首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The maximum size of thrust earthquakes at the world's subduction zones appears to be limited by anelastic deformation of the overriding plate. Anelastic strain in weak forearcs and roughness of the plate interface produced by faults cutting the forearc may limit the size of thrust earthquakes by inhibiting the buildup of elastic strain energy or slip propagation or both. Recently discovered active strike-slip faults in the submarine forearc of the Cascadia subduction zone show that the upper plate there deforms rapidly in response to arc-parallel shear. Thus, Cascadia, as a result of its weak, deforming upper plate, may be the type of subduction zone at which great (moment magnitude approximately 9) thrust earthquakes do not occur.  相似文献   

2.
Dynamical processes in the Earth's mantle, such as cold downwelling at subduction zones, cause deformations of the solid-state phase change that produces a seismic discontinuity near a depth of 660 kilometers. Observations of short-period, shear-to-compressional wave conversions produced at the discontinuity yield a detailed map of deformation beneath the Izu-Bonin subduction zone. The discontinuity is depressed by about 60 kilometers beneath the coldest part of the subducted slab, with a deformation profile consistent with the expected thermal signature of the slab, the experimentally determined Clapeyron slope of the phase transition, and the regional tectonic history.  相似文献   

3.
Transects of the submersible Alvin across rock outcrops in the Oregon subduction zone have furnished information on the structural and stratigraphic framework of this accretionary complex. Communities of clams and tube worms, and authigenic carbonate mineral precipitates, are associated with venting sites of cool fluids located on a fault-bend anticline at a water depth of 2036 meters. The distribution of animals and carbonates suggests up-dip migration of fluids from both shallow and deep sources along permeable strata or fault zones within these clastic deposits. Methane is enriched in the water column over one vent site, and carbonate minerals and animal tissues are highly enriched in carbon-12. The animals use methane as an energy and food source in symbiosis with microorganisms. Oxidized methane is also the carbon source for the authigenic carbonates that cement the sediments of the accretionary complex. The animal communities and carbonates observed in the Oregon subduction zone occur in strata as old as 2.0 million years and provide criteria for identifying other localities where modern and ancient accreted deposits have vented methane, hydrocarbons, and other nutrient-bearing fluids.  相似文献   

4.
Data from western United States short-period seismic networks reveal a conversion from an S to a P wave within a low seismic velocity layer (greater than or equal to the 4 percent velocity difference compared to the surrounding mantle) in the mid-lower mantle (1400 to 1600 kilometers deep) east of the Mariana and Izu-Bonin subduction zones. The low-velocity layer (about 8 kilometers thick) dips 30 degrees to 40 degrees southward and is at least 500 kilometers by 300 kilometers. Its steep dip, large velocity contrast, and sharpness imply a chemical rather than a thermal origin. Ancient oceanic crust subducted into the lower mantle is a plausible candidate for the low-velocity layer because of its broad thin extent.  相似文献   

5.
The Nankai Trough is a vigorous subduction zone where large earthquakes have been recorded since the seventh century, with a recurrence time of 100 to 200 years. The 1946 Nankaido earthquake was unusual, with a rupture zone estimated from long-period geodetic data that was more than twice as large as that derived from shorter period seismic data. In the center of this earthquake rupture zone, we used densely deployed ocean bottom seismographs to detect a subducted seamount 13 kilometers thick by 50 kilometers wide at a depth of 10 kilometers. We propose that this seamount might work as a barrier inhibiting brittle seismogenic rupture.  相似文献   

6.
Geodetic measurements of deformation in northwestern Washington indicate that strain is accumulating at a rate close to that predicted by a model of the Cascadia subduction zone in which the plate interface underlying the continental slope and outer continental shelf is currently locked but the remainder of the interface slips continuously. Presumably this locked segment will eventually rupture in a great thrust earthquake with a down-dip extent greater than 100 kilometers.  相似文献   

7.
The ice-rich south polar layered deposits of Mars were probed with the Mars Advanced Radar for Subsurface and Ionospheric Sounding on the Mars Express orbiter. The radar signals penetrate deep into the deposits (more than 3.7 kilometers). For most of the area, a reflection is detected at a time delay that is consistent with an interface between the deposits and the substrate. The reflected power from this interface indicates minimal attenuation of the signal, suggesting a composition of nearly pure water ice. Maps were generated of the topography of the basal interface and the thickness of the layered deposits. A set of buried depressions is seen within 300 kilometers of the pole. The thickness map shows an asymmetric distribution of the deposits and regions of anomalous thickness. The total volume is estimated to be 1.6 x 10(6) cubic kilometers, which is equivalent to a global water layer approximately 11 meters thick.  相似文献   

