首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A strong interaction between the solar wind and comet Giacobini-Zinner was observed oh 11 September 1985 with the Los Alamos plasma electron experiment on the International Cometary Explorer (ICE) spacecraft. As ICE approached an intercept point 7800 kilometers behind the nucleus from the south and receded to the north, upstream phenomena due to the comet were observed. Periods of enhanced electron heat flux from the comet as well as almost continuous electron density fluctuations were measured. These effects are related to the strong electron heating observed in the cometary interaction region and to cometary ion pickup by the solar wind, respectively. No evidence for a conventional bow shock was found as ICE entered and exited the regions of strongest interaction of the solar wind with the cometary environment. The outer extent of this strong interaction zone was a transition region in which the solar wind plasma was heated, compressed, and slowed. Inside the inner boundary of the transition region was a sheath that enclosed a cold intermediate coma. In the transition region and sheath, small-scale enhancements in density were observed. These density spikes may be due to an instability associated with cometary ion pickup or to the passage of ICE through cometary ray structures. In the center of the cold intermediate coma a narrow, high-density core of plasma, presumably the developing plasma tail was found. In some ways this tail can be compared to the plasma sheet in Earth's magnetotail and to the current sheet in the tail at Venus. This type of configuration is expected in the double-lobe magnetic topology detected at the comet, possibly caused by the theoretically expected draping of the interplanetary magnetic field around its ionosphere.  相似文献   

2.
Our current knowledge of the composition of the cormetary nucleus is largely inferred from observations of the gas and dust comae that are produced by sublimation of cometary ice when a comet is near the sun. During the past decade, far-ultraviolet spectroscopy from above the terrestrial atmosphere has shed new light on the physics and chemistry of the gaseous component of the coma. The advent of interplanetary missions to Halley's comet in 1986 and the development of a new generation of earth-orbiting observatories promise further insights into the nature of these frozen remnants of the primordial solar system.  相似文献   

3.
Chondrulelike objects in short-period comet 81P/Wild 2   总被引:1,自引:0,他引:1  
The Stardust spacecraft returned cometary samples that contain crystalline material, but the origin of the material is not yet well understood. We found four crystalline particles from comet 81P/Wild 2 that were apparently formed by flash-melting at a high temperature and are texturally, mineralogically, and compositionally similar to chondrules. Chondrules are submillimeter particles that dominate chondrites and are believed to have formed in the inner solar nebula. The comet particles show oxygen isotope compositions similar to chondrules in carbonaceous chondrites that compose the middle-to-outer asteroid belt. The presence of the chondrulelike objects in the comet suggests that chondrules have been transported out to the cold outer solar nebula and spread widely over the early solar system.  相似文献   

4.
Cravens TE 《Science (New York, N.Y.)》2002,296(5570):1042-1045
The discovery of x-ray emission from comet Hyakutake was surprising given that comets are known to be cold. Observations by x-ray satellites such as the R?ntgen Satellite (ROSAT) indicate that x-rays are produced by almost all comets. Theoretical and observational work has demonstrated that charge-exchange collisions of highly charged solar wind ions with cometary neutral species can explain this emission. X-ray observations of comets and other solar system objects may be used to determine the structure and dynamics of the solar wind.  相似文献   

5.
The recently discovered periodic comet Machholz 1986 VIII (1986e) travels closer to the sun than any known planet and any known comet with an orbital period of less than 150 years, thus providing astronomers with a unique object for studying cometary evolution. The comet is spiraling steadily closer to the sun, from perihelion distance q [unknown] 0.9 astronomical unit at about A.D. 700 to q [unknown] 0.13 at present (orbital period, 5.25 years), to an expected q [unknown] 0.03 by about 2450; should the comet survive such increasingly close perihelion passages, q will begin steadily to increase shortly thereafter. A review of observations made since discovery is presented, together with a discussion of numerical investigations of the comet's orbit over 4000 years and prospects for observing the upcoming return to perihelion in 1991.  相似文献   

