首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of various buckwheat materials (buckwheat flour [BF], dietary fiber extract [DE], flavonoids extract [FE], and rutin‐enhanced flavonoids extract [REFE]) on starch digestibility and noodle‐making properties were evaluated. When FE and REFE were incorporated into noodles, the amount of rapidly digestible starch and the predicted glycemic index (pGI) were reduced. However, BF and DE did not significantly decrease the pGI value of noodles. When assessing noodle properties, hardness was increased with increasing content of buckwheat materials, whereas other texture parameters were not significantly affected by buckwheat addition. All noodles were similar in regard to water absorption and swelling index, but cooking loss was slightly increased in FE and REFE noodles. FE and REFE demonstrated higher flavonoid stability during noodle making and, additionally, were more effective at reducing starch digestibility than BF and DE. REFE, specifically, does not generate quercetin (the cause of a bitter taste), and, therefore, REFE was effective in suppressing the hydrolysis of starch in the noodles, lowering the pGI.  相似文献   

2.
Studies were conducted with two newly developed gluten‐free bread recipes. One was based on corn starch (relative amount 54), brown rice (25), soya (12.5), and buckwheat flour (8.5), while the other contained brown rice flour (50), skim milk powder (37.5), whole egg (30), potato (25), and corn starch (12.5), and soya flour (12.5). The hydrocolloids used were xanthan gum (1.25) and xanthan (0.9) plus konjac gum (1.5), respectively. Wheat bread and gluten‐free bread made from commercial flour mix were included for comparison. Baking tests showed that wheat and the bread made from the commercial flour mix yielded significantly higher loaf volumes (P < 0.01). All the gluten‐free breads were brittle after two days of storage, detectable by the occurrence of fracture, and the decrease in springiness (P < 0.01), cohesiveness (P < 0.01), and resilience (P < 0.01) derived from texture profile analysis. However, these changes were generally less pronounced for the dairy‐based gluten‐free bread, indicating a better keeping quality. Confocal laser‐scanning microscopy showed that the dairy‐based gluten‐free bread crumb contained network‐like structures resembling the gluten network in wheat bread crumb. It was concluded that the formation of a continuous protein phase is critical for an improved keeping quality of gluten‐free bread.  相似文献   

3.
In this study, the functional properties of A‐ and B‐type wheat starch granules from two commercial wheat flours were investigated for digestibility in vitro, chemical composition (e.g., amylose, protein, and ash content), gelatinization, retrogradation, and pasting properties. The branch chain length and chain length distribution of these A‐ and B‐type wheat starch granules were also determined using high‐performance anion exchange chromatography (HPAEC). Wheat starches with different granular sizes not only had different degrees of enzymatic hydrolysis and thermal and pasting properties, but also different molecular characteristics. Different amylose content, protein content, and branch chain length of amylopectin in A‐ and B‐type wheat starch granules could also be the major factors besides granular size for different digestibility and other functional properties of starch. The data indicate that different wheat cultivars with different proportion of A‐ and B‐type granular starch could result in different digestibility in wheat products.  相似文献   

4.
Starch digestibility was evaluated in freshly prepared tortillas elaborated from masa obtained from different procedures (laboratory‐made masa, commercial masa, and nixtamalized corn flour) and from laboratory‐made masa with added commercial hydrocolloid, and stored for 24, 48, and 74 hr. Tortillas prepared with commercial masa had the highest available starch (AS) content and the commercial tortillas had the lowest, showing a decrease in AS content when storage time increased. Tortilla of commercial masa showed the lowest resistant starch (RS) content that agrees with the AS measured. However, tortilla of laboratory‐made masa presented the highest AS and RS contents. RS increased with storage time, a pattern that is related to the starch retrogradation phenomenon observed when retrograded resistant starch (RRS) was quantified. Commercial tortillas showed predicted glycemic index (pGI) values of 62–75% using a chewing/dialysis procedure (semi in vitro method). Index values were lower than those determined in vitro. The pGI of tortillas decreased, and the values were different depending on the method used to prepare the masa and tortilla. Commercial tortilla and tortilla of NCF had the lowest pGI. Therefore, the procedure to obtain masa and thereafter obtain tortillas influenced the starch digestibility of the product.  相似文献   

