首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Mine‐soil treatment using stabilized manure rapidly sequesters large quantities of organic carbon and nutrients. However, the nutrient‐rich soil conditions may become highly conducive for production and emission of N2O. We examined this possibility in a Pennsylvania coal mine restored using poultry manure stabilized in two forms: composted (Comp) or mixed with paper mill sludge (Man + PMS) at C/N ratios of 14, 21, and 28 and compared those with the emissions from conventionally treated soil. The mine soil was extremely well drained with 59% coarse fragments. Soil–atmosphere exchange of N2O and CO2 was determined using a sampling campaign of ten measurements between 16 June and 14 September 2009 (90 days) and 13 measurements between 28 June and 9 November 2010 (134 days) using static vented chambers at ambient and increased moisture (water added) content. Potential denitrification was determined in a laboratory incubation experiment. While non‐amended mine soil did not have a measurable potential for denitrifying activity, the manure‐based amendments introduced the potential. Soil water filled pore space was less than 60% on most sampling days in both ambient and water‐added plots. Daily N2O‐N emissions ranged between 40 and 70 g N ha−1 with cumulative emissions of 2–4 kg N ha−1 from non‐amended, lime and fertilizer (L + F) and Comp, and 3–10 kg N ha−1 from Man + PMS treatments. The maximum emission obtained from Man + PMS represented <1% loss of applied N. Although stabilized manure‐treated soil exhibits the potential for N2O production, the emission is limited when soils are excessively well drained and reducing conditions rarely develop. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Agricultural soil is a major source of nitrous oxide (N2O), nitric oxide (NO) and ammonia (NH3). Little information is available on emissions of these gases from soils amended with organic fertilizers at different soil water contents. N2O, NO and NH3 emissions were measured in large-scale incubations of a fresh sandy loam soil and amended with four organic fertilizers, [poultry litter (PL), composted plant residues (CP), sewage sludge pellets (SP) and cattle farm yard manure (CM)], urea fertilizer (UA) or a zero-N control (ZR) for 38 days. Fertilizers were added to soil at 40, 60 or 80% water-filled pore space (WFPS). The results showed that urea and organic fertilizer were important sources of N2O and NO. Total N2O and NO emissions from UA ranged from 0.04 to 0.62%, and 0.23 to 1.55% of applied N, respectively. Total N2O and NO emissions from organic fertilizer treatments ranged from 0.01 to 1.65%, and <0.01 to=" 0.55%=" of=" applied=" n,=" respectively.=" the=" lower=">2O and NO emissions from CP and CM suggested that applying N is these forms could be a useful mitigation option. Comparison of the NO-N/N2O-N ratio suggested that nitrification was more dominant in UA whereas denitrification was more dominant in the organic fertilizer treatments. Most N was lost from PL and UA as NH3, and this was not influenced significantly by WFPS. Emissions of NH3 from UA and PL ranged from 62.4 to 69.6%, and 3.17 to 6.11% of applied N, respectively.  相似文献   

3.
Most published studies related to crop effects on denitrification are not continuous and are based on the growing period. The objective of this work was to evaluate the effect of different amounts of soybean stubble, under different soil moisture contents, on gaseous nitrogen (N) losses by denitrification from an agricultural soil. The following soil moisture treatments were reached by adding distilled water to soil cores of a typic Hapludoll: 50 and 100% of water‐filled porosity space (WFPS). Residue treatments included no application of residues, amendment with 2600 kg ha?1 of soybean residues, and amendment with 5200 kg ha?1 of soybean residues. Cumulative nitrous oxide + dinitrogen (N2O + N2) emissions displayed great variability, ranging between 0 and 581.91 µg N kg?1, which represented 0 to 3.93% of the N residue applied. Under 50% WFPS moisture conditions, statistical differences in cumulative N2O + N2 emissions between residue treatments were not detected (p = 0.21), whereas at saturation conditions, cumulative N2O + N2 emissions decreased with the application of increasing amounts of soybean residues (p = 0.017). Daily and cumulative N2O + N2 emissions significantly increased as soil moisture increased, except at soils amended with 5200 kg ha?1 of soybean residues; this lack of statistical difference was probably due to the immobilization of native mineral N. Under 50% WFPS soil moisture contents, aeration seemed to be the main factor controlling redox conditions, limiting the denitrification process, and preventing differences in N emissions between residue treatments. The application of soybean residues to saturated soils notably decreased N2O + N2 emissions by denitrification through a strong mineral N immobilization into organic and nondenitrifiable forms.  相似文献   