6.
Conclusive evidence is presented for the existence of energetic ( approximately 535,0000 to 150,000 electron volts), heavy (>-12 atomic mass units), singly charged cometary ions within approximately 1.5 x 10(6) kilometers of comet Giacobini-Zinner. The observations were made with the University of Maryland/Max-Planck-Institut ultralow-energy charge analyzer on, the International Cometary Explorer spacecraft. The most direct evidence for establishing the mass of these ions was obtained from an analysis of the energy signals in one of the solid-state detectors; it is significant at the three-sigma level. Maximum fluxes were recorded approximately 1 hour before and approximately 1 hour after closest approach to the cometary nucleus. Transformation of the particle angular distributions observed at approximately 50,000 kilometers radial distance from the comet during the inbound pass into a rest frame in which the distributions are nearly isotropic requires a transformation velocity that is consistent with the local solar wind velocity if one assumes that these particles are primarily singly ionized with a mass of 18 +/- 6 atomic mass units. The existence of a frame of reference in which these water-group ions were isotropic implies that they underwent strong pitch angle scattering after their ionization. Particle energies in the rest frame extend to substantially higher values than would be expected if these ions were locally ionized and then picked up by the solar wind, implying that the ions were accelerated or heated. The derived ion density, approximately 0.1 per cubic centimeter, is consistent with a crude model for the production and transport of pickup ions.  相似文献   

7.
A spectrum of comet Austin (1988 c(1)) has been obtained from 910 to 1180 A. Three bright emission lines were detected, including a forbidden oxygen line (1128 A), which are attributable to radiative pumping of neutral oxygen by solar Lyman beta. The relative strengths of the observed features should prove to be a useful diagnostic of the physical conditions and radiation fields in cometary comae. In addition, the absence of strong spectral features from highly volatile species such as He, Ar, or N(2) can be used to place constraints on the thermal environment under which the comet was formed and has been processed.  相似文献   

8.
Observations of comets in Sun-grazing orbits that survive solar insolation long enough to penetrate into the Sun's inner corona provide information on the solar atmosphere and magnetic field as well as on the makeup of the comet. On 6 July 2011, the Solar Dynamics Observatory (SDO) observed the demise of comet C/2011 N3 (SOHO) within the low solar corona in five wavelength bands in the extreme ultraviolet (EUV). The comet penetrated to within 0.146 solar radius (~100,000 kilometers) of the solar surface before its EUV signal disappeared. Before that, material released into the coma--at first seen in absorption--formed a variable EUV-bright tail. During the final 10 minutes of observation by SDO's Atmospheric Imaging Assembly, ~6 × 10(8) to 6 × 10(10) grams of total mass was lost (corresponding to an effective nucleus diameter of ~10 to 50 meters), as estimated from the tail's deceleration due to interaction with the surrounding coronal material; the EUV absorption by the comet and the brightness of the tail suggest that the mass was at the high end of this range. These observations provide evidence that the nucleus had broken up into a family of fragments, resulting in accelerated sublimation in the Sun's intense radiation field.  相似文献   

9.
During the encounter with comet Giacobini-Zinner, the energetic particle anisotropy spectrometer on the International Cometary Explorer spacecraft observed large fluxes of energetic ions, believed to result principally from ionization of the cometary atmosphere followed by pickup and acceleration by the ambient flow of the solar wind. These heavy cometary ions were observed from approximately 1 day before closest approach to about 2(1/2) days afterward. Three regimes of differing ion characteristics have been identified. An outer region with a scale of approximately 10(6) kilometers contains variable fluxes of antisolar-streaming pick-up ions in the undisturbed solar wind. In the middle region, of approximately 10(5) kilometers, fluxes have less large-scale variability and broader angular and energy distributions. This region is separated from the outer zone by a sharp transition. The inner region has a scale of approximately 10(4) kilometers and is characterized by reduced fluxes and complex angular distributions.  相似文献   