8.
Wide-angle seismic data along the Mantle Electromagnetic and Tomography (MELT) arrays show that the thickness of 0.5- to 1. 5-million-year-old crust of the Nazca Plate is not resolvably different from that of the Pacific Plate, despite an asymmetry in depth and gravity across this portion of the East Pacific Rise. Crustal thickness on similarly aged crust on the Nazca plate near a magmatically robust part of the East Pacific Rise at 17 degrees15'S is slightly thinner (5.1 to 5.7 kilometers) than at the 15 degrees55'S overlapping spreading center (5.8 to 6.3 kilometers). This small north-south off-axis crustal thickness difference may reflect along-axis temporal variations in magma supply, whereas the across-axis asymmetry in depth and gravity must be caused by density variations in the underlying mantle.  相似文献   

9.
The vast Wrangellia terrane of Alaska and British Columbia is an accreted oceanic plateau with Triassic strata that contain a 3- to 6-kilometers thick flood basalt, bounded above and below by marine sedimentary rocks. This enormous outpouring of basalt was preceded by rapid uplift and was followed by gradual subsidence of the plateau. The uplift and basalt eruptions occurred in less than approximately 5 million years, and were not accompanied by significant extension or rifting of the lithosphere. This sequence of events is predicted by a mantle plume initiation, or plume head, model that has recently been developed to explain continental flood volcanism. Evidence suggests that other large oceanic basalt plateaus, such as the Ontong-Java, Kerguelen, and Caribbean, were formed as the initial outbursts of the Louisville Ridge, Kerguelen, and Galapagos hot spots, respectively. Such events may play an important role in the creation and development of both oceanic and continental crust.  相似文献   

10.
Origin of mountains on Io by thrust faulting and large-scale mass movements   总被引:1,自引:0,他引:1  
Voyager stereoimages of Euboea Montes, Io, indicate that this mountain formed when a large crustal block was uplifted 10.5 kilometers and tilted by approximately 6 degrees. Uplift triggered a massive slope failure on the northwest flank, forming one of the largest debris aprons in the solar system. This slope failure probably involved relatively unconsolidated layers totaling approximately 2 kilometers in thickness, overlying a rigid crust (or lithosphere) at least 11 kilometers thick. Mountain formation on Io may involve localized deep-rooted thrust faulting and block rotation, due to compression at depth induced during vertical recycling of Io's crust.  相似文献   

11.
An assemblage of Middle Cambrian Atlantic faunal province trilobites has been found in the rocks of the Carolina slate belt near Batesburg, South Carolina. Geologic and paleomagnetic data suggest that the Carolina slate belt and the adjacent Charlotte belt constitute an exotic terrane that was accreted to North America in early to middle Paleozoic time.  相似文献   

12.
Splay fault branching along the Nankai subduction zone   总被引:3,自引:0,他引:3  
Seismic reflection profiles reveal steeply landward-dipping splay faults in the rupture area of the magnitude (M) 8.1 Tonankai earthquake in the Nankai subduction zone. These splay faults branch upward from the plate-boundary interface (that is, the subduction zone) at a depth of approximately 10 kilometers, approximately 50 to 55 kilometers landward of the trough axis, breaking through the upper crustal plate. Slip on the active splay fault may be an important mechanism that accommodates the elastic strain caused by relative plate motion.  相似文献   

13.
Large earthquakes produce crustal deformation that can be quantified by geodetic measurements, allowing for the determination of the slip distribution on the fault. We used data from Global Positioning System (GPS) networks in Central Chile to infer the static deformation and the kinematics of the 2010 moment magnitude (M(w)) 8.8 Maule megathrust earthquake. From elastic modeling, we found a total rupture length of ~500 kilometers where slip (up to 15 meters) concentrated on two main asperities situated on both sides of the epicenter. We found that rupture reached shallow depths, probably extending up to the trench. Resolvable afterslip occurred in regions of low coseismic slip. The low-frequency hypocenter is relocated 40 kilometers southwest of initial estimates. Rupture propagated bilaterally at about 3.1 kilometers per second, with possible but not fully resolved velocity variations.  相似文献   

14.
The C-region of the upper mantle has two transition regions 75 to 90 kilometers thick. In western North America these start at depths of 365 kilometers and 620 kilometers and involve velocity increases of about 9 to 10 percent. The locations of these transition regions, their general shape, and their thicknesses are consistent with, first, the transformation of magnesium-rich olivine to a spinel structure and, then, a further collapse of a material having approximately the properties of the component oxides. The velocity increases associated with each transition region are slightly less than predicted for the appropriate phase change. This can be interpreted in terms of an increasing fayalite content with depth. The location of the transition regions and the seismic velocities in their vicinity supply new information regarding the composition and temperature of the upper mantle. The depths of the transition regions are consistent with temperatures near 1500 degrees C at 365 kilometers and 1900 degrees C at 620 kilometers.  相似文献   