5.
Nixtamal, masa, and tortilla samples were stored for 24–96 hr and their chemical composition, retrogradation, and in vitro starch digestibility features were evaluated. Ash and fat contents in the three products were smaller than in the original corn sample, but protein levels were higher, all in accordance with previous studies. In general, a minor decrease in available starch (AS) content was observed with storage time. Masa showed the greatest AS values, followed by tortilla and nixtamal. Tortilla presented slightly higher retrograded resistant starch (RS3) values (1.1–1.8%, dmb) than masa (0.7–0.9%) and nixtamal (0.7–0.8%) and only minor increases were observed after 24 hr of storage, suggesting that retrogradation phenomenon in these samples takes place very rapidly and is more pronounced in the final product (tortilla). The development of RS3 explains the observed decrease in AS. Higher total resistant starch values were found in all samples at a range of 2.1–2.6% for nixtamal and masa, and a range of 3.1–3.9% in tortilla. This indicates that, apart from retrograded resistant starch, some ungelatinized fractions appear to contibute to the indigestible content of these products. The α‐amylolysis rate of the three materials decreased with storage. Tortilla showed the greatest hydrolysis indices. Differential scanning calorimetry (DSC) analysis showed that the nixtamal, masa, and tortilla did not show differences in amylopectin crystal melting temperature with storage time, but tortilla exhibited higher enthalpy values after 72 hr of storage, in accordance with the greater total RS contents recorded after prolonged storage.  相似文献   

6.
In search of a way to improve the nutritional profile of noodles, we prepared them with various mixtures of durum wheat flour and isolated plantain starch, and tested their proximal composition. Cooked noodles were assessed for in vitro starch digestibility, indigestible fraction content, and predicted glycemic index. The protein content declined with the addition of plantain starch. Both total starch (TS) level and the content of starch available for digestible enzymes (AS) decreased as the plantain starch level increased, a pattern that may be related to increased starch lixiviation during cooking of noodles containing plantain starch. There was an inverse pattern for resistant starch (RS). RS content in control (durum wheat flour) noodles was ≈50% lower than in the samples containing plantain starch. The soluble indigestible fraction (SIF) content in all samples was higher than the insoluble counterpart (IIF). The total indigestible fraction varied according to the wheat substitution level. Although the hydrolysis index (HI) and predicted glycemic index (pGI) of plantain starch noodles were moderate and decreased as the plantain starch proportion rose. These composite noodles exhibited higher indices than the control sample, a phenomenon that may also be dependent on the product physical structure. Results indicate that in spite of the increased starch digestion rate, plantain starch noodles are a better source of indigestible carbohydrates than pure wheat starch pasta. This might have dietetic applications.  相似文献   

7.
The objective of this study was to investigate the effects of milling and cooking conditions of cooked rice prepared from cultivar Koshihikari on in vitro starch digestibility and in vivo glucose response in humans. In addition, compression and adhesiveness tests were conducted for texture analysis of the cooked rice. Brown rice (BR) and surface‐abraded BR (SABR, ≥99.5% of the original weight) were digested more slowly than white rice (91% of the original weight) when cooked rice grain was used for the in vitro test, but they were digested more rapidly in the initial stage of the reaction when cooked rice ground by a meat grinder was used. The increase in water added for cooking significantly increased the extent of starch digestion with BR and SABR. The changes in blood glucose levels after the ingestion of cooked rice were dependent on the sample type. The cooking conditions dramatically influenced the glucose response after the ingestion of BR. A significant correlation was found between blood glucose levels at 45 min and the extent of starch digestion with ground samples, whereas no relationship was found with cooked rice grain samples for in vitro digestibility.  相似文献   