10.
Comet C/2002 X5 (Kudo-Fujikawa) was observed near its perihelion of 0.19 astronomical unit by the Ultraviolet Coronagraph Spectrometer aboard the Solar and Heliospheric Observatory spacecraft. Images of the comet reconstructed from high-resolution spectra reveal a quasi-spherical cloud of neutral hydrogen and a variable tail of C+ and C2+ that disconnects from the comet and subsequently regenerates. The high abundance of C2+ and C+, at least 24% relative to water, cannot be explained by photodissociation of carbon monoxide and is instead attributed to the evaporation and subsequent photoionization of atomic carbon from organic refractory compounds present in the cometary dust grains. This result serves to strengthen the connection between comets and the material from which the Solar System formed.  相似文献   

11.
The images of the nucleus of comet Halley returned by the Giotto spacecraft reveal a number of active regions on the surface, one of which is near the expected location of the rotation pole. This feature is larger and brighter than other source regions, suggesting that the mechanism that drives this source is also different. At this active region near the rotation pole, the sun was circumpolar for a significant portion of the solar encounter. Continuous insolation heated the nucleus to greater depths than in other areas, producing the broad, active polar region.  相似文献   

12.
In laboratory experiments using the engineering spare microcalorimeter detector from the ASTRO-E satellite mission, we recorded the x-ray emission of highly charged ions of carbon, nitrogen, and oxygen, which simulates charge exchange reactions between heavy ions in the solar wind and neutral gases in cometary comae. The spectra are complex and do not readily match predictions. We developed a charge exchange emission model that successfully reproduces the soft x-ray spectrum of comet Linear C/1999 S4, observed with the Chandra X-ray Observatory.  相似文献   

13.
The vector helium magnetometer on the International Cometary Explorer observed the magnetic fields induced by the interaction of comet Giacobini-Zinner with the solar wind. A magnetic tail was penetrated approximately 7800 kilometers downstream from the comet and was found to be 10(4) kilometers wide. It consisted of two lobes, containing oppositely directed fields with strengths up to 60 nanoteslas, separated by a plasma sheet approximately 10(3)kilometers thick containing a thin current sheet. The magnetotail was enclosed in an extended ionosheath characterized by intense hydromagnetic turbulene and interplanetary fields draped around the comet. A distant bow wave, which may or may not have been a bow shock, was observed at both edges of the ionosheath. Weak turbulence was observed well upstream of the bow wave.  相似文献   

14.
Deep Impact observations by OSIRIS onboard the Rosetta spacecraft   总被引:1,自引:0,他引:1  
The OSIRIS cameras (optical, spectroscopic, and infrared remote imaging system) onboard the European Space Agency's Rosetta spacecraft observed comet 9P/Tempel 1 for 17 days continuously around the time of NASA's Deep Impact mission. The cyanide-to-water production ratio was slightly enhanced in the impact cloud, compared with that of normal comet activity. Dust particles were flowing outward in the coma at >160 meters per second, accelerated by the gas. The slope of the brightness increase showed a dip about 200 seconds after the impact. Dust Afrho values before and long after the impact confirm the slight decrease of cometary activity. The dust-to-water mass ratio was much larger than 1.  相似文献   

15.
Climatically significant variation of the solar constant (the energy output of the sun) implies measurable change in the solar radius. The available data limit variations of the solar radius between 1850 and 1937 to about 0.25 arc second; modeling of the sun indicates that the solar constant did not vary by more than 0.3 percent during that time.  相似文献   

16.
The International Cometary Explorer spacecraft passed through the coma of comet Giacobini-Zinner about 7800 kilometers antisunward of the nucleus on 11 September 1985. The ion composition instrument was sensitive to ambient ions with mass-to-charge ratios in the ranges 1.4 to 3 atomic mass units per electron charge (amu e(-1)) and 14 to 33 amu e(-1). Initial interpretation of the measurements indicates the presence of H(2)O(+), H(3)O(+), probably CO(+) and HCO(+), and ions in the mass range 23 to 24; possible candidates are Na(+) and Mg(+). In addition to these heavy ions, measured over the velocity range 80 to 223 kilometers per second, the instrument measured He(2+) of solar wind origin over the range 237 to 463 kilometers per second. The heavy ions have a velocity distribution which indicates that they have been picked up by the motional electric field, whereas the light ions are steadily decelerated as the comet tail axis is approached. These results are in agreement with the picture of a comet primarily consisting of water ice, together with other material, that sublimes, streams away from the nucleus, becomes ionized, and interacts with the solar wind. K. W. Ogilvie, NASA/Goddard Space Flight Center, Code 692, Greenbelt, MD 20771.  相似文献   