4.
Abstract. Intensively managed grasslands are potentially a large source of N2O in the North Coast of Spain because of the large N input, the wet soil conditions and mild temperatures. To quantify the effect of fertilizer type and management practices carried out by farmers in this area, field N2O losses were measured over a year using the closed chamber technique. Plots received two types of fertilizer: cattle slurry (536 kg N ha–1) and calcium ammonium nitrate (140 kg N ha–1). N2O losses were less in the slurry treatment than after mineral fertilizer. This was probably due to high, short‐lived peaks of N2O encountered immediately following mineral N addition. In contrast, the seasonal distribution of N2O losses from the slurry amended plot was more uniform over the year. The greater N2O losses in the mineral treatment might have been enhanced by the combined effect of mineral fertilizer and past organic residues present from previous organic amendments. Weak relationships were found between N2O emission rates and soil nitrate, soil ammonium, soil water content and temperature. Better relationships were obtained in the mineral treatment than in the slurry plots, because of the wider range in soil mineral N. Water filled pore space (WFPS) was a key factor controlling N2O emissions. In the > 90% WFPS range no relationships were found. The best regressions were found for the mineral treatment in the 40–65% WFPS range, 49% of the variance being explained by soil nitrate and ammonium content. In the 65–90% WFPS range, 43% of the variance was explained by nitrate only, but the inclusion of soil ammonium did not improve the model as it did in the 40–65% WFPS range. This fact indicates that nitrification is likely to be an important process involved in N2O emissions at the 40–65% WFPS.  相似文献   

5.
Soil moisture and nitrogen (N) are two important factors influencing N2O emissions and the growth of microorganisms. Here, we carried out a microcosm experiment to evaluate effects of soil moisture level and N fertilizer type on N2O emissions and abundances and composition of associated microbial communities in the two typical arable soils. The abundances and community composition of functional microbes involved in nitrification and denitrification were determined via quantitative PCR (qPCR) and terminal restriction length fragment polymorphism (T-RFLP), respectively. Results showed that N2O production was higher at 90% water-filled pore (WFPS) than at 50% WFPS. The N2O emissions in the two soils amended with ammonium were higher than those amended with nitrate, especially at relatively high moisture level. In both soils, increased soil moisture stimulated the growth of ammonia-oxidizing bacteria (AOB) and nitrite reducer (nirK). Ammonium fertilizer treatment increased the population size of AOB and nirK genes in the alluvial soil, while reduced the abundances of ammonia-oxidizing archaea (AOA) and denitrifiers (nirK and nosZ) in the red soil. Nitrate addition had a negative effect on AOA abundance in the red soil. Total N2O emissions were positively correlated to AOB abundance, but not to other functional genes in the two soils. Changed soil moisture significantly affected AOA rather than AOB community composition in both soils. The way and extent of N fertilizers impacted on nitrifier and denitrifier community composition varied with N form and soil type. These results indicate that N2O emissions and the succession of nitrifying and denitrifying communities are selectively affected by soil moisture and N fertilizer form in the two contrasting types of soil.  相似文献   

6.
Nitrous oxide (N2O) contributes to greenhouse effect; however, little information on the consequences of different moisture levels on N2O/(N2O+N2) ratio is available. The aim of this work was to analyze the influence of different soil moisture values and thus of redox conditions on absolute and relative emissions of N2O and N2 at intact soil cores from a Vertic Argiudoll. For this reason, the effect of water-filled porosity space (WFPS) values of soil cores of 40, 80,100, and 120% (the last one with a 2-cm surface water layer) was investigated. The greatest N2O emission occurred at 80% WFPS treatment where conditions were not reductive enough to allow the complete reduction to N2. The N2O/(N2O+N2) ratio was lowest (0–0.051) under 120% WFPS and increased with decreasing soil moisture content. N2O/(N2O+N2) ratio values significantly correlated with soil Eh; redox conditions seemed to control the proportion of N gases emitted as N2O. N2O emissions did not correlate satisfactorily with N2O/(N2O+N2) ratio values, whereas they were significantly explained by the amount of total N2O+N2 emissions.  相似文献   

