首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
The semiconducting properties of a wide range of minerals are often ignored in the study of their interfacial geochemical behavior. We show that surface-specific charge density accumulation reactions combined with bulk charge carrier diffusivity create conditions under which interfacial electron transfer reactions at one surface couple with those at another via current flow through the crystal bulk. Specifically, we observed that a chemically induced surface potential gradient across hematite (alpha-Fe2O3) crystals is sufficiently high and the bulk electrical resistivity sufficiently low that dissolution of edge surfaces is linked to simultaneous growth of the crystallographically distinct (001) basal plane. The apparent importance of bulk crystal conduction is likely to be generalizable to a host of naturally abundant semiconducting minerals playing varied key roles in soils, sediments, and the atmosphere.  相似文献   

2.
3.
When two bodies of liquid merge, their interfaces must also rupture and rearrange into one. Virtually no information is available concerning the small-scale dynamics of this process. Molecular dynamics simulations of coalescence in systems of about 10,000 Lennard-Jones particles have been performed, arranged so as to mimic laboratory experiments on dense liquids. The coalescence event begins when molecules near the boundary of one liquid body thermally fluctuate into the range of attraction of the other, forming a string of mutually attracting molecules. These molecules gradually thicken into a tendril, which continues to thicken as the bodies smoothly combine in a zipper-like merger.  相似文献   

4.
Time-resolved sum-frequency vibrational spectroscopy permits the study of hitherto neglected ultrafast vibrational dynamics of neat water interfaces. Measurements on interfacial bonded OH stretch modes revealed relaxation behavior on sub-picosecond time scales in close resemblance to that of bulk water. Vibrational excitation is followed by spectral diffusion, vibrational relaxation, and thermalization in the hydrogen-bonding network. Dephasing of the excitation occurs in 相似文献   

5.
Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A   总被引:128,自引:0,他引:128  
The zinc finger DNA-binding motif occurs in many proteins that regulate eukaryotic gene expression. The crystal structure of a complex containing the three zinc fingers from Zif268 (a mouse immediate early protein) and a consensus DNA-binding site has been determined at 2.1 angstroms resolution and refined to a crystallographic R factor of 18.2 percent. In this complex, the zinc fingers bind in the major groove of B-DNA and wrap part way around the double helix. Each finger has a similar relation to the DNA and makes its primary contacts in a three-base pair subsite. Residues from the amino-terminal portion of an alpha helix contact the bases, and most of the contracts are made with the guanine-rich strand of the DNA. This structure provides a framework for understanding how zinc fingers recognize DNA and suggests that this motif may provide a useful basis for the design of novel DNA-binding proteins.  相似文献   

6.
The self-assembly of particles at fluid interfaces, driven by the reduction in interfacial energy, is well established. However, for nanoscopic particles, thermal fluctuations compete with interfacial energy and give rise to a particle-size-dependent self-assembly. Ligand-stabilized nanoparticles assembled into three-dimensional constructs at fluid-fluid interfaces, where the properties unique to the nanoparticles were preserved. The small size of the nanoparticles led to a weak confinement of the nanoparticles at the fluid interface that opens avenues to size-selective particle assembly, two-dimensional phase behavior, and functionalization. Fluid interfaces afford a rapid approach to equilibrium and easy access to nanoparticles for subsequent modification. A photoinduced transformation is described in which nanoparticles, initially soluble only in toluene, were transported across an interface into water and were dispersed in the water phase. The characteristic fluorescence emission of the nanoparticles provided a direct probe of their spatial distribution.  相似文献   

7.
The dynamics of two-dimensional small-polaron formation at ultrathin alkane layers on a silver(111) surface have been studied with femtosecond time- and angle-resolved two-photon photoemission spectroscopy. Optical excitation creates interfacial electrons in quasi-free states for motion parallel to the interface. These initially delocalized electrons self-trap as small polarons in a localized state within a few hundred femtoseconds. The localized electrons then decay back to the metal within picoseconds by tunneling through the adlayer potential barrier. The energy dependence of the self-trapping rate has been measured and modeled with a theory analogous to electron transfer theory. This analysis determines the inter- and intramolecular vibrational modes of the overlayer responsible for self-trapping as well as the relaxation energy of the overlayer molecular lattice. These results for a model interface contribute to the fundamental picture of electron behavior in weakly bonded solids and can lead to better understanding of carrier dynamics in many different systems, including organic light-emitting diodes.  相似文献   

