的残留与分布表明:在稻田水和稻株茎叶中的残留浓度随时间增长而逐渐消减:在土壤、稻株、根系和鱼体中为前期增加,到一定时期后开始衰减。水稻收获期测定,在高剂量处理的稻田水、上层土壤、下层土壤、稻茎叶、糙米和鱼体中、其残留浓度分别为0.0027、0.4994、0.0993、4.2429、2.1024和4.3400ppm;在低剂量处理申,除稻田水未检测出外,分别为0.2653、0.0380、1.7818、0.9633和2.1469ppm。在土壤和稻株中结合态残留物所占比例高达60—90%,且有随时间而增加的趋势  相似文献   

7.
本研究调查了秦山核电站站址周围50km半径范围内土壤、水和农作物的总α、总β放射性水平,土壤中天然放射性核素含量,以及γ外照射积累剂量。结果表明:土壤中总α、总β值分别为0.54—1.48×10~(-8)Ci/kg和1.90—2.96×10~(-8) Ci/kg,低于全国一般地区平均水平,且0—100cm土层变化不大。土壤中~238U、~226Ra、~232Th、~40k、~137Cs的放射性活性分别为0.67—5.00×10~(-9)、4.49—11.4×10~(-10)、0.88—1.69×10~(-9)、0.39—2.09×10~(-8)和0.89—4.32×10~(-10)Ci/kg。河水、湖水以及核电站废水排放口处海水总β值分别为1.32—8.62、3.6和2.55×10~(-12)Ci/L。大米和油菜叶中的总β值分别为2.53和3.0×10~(-9)Ci/kg。室内外月平均γ照射量各为10.6—14.7和9.16—13.7mR。  相似文献   

8.
应用放射免疫分析和竞争蛋白结合分析法测定了成都麻羊、莎能羊及其杂交一代母羊产后四月内的乳中孕酮浓度变化。供试动物在试验期间的孕酮浓度一般保持基础水平,约有87.2%(成都麻羊)、94.4%(莎能羊)和93.9%(杂交羊)的测值在10ng/ml以下。孕酮浓度升高发生1—5次,较行为发情次数为多。第一次孕酮浓度升高发生在产后26—67天(成都麻羊)、19—52天(莎能羊)和39—122天(杂交羊)期间。产后五天内初乳中的孕酮含量平均为每日2—4ng。  相似文献   

9.
钛对小麦吸收利用氮素及产量的影响   总被引:4,自引:0,他引:4  
应用~(15)N标记化肥硫酸铵(丰度29.07%),研究了叶面喷施钛化合物溶液对小麦产量及吸收利用化肥氮的影响。试验表明,叶面喷施10和50ppm钛(Ti)溶液可促进小麦产量的增加,使小麦植株和籽粒中来自肥料和土壤的氮明显增多,促进了颖壳中的氮向籽粒转运。植株、籽粒对化肥氮盼利用率由对照的53.1%和31.1%分别提高至56.6—60.4%和37.9—44.4%,达差异显著和极显著水平。  相似文献   

10.
本文对14 C 绿磺隆在 7种不同类型土壤中形成结合残留 ( 14 C ER)、可提态残留( 14 C ER)以及矿化为14 C CO2 的规律、影响14 C BR的主要因子及其在腐殖质中的分布规律等进行了研究。结果表明 :( 1 ) 14 C 绿磺隆在土壤中形成的14 C ER含量与土壤pH呈显著正相关 ,与土壤粘粒和有机质含量呈显著负相关 ,14 C ER中的绿磺隆母体化合物的消减满足一级反应动力学方程 ,其在 7种土壤中的半减期分别为 1 3 0~ 1 3 3 3d。pH是影响绿磺隆母体化合物降解的主要因子 ;( 2 ) 14 C 绿磺隆在 7种土壤中的14 C BR含量与土壤pH呈显著负相关 ,并与土壤粘粒含量呈显著正相关 ,土壤pH是14 C 绿磺隆在土壤中形成BR的主要影响因子 ;( 3 ) 14 C 绿磺隆形成的14 C BR主要分布在富啡酸和胡敏素中 ;14 C BR分布在胡敏酸中的相对百分比约为 2 % ,在14 C 绿磺隆BR的形成过程中 ,富啡酸的作用 >胡敏素 胡敏酸 ;( 4) 14 C 绿磺隆在 7种土壤中的14 C BR含量 ,在培养 2 0d内均随时间而快速增加 ,2 0d后变化量较小。 7种土壤中的14 C BR含量最大值分别占引入量的 53 5%、40 9%、3 7 8%、1 6 4%、42 5%、41 0 %和 3 1 3 % ;( 5)培养 90d内 ,14 C 绿磺隆通过三嗪杂环开环矿化为14 CO2 的量约占引入量的 4%~9% ,而土壤 1表明14 C  相似文献   