7.
In the highlands of Madagascar, agricultural expansion gained on grasslands and cropping systems based on direct seeding with permanent vegetation cover are emerging as a means to sustain upland crop production. The objective of this study was to examine how such agricultural practices affect greenhouse‐gas emissions from a loamy Ferralsol previously used as a pasture. We conducted an experiment under controlled laboratory conditions combining cattle manure, crop residues (rice straw), and mineral fertilizers (urea plus NPK or di‐NH4‐phosphate) to mimic on‐field inputs and examined soil CO2 and N2O emissions during a 28‐d incubation at low and high water‐filled pore space (40% and 90% WFPS). Emissions of N2O from the control soil, i.e., soil receiving no input, were extremely small (< 5 ng N2O‐N (g soil)–1 h–1) even under anaerobic conditions. Soil moisture did not affect the order of magnitude of CO2 emissions while N2O fluxes were up to 46 times larger at high soil WFPS, indicating the potential influence of denitrification under these conditions. Both CO2 and N2O emissions were affected by treatments, incubation time, and their interactions. Crop‐residue application resulted in larger fluxes of CO2 but reduced N2O emissions probably due to N immobilization. The use of di‐NH4‐phosphate was a better option than NPK to reduce N2O emissions without increasing CO2 fluxes when soil received mineral fertilizers. Further studies are needed to translate the findings to field conditions and relate greenhouse‐gas budgets to crop production.  相似文献   

8.
The objective of this work was to evaluate the effect of the chemical nature and application frequency of N fertilizers at different moisture contents on soil N2O emissions and N2O/(N2O+N2) ratio. The research was based on five fertilization treatments: unfertilized control, a single application of 80 kg ha−1 N-urea, five split applications of 16 kg ha−1 N-urea, a single application of 80 kg ha−1 N–KNO3, five split applications of 16 kg ha−1 N–KNO3. Cumulative N2O emissions for 22 days were unaffected by fertilization treatments at 32% water-filled pore space (WFPS). At 100% and 120% WFPS, cumulative N2O emissions were highest from soil fertilized with KNO3. The split application of N fertilizers decreased N2O emissions compared to a single initial application only when KNO3 was applied to a saturated soil, at 100% WFPS. Emissions of N2O were very low after the application of urea, similar to those found at unfertilized soil. Average N2O/(N2O+N2) ratio values were significantly affected by moisture levels (p = 0.015), being the lowest at 120% WFPS. The N2O/(N2O+N2) ratio averaged 0.2 in unfertilized soil and 0.5 in fertilized soil, although these differences were not statistically significant.  相似文献   

9.
Given high mineralization rates of soil organic matter addition of organic fertilizers such as compost and manure is a particularly important component of soil fertility management under irrigated subtropical conditions as in Oman. However, such applications are often accompanied by high leaching and volatilization losses of N. Two experiments were therefore conducted to quantify the effects of additions of activated charcoal and tannin either to compost in the field or directly to the soil. In the compost experiment, activated charcoal and tannins were added to compost made from goat manure and plant material at a rate of either 0.5 t activated charcoal ha?1, 0.8 t tannin extract ha?1, or 0.6 t activated charcoal and tannin ha?1 in a mixed application. Subsequently, emissions of CO2, N2O, and NH3 volatilization were determined for 69 d of composting. The results were verified in a 20‐d soil incubation experiment in which C and N emissions from a soil amended with goat manure (equivalent to 135 kg N ha?1) and additional amendments of either 3 t activated charcoal ha?1, or 2 t tannin extract ha?1, or the sum of both additives were determined. While activated charcoal failed to affect the measured parameters, both experiments showed that peaks of gaseous CO2 and N emission were reduced and/or occurred at different times when tannin was applied to compost and soil. Application of tannins to compost reduced cumulative gaseous C emissions by 40% and of N by 36% compared with the non‐amended compost. Tannins applied directly to the soil reduced emission of N2O by 17% and volatilization of NH3 by 51% compared to the control. However, emissions of all gases increased in compost amended with activated charcoal, and the organic C concentration of the activated charcoal amended soil increased significantly compared to the control. Based on these results, tannins appear to be a promising amendment to reduce gaseous emissions from composts, particularly under subtropical conditions.  相似文献   