8.
A detailed analysis was developed, focused on the neutral lipids (NL) in free (FL), bound (BL), and starch lipid (SL) extracts of maize and rye flours, sourdough, and broa (a traditional bread manufactured in Portugal). Selective sequential extraction of said lipids with hexane at 20°C, water‐saturated n‐butanol at 20°C, and n‐propanol‐water (3:1, v/v) at 100°C was performed to clean the lipid extracts from extraneous impurities, and isolation thereof from glyco‐ and phospholipids was by solid phase extraction of NL; these classes were then quantitatively assayed by HPLC, using evaporative light scattering detection, with calibration curves prepared with standard mixtures of NL. The BL and SL contents in the original flours increased and that of FL decreased throughout the fermentation and baking processes. The dominant NL class was not the same in all lipid extracts; the highest concentrations of triacylglycerols and the lowest concentrations of free fatty acids were detected in FL—with the former accounting for 82, 76, and 71% of the total FL in flours, sourdough, and bread, respectively. Triacylglycerols and free fatty acids also accounted for the highest concentrations found in BL: these, together with diacylglycerols, contributed up to 84% of the total neutral BL. High levels of free fatty acids and low levels of the remaining NL classes were typically found in SL: free fatty acids, triacylglycerols, sterol esters, and diacylglycerols accounted for ≈90% of the total SL.  相似文献   

9.
10.
《Cereal Chemistry》2017,94(1):142-150
The objective of this study was to produce a pea flour ingredient with higher slowly digestible (SDS) and resistant (RS) starch fractions for functional food applications. Heat‐moisture treated flour (HMTF) in the presence of citric, gallic, or vanillic acids and esterified flour (EF) with citric acid were prepared and analyzed for structure and functionality using in vitro starch digestibility, differential scanning calorimetry, Rapid Visco Analyzer, swelling factor (SF), amylose leaching (AML), optical microscopy, and Fourier transform infrared (FT‐IR) spectroscopy. Significant (P < 0.05) increases in SDS and RS content of HMTF and EF were observed. Whereas the granule integrity and the birefringence were not affected by modification, the degree of crystalline order, which was determined by FT‐IR 1,047/1,022 cm−1 peak ratio, was decreased. Gelatinization enthalpies of modified flour were lower than that of native flour, whereas the gelatinization endotherms of HMTF were shifted to higher temperatures and those of EF to lower temperatures. Pasting properties were also affected greatly by both treatments. HMTF demonstrated reduced SF and AML, whereas EF had reduced SF and increased AML. Further, the extent of changes in the structure and functionality of HMTF depended on the type of acid utilized. Overall, heat‐moisture treatment with an organic acid and esterification were effective modifications to produce a pea flour ingredient with enhanced SDS and RS content.  相似文献   

11.
The comparably low starch digestibility of cooked sorghum flours was studied with reference to normal maize. Four sorghum cultivars that represent different types of endosperm were used. Starch digestibilities of 4% cooked sorghum flour suspensions, measured as reducing sugars liberated following α-amylase digestion, were 15–25% lower than for cooked maize flour, but there were no differences among the cooked pure starches. After the flours were predigested with pepsin to remove some proteins, the starch digestibility of cooked sorghum flours increased 7–14%, while there was only 2% increase in normal maize; however, there was no effect of pepsin treatment on starch digestibility if the flours were first cooked and then digested. After cooking with reducing agent, 100 mM sodium metabisulfite, starch digestibility of sorghum flours increased significantly while no significant effect was observed for maize. Also, starch solubility of sorghum flours at 85 and 100°C was lower than in maize, and sodium metabisulfite increased solubility much more in sorghum than in maize. Differential scanning calorimetry results of the flour residue after α-amylase digestion did not show any peaks over a temperature range of 20–120°C, indicating that sorghum starches had all undergone gelatinization. These findings indicate that the protein in cooked sorghum flour pastes plays an important role in making a slowly digesting starch.  相似文献   