11.
Mississippi Delta cotton (Gossypium hirsutum L.) production in rotation with corn (Zea mays L.) was evaluated in field experiments from 2000 to 2005 at Stoneville, Mississippi. Plots maintained under minimum tillage were established in 2000 on a Dundee silt loam with treatments including continuous cotton or corn and alternate cotton-corn rotations. Mineralization and dissipation of 14C [ring]-labeled atrazine were evaluated in the laboratory on soils collected prior to herbicide application in the first, second, third, and sixth years of the study. In soils collected in 2000, a maximum of 10% of the atrazine was mineralized after 30 days. After 1 year of herbicide application, atrazine-treated soils mineralized 52-57% of the radiolabeled atrazine in 30 days. By the sixth year of the study, greater than 59% of the atrazine was mineralized after 7 days in soils treated with atrazine, while soils from plots with no atrazine treatment mineralized less than 36%. The data also indicated rapid development of enhanced atrazine degradation in soils following 1 year of corn production with atrazine use. Atrazine mineralization was as rapid in soils under a rotation receiving biannual atrazine applications as in soils under continuous corn receiving annual applications of atrazine. Cumulative mineralization kinetics parameters derived from the Gompertz model (k and ti) were highly correlated with a history of atrazine application and total soil carbon content. Changes in the soil microbial community assessed by total fatty acid methyl ester (FAME) analysis indicated significant interactions of cropping system and sampling date, with FAME indicators for soil bacteria responsible for differences in community structure. Autoclaved soil lost all ability to mineralize atrazine, and atrazine-mineralizing bacteria were isolated from these plots, confirming the biological basis for atrazine mineralization. These results indicate that changes in degradative potential of a soil can occur rapidly and some changes in soil properties may be associated with cropping systems, which can contribute to enhanced atrazine degradation potential.  相似文献   

12.
土壤中14C-甲磺隆存在形态的动态研究   总被引:14,自引:0,他引:14       下载免费PDF全文
利用同位素示踪技术 ,在实验室条件下研究了1 4 C -甲磺隆在 1 5种不同土壤中存在形态的动态变化。结果表明 ,土壤pH值与甲磺隆1 4 C残留物的降解半衰期、残留量及可提取态残留量呈显著的正相关 ,而与结合态残留量呈显著负相关 ;土壤微生物的活性越强 ,甲磺隆降解速率越快 ,但结合态残留量也越高 ;土壤中各腐殖质组分和粘粒的含量也影响甲磺隆在土壤中的降解速率和存在形态。土壤中甲磺隆的残留符合一级反应动力学指数方程C =C0 e-kt,拟合方程的复相关系数达到极显著水平。甲磺隆残留与土壤性质之间经逐步回归分析可得到拟合效果较好的方程 ,由各自变量的决定系数可知 ,土壤pH值、微生物生物量碳和有机碳中富啡酸碳所占的比例是影响甲磺隆在土壤中残留的主要因素  相似文献   

13.
A well-rotten mixture of rice straw and calcium cyanamide (rice straw compost prepared indoors) was separated physically into four fractions using a combination of methods which involved sieving, sedimentation and centrifugation. The four fractions obtained were Fl-3 (>0.043 mm), F4 (sedimented at 4°C), F5 (sedimented by centrifugation at 104 × g for 10 min) and F6 (supernatant). The air-dried and pulverized fractions were mixed with upland soils and incubated for 4 weeks at 30°C under upland conditions. The amount of nitrogen mineralized in each fraction was determined, In a red yellow soil, 11.2% of the organic nitrogen present in the unfractionated, air-dried sample was mineralized, compared with 6.8% in volcanic ash soil. The contribution of fraction F5 to the total amount of mineralized nitrogen in wet compost was the highest, followed by F6. Fraction Fl-3 showed immobilization of inorganic nitrogen in both soil types. On the other hand, fractionated samples obtained after air-drying the wet compost showed no immobilization for Fl-3, although the values obtained for other fractions were similar to those obtained for the corresponding fractions of wet compost.