10.
Freezing and thawing influence many physical, chemical and biological processes in soils, including the production of trace gases. We studied the effects of freezing and thawing on three soils, one sandy, one silty and one loamy, on the emissions of N2O and CO2. We also studied the effect of varying the water content, expressed as the percentage of the water‐filled pore space (WFPS). Emissions of N2O during thawing decreased in the order 64% > 55% > 42% WFPS, which suggests that the retardation of the denitrification was more pronounced than the acceleration of the nitrification with increasing oxygen concentration in the soil. However, emissions of N2O at 76% WFPS were less than at 55% WFPS, which might be caused by an increased ratio of N2/N2O in the very moist conditions. The emission of CO2 was related to the soil water, with the smallest emissions at 76% WFPS and largest at 42% WFPS. The emissions of CO2 during thawing exceeded the initial CO2 emissions before the soils were frozen, which suggests that the supply of nutrients was increased by freezing. Differences in soil texture had no marked effect on the N2O emissions during thawing. The duration of freezing, however, did affect the emissions from all three soils. Freezing the soil for less than 1 day had negligible effects, but freezing for longer caused concomitant increases in emissions. Evidently the duration of freezing and soil water content have important effects on the emission of N2O, whereas the effects of texture in the range we studied were small.  相似文献   

11.
To reveal the impact of soil disturbance and surface watering (SW) following soil disturbance on the pulse nitrous oxide (N2O) emissions, incubated experiments were conducted on disturbed soil with two watering regimes [surface watering only (SWO) and subsurface watering followed by surface watering (SUW+SW)]. Intensive soil disturbance led to pulses N2O emissions from SUW + SW soil (>8,693 μg N2O m?2 h?1 with a peak of 30,938 μg N2O m?2 h?1), although the water-filled pore space (WFPS) was substantially lower than the previously reported optimal soil moisture range (45–75% WFPS) for peak N2O emissions. N2O emissions from the disturbed soil after SW were much lower than those from SUW + SW soil, increased as the soil dried, and peaked when the WFPS fell within the optimal soil moisture range. These peaks were considerably less than those resulting from the intensive disturbance in SUW + SW soil. Thus, SW after intensive soil disturbance may be effective for mitigating of pulse N2O emissions caused by soil disturbance.  相似文献   

12.
To investigate the effect of soil physical conditions and land use on emissions of nitrous oxide (N2O) to the atmosphere, soil cores of an imperfectly drained gleysol were taken from adjacent fields under perennial ryegrass and winter wheat. The cores were fertilized with ammonium nitrate and incubated at three different temperatures and water‐filled pore space (WFPS) values, and N2O emissions were measured by gas chromatography. Emissions showed a very large response to temperature. Apparent values of Q10 (emission rate at (T + 10)°C/emission rate at T°C) for the arable soil were about 50 for the 5–12°C interval and 8.9 for 12–18°C; the corresponding Q10s for the grassland soil were 3.7 and 2.3. Emissions from the grassland soil were always greater than those from the arable soil, although the ratio narrowed with increasing temperature. Changes in soil WFPS also had a profound effect on emissions. Those from the arable soil increased about 30‐fold as the WFPS increased from 60 to 80%, while that from the grassland soil increased 12‐fold. This latter response was similar to earlier field measurements. The N2O emissions were considered to be produced primarily by denitrification. We concluded that the impacts of temperature and WFPS on emissions could both be explained on the basis of existing models relating increasing respiration or decreased oxygen diffusivity, or both, to the development of anaerobic zones within the soil.  相似文献   