8.
Madix RJ 《Science (New York, N.Y.)》1986,233(4769):1159-1166
One of the primary objectives of modern surface chemistry of transition metals is the synthesis of surface compounds and complexes and the understanding of their reactivity, structure, and bonding. Such considerations are paramount for advancing understanding of catalysis, adhesion, organic thin-film growth, and electrocatalysis. On selected metals, particularly copper, silver, and gold, selective scission of X-H bonds (where X is oxygen, carbon, nitrogen, or sulfur) by surface-bound atomic oxygen occurs to form moderately stable species that can be isolated for further study. Selective oxidation reactions may occur heterogeneously by means of this novel oxygen- activated route. Furthermore, this selective chemistry offers a paradigm for synthesis of a wide variety of surface organometallic complexes, whose formation can be predicted from acid-base principles. These subjects are discussed in this article with emphasis on their role in catalytic oxidation cycles.  相似文献   

9.
Methods for the design and synthesis of ligands intended to be specific for a metal ion have been a recent chemical development. This article describes how this process can be inverted so that the specifics of the coordination environment around the metal ion can be used as a template in large-scale ligand synthesis. The synthesis of macrobicyclic ligands for ferric ion has been accomplished by using active esters of catechol ligands in which catecholate coordination to iron is a prelude to the organic chemical reactions that link the coordination subunits together into one ligand system surrounding a central metal ion coordination site. The lanthanide(III) ions, which are among the most labile metal ions known, have coordination numbers of 8 or higher, and thus their encapsulation into a macrobicyclic structure is a challenging problem. Lanthanide amine complexes have been used as metal templates in the synthesis of such macrobicyclic lanthanide complexes. There is evidence that such a complex is inert to exchange in aqueous solution.  相似文献   

10.
Feng S  Bein T 《Science (New York, N.Y.)》1994,265(5180):1839-1841
Tubular aluminophosphate molecular sieve crystals were grown at an organic interface with their channels (7 angstroms in cross section) vertical to the substrate. To induce surface nucleation and oriented growth of AIPO(4)-5 crystals, organophosphonate layers cross-linked with Zr(IV) were assembled on a gold substrate and the modified substrate was immersed in a hydrothermal bath containing reagents for the synthesis of the molecular sieve. Reflection-absorption infrared studies demonstrated the stability of the phosphonate layers under these conditions. Drastic changes in the morphology of the surface-grown crystals from spherical agglomerates to vertical needles to thin tilted needles could be achieved by adjusting the water content of the synthesis bath. Nitrogen sorption in these structures on a piezoelectric device confirmed the presence of zeolitic microporosity.  相似文献   

11.
It is shown by angle-resolved x-ray photoelectron spectroscopy that cavitands derived from resorcin[4]arenes provided with four dialkylsulfide chains form stable monolayers on gold surfaces that are well organized by self-assembly. The cavitand headgroups at the surface of the resorcin[4]arene monolayer act as molecular recognition sites for small organic molecules with remarkable selectivity for perchloroethylene (C(2)Cl(4)). Comparative thermal desorption experiments indicate binding sites with high interaction energies of C(2)Cl(4) at the surface of the resorcin[4]arene monolayers. Fast and reversible "host-guest" interactions were found by the monitoring of extremely small mass changes (in the nanogram range) with a quartz microbalance oscillator provided with gold electrodes coated by resorcin[4]arene monolayers.  相似文献   

12.
Colloidal particles or nanoparticles, with equal affinity for two fluids, are known to adsorb irreversibly to the fluid-fluid interface. We present large-scale computer simulations of the demixing of a binary solvent containing such particles. The newly formed interface sequesters the colloidal particles; as the interface coarsens, the particles are forced into close contact by interfacial tension. Coarsening is markedly curtailed, and the jammed colloidal layer seemingly enters a glassy state, creating a multiply connected, solidlike film in three dimensions. The resulting gel contains percolating domains of both fluids, with possible uses as, for example, a microreaction medium.  相似文献   