Well-rotten plant residues such as rice straw (compost prepared outdoors), Timothy and Ladino clover were air-dried, then separated into fractions and analyzed for elementary composition as well as inorganic nitrogen content using the same procedures. Although the amounts of mineralized nitrogen were higher in fractions F5 and F6 compared with other fractions, the values were much lower compared with those of undecomposed plant residues.

It was found that the amount of organic nitrogen mineralized in soil was affected not only by the C/N ratio of the plant residues but also by the differences in characteristics or properties of the plant materials and soils.  相似文献   

14.
Four soil-water tensions ranging from 10 kPa to 1.5 MPa were employed to study the effect of soil-water tension on methyl parathion degradation, metabolism and bound-residue formation in two soils. Uniformly ring-labeled [14C]methyl parathion was used. Mineralization was rapid in soils at 10 and 33 kPa. Results from the disappearance of 14C-activity indicated that methyl parathion could be also rapidly mineralized in soils at 100 kPa, while mineralization at 1.5 MPa was slower. Nonextractable 14C-activity (bound residues) was formed rapidly during 7–14 days in the soils maintained at 100 kPa and lower. The formation of nonextractable 14C-activity in the 1.5 MPa soils was slower but increased steadily during 28 days. Since no methyl aminoparathion was detected, it was suggested that the insecticide was hydrolyzed initially to p-nitrophenol and subsequently was reduced to p-aminophenol. The reduction was favored in moist soils (10 and 33 kPa) but was resisted in dry soil (1.5 MPa).  相似文献   

15.
The cycling of dissolved organic matter (DOM) in soils is controversial. While DOM is believed to be a C source for soil microorganisms, DOM sorption to the mineral phase is regarded as a key stabilization mechanism of soil organic matter (SOM). In this study, we added 14C-labelled DOM derived from Leucanthemopsis alpina to undisturbed soil columns of a chronosequence ranging from initial unweathered soils of a glacier forefield to alpine soils with thick organic layers. We traced the 14C label in mineralized and leached DOM and quantified the spatial distribution of DO14C retained in soils using a new autoradiographic technique. Leaching of DO14C through the 10 cm-long soil columns amounted up to 28% of the added DO14C in the initial soils, but to less than 5% in the developed soils. Biodegradation hardly contributed to the removal of litter-DO14C as only 2–9% were mineralized, with the highest rates in mature soils. In line with the mass balance of 14C fluxes, measured 14C activities in soils indicated that the major part of litter DO14C was retained in soils (>80% on average). Autoradiographic images showed an effective retention of almost all DO14C in the upper 3 cm of the soil columns. In the deeper soil, the 14C label was concentrated along soil pores and textural discontinuities with similarly high 14C activities than in the uppermost soil. These findings indicate DOM transport via preferential flow, although this was quantitatively less important than DOM retention in soils. The leaching of DO14C correlated negatively with oxalate-extractable Al, Fe, and Mn. In conjunction with the rapidity of DO14C immobilization, this strongly suggests that sorptive retention DOM was the dominating pathway of litter-derived DOM in topsoils, thereby contributing to SOM stabilization.  相似文献   

16.
Nitrogen biomarkers and their fate in soil   总被引:3,自引:0,他引:3  
More than 90 % of the nitrogen (N) in soils can be organically bound, but the mechanisms and rates by which it is cycled have eluded researchers. The objective of this research was to contribute to a better understanding of the origin and transformation of soil organic N (SON) by using amino sugars and the enantiomers of amino acids as markers for microbial residues and/or aging processes. Studied samples presented here comprised (1) soil transects across different climates, (2) arable soils with different duration of cropping, and (3) radiocarbon‐dated soil profiles. The results suggested that increased microbial alteration of SON temporarily results in a sequestration of N in microbial residues, which are mineralized at later stages of SON decomposition. Microorganisms increasingly sequestered N within intact cell wall residues as frost periods shortened. At a mean annual temperature above 12–15 °C, these residues were mineralized, probably due to limitations in additional substrates. Breaking the grassland for cropping caused rapid SON losses. Microbial residues were decomposed in preference to total N, this effect being enhanced at higher temperatures. Hence, climate and cultivation interactively affected SON dynamics. Nevertheless, not all SON was available to soil microorganisms. In soil profiles, L‐aspartic acid and L‐lysine slowly converted into their D‐form, for lysine even at a similar rate in soils of different microbial activity. Formation of D‐aspartate with time was, therefore, induced by microorganisms while that of D‐lysine was not. The racemization of the two amino acids indicates that SON not available to microorganisms ages biotically and abiotically. In native soils, the latter is conserved for centuries, despite N deficiency frequently occurring in living terrestrial environments. Climate was not found to affect the fate of old protein constituents in surface soil. When native grassland was broken for cropping, however, old SON constituents had become available to microorganisms and were degraded.  相似文献   