13.
Adequate use of manure in grasslands may constitute an economical means of manure disposal and an abundant source of nutrients for plants; however, excessive nitrogen (N) additions to these soils could create new environmental risks such as increasing nitrous oxide (N2O) emissions. These potentially adverse effects in grasslands may be mitigated by improved management practices. In pasture systems, the combined effects of poultry litter applications and interseeded rye (Secale cereale L.) on N2O emissions are still not well established. This study was conducted to estimate the magnitude of soil surface N2O fluxes as affected by interseeded winter rye forage, annually spring-applied composted turkey litter as well as by weather and soil parameters. Fluxes were measured by vented chambers during 2 yr in a bermudagrass (Cynodon dactylon [L.] Pers.) pasture in moderately well-drained Tonti gravelly silt loam (fine-loamy, active, mesic Typic Fragiudault) located in northwestern Arkansas, USA. During the 60 d following turkey litter applications, N2O fluxes were frequently well correlated with soil nitrate (NO3; r: up to 0.82, P's < 0.05) implying substrate stimulation on soil N2O production. Likewise, rainfall patterns strongly influenced N2O fluxes. Large rainfalls of 91 and 32 mm occurred within 6 d prior to the maximum N2O flux means (263 and 290 μg N m−2 h−1, respectively). Treatment effects on N2O emissions were significant only in spring periods following manure addition, particularly in the second year of our study. In the spring of 2000, additions of composted turkey litter resulted in 1.5-fold increase in seasonal cumulative N2O emissions (P = 0.04) which was directly associated to a numerically greater soil NO3. In the spring of 2001, soils planted to rye exhibited a pronounced significant effect on mitigating N2O emissions (30 vs. 112 mg N m−2; P = 0.04). During the winter and early spring, rye growth also decreased quantities of both soil NO3 and water-filled pore space (WFPS) partly accounting for the lower N2O emissions in these fields. These results suggest that because poultry litter additions increased and interseeded rye diminished N2O emissions, the combined implementation of both management practices can produce environmental benefits while sustaining productivity in temperate pasture systems.  相似文献   

14.
The superiority of mixing and deep placement of prilled urea (PU) or urea supergranules (USG) over surface‐broadcast application for reducing nitrogen (N) loss from lowland rice is well established. In upland agricultural systems, rainfall and/or the application and loss of irrigation water from soil systems may regulate urea N transformations and gaseous losses, depending on the method of fertilizer application and the particle size. To develop further insights into these processes, experiments were carried out in a silt loam soil mixed with PU or amended with point‐placed USG at a depth of 7.5 cm. Two soil water regimes were used: around field capacity (AFC) with low evaporative conditions (depletion: 77 to 69% water‐filled pore space, WFPS) and below field capacity (BFC) with high evaporative conditions following two irrigations (depletion: 70 to 55% WFPS). The nitrous oxide (N2O) emission was greater at AFC than at BFC, where nitrification was more rapid. The N2O peaks appeared mostly after the disappearance of nitrite (NO2 ?), presumably dominated by nitrifier and/or chemodenitrification and the degree of emissions probably depended on the stability period and the reduction of NO2 ? induced by the soil water regimes. The relative N2O losses from the added N were small (?0.20%) for all treatments after 21 days. The point at which 50% of its emissions (t½) occurred was delayed up to 6 days longer than found from the application of PU. The differences between PU and USG application were likely linked with the concentrations of ammonium (NH4 +), NO2 ?, and pH. These high concentrations continued longer at AFC than at BFC and were limited to a distance of <5.0 cm from the application zone. Similarly, the relative losses of the added N ranged from 0.19 to 0.56% at AFC and 0.08 to 0.37% at BFC, the highest being with USG application. Based on the areas receiving equal N, the N2O and ammonia (NH3) emissions from USG differed marginally with PU. Carbon dioxide (CO2) release was higher at AFC than BFC, in which the USG application probably limited microbial respiration preferentially to methane oxidation. A correlation study showed that the N2O flux was best explained together with CO2, nitrate (NO3 ?), NO2 ?, and WFPS (R 2 = 0.67***). This indicates the influence of both auto‐ and heterotrophic microbial activities toward N2O emission, with soil water being an important regulatory factor.  相似文献   

15.
On irrigated agricultural soils from semi-arid and arid regions, ammonia (NH3) volatilization and nitrous oxide (N2O) emission can be a considerable source of N losses. This study was designed to test the capture of 15N loss as NH3 and N2O from previous and recent manure application using a sandy, calcareous soil from Oman amended one or two times with 15N labeled manure to elucidate microbial turnover processes under laboratory conditions. The system allowed to detect 15N enrichments in evolved N2O-N and NH3-N of up to 17% and 9%, respectively, and total N, K2SO4 extractable N and microbial N pools from previous and recent 15N labeled manure applications of up to 7%, 8%, and 15%. One time manured soil had higher cumulative N2O-N emissions (141 µg kg?1) than repeatedly manured soil with 43 µg kg?1 of which only 22% derived from recent manure application indicating a priming effect.  相似文献   