12.
Using rice samples derived from normal rice cultivars and endosperm starch mutant, we investigated key factors contributing to the enzyme digestibility of steamed rice grains. The chemical composition of polished rice grains, structural features of endosperm starch, and enzyme digestibility of steamed rice grains were examined. The protein content of polished rice grains was 4.6–9.1%, amylose content was 4–27%, the DPn of purified amylose was 900–1,600, the amylopectin short/long chain ratio was 1.2–5.9, and the enzyme digestibilities of steamed polished rice grains were 0.9–12.6 °Brix. Amylose content and RVA parameters (viscosity, breakdown, and setback) correlated significantly with enzyme digestibility of steamed rice grains. Multiple regression formulas were constructed to predict digestibility of steamed rice grain as a function of the molecular characteristics of the starch. When both amylose content and the short/long chain amylopectin ratio were used as predictor variables, they accounted for >80% of the observed variance in digestibility of steamed rice grains. Multiple regression revealed that the more digestible rice samples had starch with a lower amylose content and more short‐chain amylopectin. Reassociation of amylose‐lipid complex and recrystallization of amylopectin in the stored steamed rice grains was monitored by differential scanning calorimetry (DSC), and the observed retrogradation properties were related to the structural characteristics of starch and to the enzyme digestibility of steamed rice grains.  相似文献   

13.
One of the main problems associated with gluten‐free bread is obtaining a good structure. Transglutaminase (TGase), an enzyme that catalyzes acyl‐transfer reactions through which proteins can be cross‐linked could be a way to improve the structure of gluten‐free breads. The objective of this study was to evaluate the impact of TGase at different levels (0, 0.1, 1, and 10 U of TGase/g of protein) on the quality of gluten‐free bread. The recipe consisted of white rice flour (relative amount: 35), potato starch (30), corn flour (22.5), xanthan gum (1), and various protein sources (skim milk powder [SMP] [12.5], soya flour, and egg powder). The influence of the various proteins in combination with the different addition levels of TGase on bread quality (% bake loss, specific volume, color, texture, image characteristics, and total moisture) was determined. Confocal laser‐scanning microscopy (CLSM) was used to evaluate the influence of TGase on the microstructure of the bread. Baking tests showed that TGase had an effect on the specific volume of the bread. For instance, the SMP bread with 10 U of enzyme contained the most compact structure, which was reflected in the crumb texture profile analysis results (highest values) (P < 0.05), digital image analysis (highest level of cells/cm2) (P < 0.05), and CLSM micrographs (network formation). Finally, it can be concluded that it is possible to form a protein network in gluten‐free bread with the addition of TGase. However the efficiency of the enzyme is dependent on both the protein source and the level of enzyme concentration.  相似文献   

14.
The influence of amylose content, cooking, and storage on starch structure, thermal behaviors, pasting properties, and rapidly digestible starch (RDS), slowly digestible starch (SDS), and resistant starch (RS) in different commercial rice cultivars was investigated. Long grain rice with high‐amylose content had a higher gelatinization temperature and a lower gelatinization enthalpy than the other rice cultivars with intermediate amylose content (Arborio and Calrose) and waxy type (glutinous). The intensity ratio of 1047/1022 cm–1 determined by Fourier Transform Infrared (FT‐IR), which indicated the ordered structure in starch granules, was the highest in glutinous and the lowest in long grain. Results from Rapid ViscoAnalyser (RVA) showed that the rice cultivar with higher amylose content had lower peak viscosity and breakdown, but higher pasting temperature, setback, and final viscosity. The RDS content was 28.1, 38.6, 41.5, and 57.5% in long grain, Arborio, Calrose, and glutinous rice, respectively, which was inversely related to amylose content. However, the SDS and RS contents were positively correlated with amylose content. During storage of cooked rice, long grain showed a continuous increase in pasting viscosity, while glutinous exhibited the sharp cold‐water swelling peak. The retrogradation rate was greater in rice cultivars with high amylose content. The ratio of 1047/1022 cm–1 was substantially decreased by cooking and then increased during storage of cooked rice due to the crystalline structure, newly formed by retrogradation. Storage of cooked rice decreased RDS content and increased SDS content in all rice cultivars. However, no increase in RS content during storage was observed. The enthalpy for retrogradation and the intensity ratio 1047/1022 cm–1 during storage were correlated negatively with RDS and positively with SDS (P ≤ 0.01).  相似文献   