17.
Characterization of pesticide bioavailability, particularly in aged soils, is of continued interest because this information is necessary for environmental risk assessment. However, pesticide bioavailability in aged soils has been characterized by a variety of methods with limited success, due in part to methodological limitations. The objective of this study was to use solvent extraction methods to correlate simazine residue bioavailability in aged soils to simazine mineralization using a simazine-mineralizing bacterium. Soils from Brazil, Hawaii, and the midwestern United States were treated with UL-ring-labeled [14C]simazine and incubated for up to 8 weeks. At the end of each incubation period, soils were either incubated further, extracted with 0.01 M CaCl2, or extracted with aqueous methanol (80:20 v/v methanol/water). In a parallel experiment, after each incubation period, soils were inoculated with the bacterium Pseudomonas sp. strain ADP, which is capable of rapidly mineralizing simazine, and 14CO2 was determined. The inoculated soil samples were then extracted with 0.01 N CaCl2 and with aqueous methanol. This allowed for the evaluation of the bioavailability of aged simazine residues, without the contribution of simazine desorption from soil. Results of these studies indicated that simazine sorption to soil increased with aging and that amounts of simazine in aged soils extracted by 0.01 M CaCl2 and aqueous methanol were highly correlated to amounts of simazine mineralized by Pseudomonas sp. strain ADP. Consequently, 0.01 M CaCl2/methanol-extractable simazine in aged soils can be used to estimate bioavailable residues. This technique may be useful in determining the bioavailability of other s-triazine compounds in soils.  相似文献   

18.
Characterization of pesticide bioavailability, particularly in aged soils, is of continued interest because this information is necessary for environmental risk assessment. The objective of this study was to correlate atrazine residue bioavailability in aged soils, as determined by solvent extraction methods, to atrazine mineralization by an atrazine-degrading bacterium. Webster clay loam and Zimmerman fine sand soils were treated with UL-ring-labeled [14C]atrazine and incubated for up to 8 weeks. At the end of each incubation period, soils were either not extracted, extracted with 0.01 M CaCl2, or extracted with 0.01 M CaCl2/aqueous methanol. Soils were then inoculated with the bacterium Pseudomonas sp. strain ADP, which is capable of rapidly mineralizing the atrazine ring. This allowed for the evaluation of the bioavailability of aged atrazine residues without the contribution of atrazine desorption from soil. Results of these studies indicated that the amounts of atrazine residues in aged soils extracted by 0.01 M CaCl2 and aqueous methanol were correlated to amounts of atrazine mineralized by Pseudomonas sp. strain ADP. Consequently, 0.01 M CaCl2/methanol extractable atrazine in aged soils may be used to estimate bioavailable residues, and this technique may be useful to determine the bioavailability of other compounds in soils, especially other triazine herbicides.  相似文献   

19.
Summary C and N mineralization potentials were determined, in a 12-week laboratory incubation study, on soil samples obtained from recently cleared land which had been cropped to barley for 4 years (field soils) and from nearby undisturbed taiga (forest soils). Treatments for the cropped soils were conventional and no-tillage with and without crop residues removed. An average of about 3% of the total C was evolved as CO2 from the field soils compared with > 10% and 4% for the upper (Oie) and lower (Oa) forest-floor horizons, respectively. Significantly more C was mineralized from the Ap of the no-till treatment with residue left on the surface than from the other field Ap horizons. Both forest-floor horizons showed rather long lag periods for net mineralization compared with the field soils, but at the end of the incubation, more mineral N was recovered from the forest Oie despite a rather wide C:N ratio, than from the field soils. After 12 weeks about 115, 200 and 20 g mineral N/g soil were recovered from the field Ap, the forest Oie and the forest Oa horizons, respectively. Very little C or N was mineralized from the B horizon of the forest or the field soils. Nitrification was rapid and virtually complete for the field soils but was negligible for both forest-floor O horizons.Paper no J-188 of the Journal Series of the Alaska Agricultural and Forestry Experiment Station  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号