16.
A laboratory investigation was performed to compare the fluxes of dinitrogen (N2), N2O and carbon dioxide (CO2) from no-till (NT) and conventional till (CT) soils under the same water, mineral nitrogen and temperature status. Intact soil cores (0-10 cm) were incubated for 2 weeks at 25 °C at either 75% or 60% water-filled pore space (WFPS) with 15N-labeled fertilizers (100 mg N kg−1 soil). Gas and soil samples were collected at 1-4 day intervals during the incubation period. The N2O and CO2 fluxes were measured by a gas chromatography (GC) system while total N2 and N2O losses and their 15N mole fractions in the soil mineral N pool were determined by a mass spectrometer. The daily accumulative fluxes of N2 and N2O were significantly affected by tillage, N source and soil moisture. We observed higher (P<0.05) fluxes of N2+N2O, N2O and CO2 from the NT soils than from the CT soils. Compared with the addition of nitrate (NO3), the addition of ammonium (NH4+) enhanced the emissions of these N and C gases in the CT and NT soils, but the effect of NH4+ on the N2 and/or N2O fluxes was evident only at 60% WFPS, indicating that nitrification and subsequent denitrification contributed largely to the gaseous N losses and N2O emission under the lower moisture condition. Total and fertilizer-induced emissions of N2 and/or N2O were higher (P<0.05) at 75% WFPS than with 60% WFPS, while CO2 fluxes were not influenced by the two moisture levels. These laboratory results indicate that there is greater potential for N2O loss from NT soils than CT soils. Avoiding wet soil conditions (>60% WFPS) and applying a NO3 form of N fertilizer would reduce potential N2O emissions from arable soils.  相似文献   

17.
Animal excreta-nitrogen (N) deposited onto pastoral soils during grazing has been identified as an important source of nitrous oxide (N2O). Understanding the extent and seasonal variation of N2O emissions from animal urine is important for the development of best management practices for reducing N2O losses. The aim of this study was to determine N2O emissions from cow urine after application onto a pastoral soil in different seasons between 2003 and 2005. A closed soil chamber technique was used to measure the N2O emissions from a poorly drained silt loam soil which received either 0 (control) or 1,000 kg N ha−1 (as real cow urine) per application. Application of cow urine to soil increased N2O fluxes above those from the control site for up to 6 weeks, but the duration for which N2O levels were elevated depended on the season. Nitrous oxide emissions were higher during the winter and spring measurement periods when the soil water-filled pore space (WFPS) was mostly above field capacity, and the emissions were lower during the summer and autumn measurement periods when the soil WFPS was below field capacity. The N2O emission factor for urine ranged from 0.02 to 1.52% of N applied. This seasonal effect suggests that a reduction in urine return to soil (e.g., through use of standoff pads or animal housing) under wet conditions in New Zealand can potentially reduce N2O emissions from pastoral soils.  相似文献   

18.
Soil N2O emissions can affect global environments because N2O is a potent greenhouse gas and ozone depletion substance. In the context of global warming, there is increasing concern over the emissions of N2O from turfgrass systems. It is possible that management practices could be tailored to reduce emissions, but this would require a better understanding of factors controlling N2O production. In the present study we evaluated the spatial variability of soil N2O production and its correlation with soil physical, chemical and microbial properties. The impacts of grass clipping addition on soil N2O production were also examined. Soil samples were collected from a chronosequence of three golf courses (10, 30, and 100-year-old) and incubated for 60 days at either 60% or 90% water filled-pore space (WFPS) with or without the addition of grass clippings or wheat straw. Both soil N2O flux and soil inorganic N were measured periodically throughout the incubation. For unamended soils, cumulative soil N2O production during the incubation ranged from 75 to 972 ng N g−1 soil at 60% WFPS and from 76 to 8842 ng N g−1 soil at 90% WFPS. Among all the soil physical, chemical and microbial properties examined, soil N2O production showed the largest spatial variability with the coefficient of variation ~110% and 207% for 60% and 90% WFPS, respectively. At 60% WFPS, soil N2O production was positively correlated with soil clay fraction (Pearson's r = 0.91, P < 0.01) and soil NH4+–N (Pearson's r = 0.82, P < 0.01). At 90% WFPS, however, soil N2O production appeared to be positively related to total soil C and N, but negatively related to soil pH. Addition of grass clippings and wheat straw did not consistently affect soil N2O production across moisture treatments. Soil N2O production at 60% WFPS was enhanced by the addition of grass clippings and unaffected by wheat straw (P < 0.05). In contrast, soil N2O production at 90% WFPS was inhibited by the addition of wheat straw and little influenced by glass clippings (P < 0.05), except for soil samples with >2.5% organic C. Net N mineralization in soil samples with >2.5% organic C was similar between the two moisture regimes, suggesting that O2 availability was greater than expected from 90% WFPS. Nonetheless, small and moderate changes in the percentage of clay fraction, soil organic matter content, and soil pH were found to be associated with large variations in soil N2O production. Our study suggested that managing soil acidity via liming could substantially control soil N2O production in turfgrass systems.  相似文献   