13.
Understanding the formation of sulfate particles in the troposphere is critical because of their health effects and their direct and indirect effects on radiative forcing, and hence on climate. Laboratory studies of the chemical and physical changes in sodium chloride, the major component of sea-salt particles, show that sodium hydroxide is generated upon reaction of deliquesced sodium chloride particles with gas-phase hydroxide. The increase in alkalinity will lead to an increase in the uptake and oxidation of sulfur dioxide to sulfate in sea-salt particles. This chemistry is missing from current models but is consistent with a number of previously unexplained field study observations.  相似文献   

14.
Cotranslational targeting of membrane and secretory proteins is mediated by the universally conserved signal recognition particle (SRP). Together with its receptor (SR), SRP mediates the guanine triphosphate (GTP)-dependent delivery of translating ribosomes bearing signal sequences to translocons on the target membrane. Here, we present the crystal structure of the SRP:SR complex at 3.9 angstrom resolution and biochemical data revealing that the activated SRP:SR guanine triphosphatase (GTPase) complex binds the distal end of the SRP hairpin RNA where GTP hydrolysis is stimulated. Combined with previous findings, these results suggest that the SRP:SR GTPase complex initially assembles at the tetraloop end of the SRP RNA and then relocalizes to the opposite end of the RNA. This rearrangement provides a mechanism for coupling GTP hydrolysis to the handover of cargo to the translocon.  相似文献   

15.
We analyzed the glassy-state structural relaxation of polymers near surfaces and interfaces by monitoring fluorescence in multilayer films. Relative to that of bulk, the rate of structural relaxation of poly(methyl methacrylate) is reduced by a factor of 2 at a free surface and by a factor of 15 at a silica substrate interface; the latter exhibits a nearly complete arresting of relaxation. The distribution in relaxation rates extends more than 100 nanometers into the film interior, a distance greater than that over which surfaces and interfaces affect the glass transition temperature.  相似文献   

16.
17.
Last month in Washington, D.C., the National Academy of Sciences held the first of what it hopes will be a series of seminars in forefront fields of science, technology, and medicine. The idea is to bring the academy closer to the frontlines of research and to help spread the word to federal science policy-makers. The subject of the 23 and 24 March seminar was interfaces and thin films, and the talks, though tutorial in nature, contained a pleasantly large number of still unpublished results. Interfaces, such as the surface of a solid exposed to a liquid or gas, and thin films, whose properties are heavily influenced by interfaces, have long been of considerable technological importance and have always been so in biological processes, but researchers are now getting access to the experimental and theoretical tools needed to explore these complex physical systems that are neither ideally two-dimensional nor fully three-dimensional. The briefings that follow give a peek at three ways to probe interfaces involving liquids.  相似文献   

18.
Although enzymes often incorporate molecular recognition elements to orient substrates selectively, such strategies are rarely achieved by synthetic catalysts. We combined molecular recognition through hydrogen bonding with C-H activation to obtain high-turnover catalytic regioselective functionalization of sp3 C-H bonds remote from the -COOH recognition group. The catalyst contains a Mn(mu-O)2Mn reactive center and a ligand based on Kemp's triacid that directs a -COOH group to anchor the carboxylic acid group of the substrate and thus modify the usual selectivity for oxidation. Control experiments supported the role of hydrogen bonding in orienting the substrate to achieve high selectivity.  相似文献   

19.
20.
At interfaces between complex oxides, electronic systems with unusual electronic properties can be generated. We report on superconductivity in the electron gas formed at the interface between two insulating dielectric perovskite oxides, LaAlO3 and SrTiO3. The behavior of the electron gas is that of a two-dimensional superconductor, confined to a thin sheet at the interface. The superconducting transition temperature of congruent with 200 millikelvin provides a strict upper limit to the thickness of the superconducting layer of congruent with 10 nanometers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号