17.
Estimates can be made of unseen mass (in the form of cometary nuclei) at the heliocentric distances between 3 x 10(3) and 2 x 10(4) astronomical units(AU) under the assumptions (i) that the Oort cloud is a rarefied halo surrounding the core (dense, inner cometary cloud) and (ii) that the mass and albedo of comet Halley is typical for comets both in the core and the Oort cloud populations. The mass appears to be approximately 0.03 solar masses, with angular momentum of the order of 10(52) to 10(53) g-cm(2)/s. This mass is of the order of the total mass of the planetary system before the loss of volatiles. This leads to an estimate of a mass M(o) approximately 100 M( plus sign in circle) (where M( plus sign in circle) is the mass of Earth) concentrated in the Oort cloud (r > 2 x 10(4) AU) with an angular momentum that may exceed the present angular momentum of the whole planetary system by one order of magnitude. The present angular momentum of the Oort cloud appears to be of the same order as the total angular momentum of the planetary system before the loss of volatiles.  相似文献   

18.
Understanding how individual charged particles can be accelerated to extreme energies (10(20) electron volts), remains a foremost problem in astrophysics. Within our solar system, the active sun is capable of producing, on a short time scale, ions with energies higher than 25 gigaelectron volts. Satellite and ground-based observation over the past 30 years have greatly increased our knowledge of the properties of transient bursts of energetic particles emitted from the sun in association with solar flares, but a real understanding of the solar flare particle acceleration process requires greatly refined experimental data. On the practical side, it is also imperative that this problem be solved if man is to venture, for long periods of time, beyond the protective umbrella of Earth's magnetic field, which excludes much of the biologically damaging solar energetic particles. It is only through an understanding of the basic acceleration problem that we can expect to be able to predict the occurrence of a solar flare with lethal solar radiations. For our knowledge of these effects to advance, a new space mission dedicated to studying the high-energy aspects of solar flares at high spatial and energy resolution will be required.  相似文献   

19.
Materials trapped and preserved in comets date from the earliest history of the solar system. Particles captured by the Stardust spacecraft from comet 81P/Wild 2 are indisputable cometary matter available for laboratory study. Here we report measurements of noble gases in Stardust material. Neon isotope ratios are within the range observed in "phase Q," a ubiquitous, primitive organic carrier of noble gases in meteorites. Helium displays 3He/4He ratios twice those in phase Q and in Jupiter's atmosphere. Abundances per gram are surprisingly large, suggesting implantation by ion irradiation. The gases are probably carried in high-temperature igneous grains similar to particles found in other Stardust studies. Collectively, the evidence points to gas acquisition in a hot, high ion-flux nebular environment close to the young Sun.  相似文献   

20.
The CIDA (Cometary and Interstellar Dust Analyzer) instrument on the Stardust spacecraft is a time-of-flight mass spectrometer used to analyze ions formed when fast dust particles strike the instrument's target. In the spectra of 45 presumably interstellar particles, quinone derivates were identified as constituents in the organic component. The 29 spectra obtained during the flyby of Comet 81P/Wild 2 confirm the predominance of organic matter. In moving from interstellar to cometary dust, the organic material seems to lose most of its hydrogen and oxygen as water and carbon monoxide. These are now present in the comet as gas phases, whereas the dust is rich in nitrogen-containing species. No traces of amino acids were found. We detected sulfur ions in one spectrum, which suggests that sulfur species are important in cometary organics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号