19.
Animal manures from intensive livestock operations can be pelleted to improve handlings and recyclings of embodied nutrients. The aim of this study was to evaluate the influence of pelleted poultry manure on N2O and NO fluxes from an Andisol field. In autumn 2006 and summer 2007, poultry manure (PM), pelleted poultry manure (PP), and chemical fertilizer (CF) were applied at a rate of 120 kg N ha−1 in each cultivation period to Komatsuna (Brassica rapa var. peruviridis). Nitrous oxide and NO fluxes were measured using an automated monitoring system. A soil incubation experiment was also conducted to determine the influence of intact and ground pelleted manure on N2O, NO, and CO2 production with a water-filled pore space (WFPS) of 30 or 50%. In the field measurements, N2O emission rates from the organic fertilizer treatments were larger than that from the CF treatment, possibly because organic C stimulated denitrification. The highest N2O flux was observed from the PP treatment after a rainfall following fertilization, and the cumulative emission rate (2.72 ± 0.22 kg N ha−1 y−1) was 3.9 and 7.1 times that from the PM and CF treatments, respectively. In contrast, NO emission rates were highest from the CF treatment. The NO/N2O flux ratio indicated that nitrification was the dominant process for NO and N2O production from the CF treatment. Cumulative N2O emission rates from all treatments were generally higher during the wetter cultivation period (autumn 2006) than during the drier cultivation period (summer 2007). In contrast, NO emission rates were higher in the drier than in the wetter cultivation period. The incubation experiment results showed a synergistic effect of soil moisture and the pelleted manure form on N2O emission rates. The intact pelleted manure with the 50% WFPS treatment produced the highest N2O and CO2 fluxes and resulted in the lowest soil NO3 content after the incubation. These results indicate that anaerobic conditions inside the pellets, caused by rainfall and heterotrophic microbial activities, led to denitrification, resulting in high N2O fluxes. Controlling the timing of N application by avoiding wet conditions might be one mitigation option to reduce N2O emission rates from the PP treatment in this study field.  相似文献   

20.
In situ field measurements as well as targeted laboratory studies have shown that freeze–thaw cycles (FTCs) affect soil trace gas fluxes. However, most of past laboratory studies adjusted soil moisture before soil freezing, thereby neglecting that snow cover or water from melting snow may modify effects of FTCs on soil trace gas fluxes. In the present laboratory study with a typical semi-arid grassland soil, three different soil moisture levels (32 %, 41 %, and 50 % WFPS) were established (a) prior to soil freezing or (b) by adding fresh snow to the soil surface after freezing to simulate field conditions and the effect of the melting snow on CO2, CH4, and N2O fluxes during FTCs more realistically. Our results showed that adjusting soil moisture by watering before soil freezing resulted in significantly different cumulative fluxes of CH4, CO2, and N2O throughout three FTCs as compared to the snow cover treatment, especially at a relatively high soil moisture level of 50 % WFPS. An increase of N2O emissions was observed during thawing for both treatments. However, in the watering treatment, this increase was highest in the first thawing cycle and decreased in successive cycles, while in the snow cover treatment, a repetition of the FTCs resulted in a further increase of N2O emissions. These differences might be partly due to the different soil water dynamics during FTCs in the two treatments. CO2 emissions were a function of soil moisture, with emissions being largest at 50 % WFPS and smallest at 32 % WFPS. The largest N2O emissions were observed at WFPS values around 50 %, whereas there were only small or negligible N2O emissions from soil with relatively low soil water content, which indicates that a threshold value of soil moisture might exist that triggers N2O peaks during thawing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号