15.
The particle flux measured by the meteoroid detectors on Pioneer 11 increased greatly while the spacecraft was near the rings of Saturn. The data suggest that the particles were associated with the rings and were not interplanetary meteoroids concentrated near the planet by gravitational focusing. The data also suggest that the E ring may be 1800 kilometers thick with an optical thickness greater than 10(-8).  相似文献   

16.
We used three-dimensional inverse scattering of core-reflected shear waves for large-scale, high-resolution exploration of Earth's deep interior (D') and detected multiple, piecewise continuous interfaces in the lowermost layer (D') beneath Central and North America. With thermodynamic properties of phase transitions in mantle silicates, we interpret the images and estimate in situ temperatures. A widespread wave-speed increase at 150 to 300 kilometers above the coremantle boundary is consistent with a transition from perovskite to postperovskite. Internal D' stratification may be due to multiple phase-boundary crossings, and a deep wave-speed reduction may mark the base of a postperovskite lens about 2300 kilometers wide and 250 kilometers thick. The core-mantle boundary temperature is estimated at 3950 +/- 200 kelvin. Beneath Central America, a site of deep subduction, the D' is relatively cold (DeltaT = 700 +/- 100 kelvin). Accounting for a factor-of-two uncertainty in thermal conductivity, core heat flux is 80 to 160 milliwatts per square meter (mW m(-2)) into the coldest D' region and 35 to 70 mW m(-2) away from it. Combined with estimates from the central Pacific, this suggests a global average of 50 to 100 mW m(-2) and a total heat loss of 7.5 to 15 terawatts.  相似文献   

17.
Oceanic crustal material on a global scale is re-created every 110 million years. From the data presented it is inferred that potential sialic material is formed at a rate of about 1.35 cubic kilometers per year, including hemipelagic volcanic sediments that accumulate at a rate of about 0.05 cubic kilometer per year. It is estimated that the influx of 1.65 cubic kilometers per year of terrigenous and biogenic sediment is deposited on the deep ocean, and this represents continental denudation. Because all this material is brought into a subduction zone, continental accretion rates, which could include all this material, may be as high as 3.0 cubic kilometers per year with a potential net growth for continents of 1.35 cubic kilometers per year.  相似文献   

18.
Metamorphic rocks on Santa Catalina Island, California, afford examination of fluid-related processes at depths of 15 to 45 kilometers in an Early Cretaceous subduction zone. A combination of field, stable isotope, and volatile content data for the Catalina Schist indicates kilometer-scale transport of large amounts of water-rich fluid with uniform oxygen and hydrogen isotope compositions. The fluids were liberated in devolatilizing, relatively low-temperature (400 degrees to 600 degrees C) parts of the subduction zone, primarily by chlorite-breakdown reactions. An evaluation of pertinent phase equilibria indicates that chlorite in mafic and sedimentary rocks and melange may stabilize a large volatile component to great depths (perhaps >100 kilometers), depending on the thermal structure of the subduction zone. This evidence for deep volatile subduction and large-scale flow of slab-derived, water-rich fluids lends credence to models that invoke fluid addition to sites of arc magma genesis.  相似文献   

19.
Kaula WM 《Science (New York, N.Y.)》1990,247(4947):1191-1196
Of the planets, Venus and Earth are by far the most similar in primary properties, yet they differ markedly in secondary properties. A great impact into Earth is believed to have created its moon and removed its atmosphere; the lack of such an impact into Venus apparently led to a greatly differing atmospheric evolution. The lack of an ocean on Venus prevents the recycling of volatiles and inhibits subduction, so that its crust is probably more voluminous than Earth's, although distorted and quite variable in thickness. Venus's upper mantle appears to be depleted in both volatiles and energy sources because, in addition to the lack of volatile recycling, melts of mantle rocks are more dense than their solid matrix at pressures above 8 gigapascals and hence sink if they occur at depths below 250 kilometers. Appreciable energy sources persist at great depths to sustain the few great mountain complexes. The greatest current problem is reconciling the likelihood of a voluminous crust with indications of considerable strength at shallow depths of 20 to 100 kilometers.  相似文献   

20.
Using an inverse mantle convection model that assimilates seismic structure and plate motions, we reconstruct Farallon plate subduction back to 100 million years ago. Models consistent with stratigraphy constrain the depth dependence of mantle viscosity and buoyancy, requiring that the Farallon slab was flat lying in the Late Cretaceous, consistent with geological reconstructions. The simulation predicts that an extensive zone of shallow-dipping subduction extended beyond the flat-lying slab farther east and north by up to 1000 kilometers. The limited region of flat subduction is consistent with the notion that subduction of an oceanic plateau caused the slab to flatten. The results imply that seismic images of the current mantle provide more constraints on past tectonic events than previously recognized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号