15.
The effects of whole grain wheat (WGW) flour on the quality attributes of instant fried noodles were characterized in terms of mixing and oil‐resisting properties as well as in vitro starch digestibility. Higher water absorption and shorter kneading time were required to obtain the optimally mixed dough from WGW flour, and the presence of nonstarch components in the WGW flour lowered the thermal conductivity of the noodles. The use of WGW flour produced instant fried noodles with oil uptake reduced by 30%, which could be correlated with the less porous structure confirmed by the surface and cross‐sectional scanning electron microscope images. When the instant fried noodles were subjected to in vitro starch digestion, the use of WGW flour was effective in suppressing the hydrolysis of starch in the noodles, and the predicted glycemic index of the WGW noodles (80.6) was significantly lower than that of the white wheat noodles (83.3).  相似文献   

16.
Brans of specialty sorghum varieties (high tannin, black, and black with tannin) were used to investigate the effects of sorghum phenolic compounds on starch digestibility of soft and hard sorghum endosperm porridges. Endosperms of varieties with the highest and lowest grain hardness index were mixed with brans of specialty sorghum varieties in the ratio of 85:15 and cooked into porridges with distilled water using a Rapid Visco Analyzer. Brans of condensed tannin containing sorghum varieties (high‐tannin and black with tannin sorghums) significantly (P < 0.05) decreased starch digestibility and estimated glycemic index (EGI) and increased resistant starch (RS) content of endosperm porridges. However, the addition of phenolic‐rich tannin‐free (mostly anthocyanins) black sorghum bran significantly (P < 0.05) increased starch digestibility and EGI but did not affect RS content of endosperm porridges. The disparate effects with black bran may, in part, result from its larger particle size and different bran structure compared with other sorghum varieties evaluated. Thus, our study showed that not only presence of phenolic compounds in the brans but also structural differences of specialty sorghum brans can have significant effects on starch digestibility.  相似文献   

17.
The formulation of gluten‐free (GF) bread of high quality presents a formidable challenge as it is the gluten fraction of flour that is responsible for an extensible dough with good gas‐holding properties and baked bread with good crumb structure. As the use of wheat starch in GF formulations remains a controversial issue, naturally GF ingredients were utilized in this study. Response surface methodology was used to optimize a GF bread formulation primarily based on rice flour, potato starch, and skim milk powder. Hydroxypropylmethylcellulose (HPMC) and water were the predictor variables. Analyses of the treatments from the design were made 24 hr after baking. Specific volume and loaf height increased as water addition increased (P < 0.01). Crumb firmness decreased as water levels increased (P < 0.01). Significant interactions (P < 0.01) between HPMC and water were found for the number of cells/cm2. The number of large cells (>4 mm2) decreased with increasing levels of HPMC and water. Optimal ingredient levels were determined from the data obtained. The optimized formulation contained 2.2% HPMC and 79% water flour/starch base (fsb) and measured responses compared favorably to predicted values. Shelf‐life analysis of the optimized formulation over seven days revealed that, as crumb firmness increased, crust firmness and crumb moisture decreased.  相似文献   

18.
This article introduces a new method that uses a shearing device to study the effect of simple shear on the overall properties of pasta‐like products made from commercial wheat gluten‐starch (GS) blends. The shear‐processed GS samples had a lower cooking loss (CL) and a higher swelling index (SI) than unprocessed materials, suggesting the presence of a gluten phase surrounding starch granules. Pictures of dough micro‐structure by confocal scanning laser microscopy (CSLM) showed the distribution of proteins in the shear‐processed samples. This study revealed that simple shear processing could result in a product with relevant cooking properties as compared with those of commercial pasta. Increasing gluten content in GS mixtures led to a decrease in CL and an increase in maximum cutting stress of processed samples, whereas no clear correlation was found for SI values of sheared products. It was concluded that the new shearing device is unique in its capability to study the effect of pure shear deformation on dough development and properties at mechanical energy and shear stress levels relevant to industrial processing techniques like pasta extrusion.  相似文献   

19.
《Cereal Chemistry》2017,94(1):124-127
Two gluten‐free snacks containing chickpea, plantain, and maize flours at different concentrations were prepared. The impact of chickpea or plantain flour level on weight gain, insulin resistance, and serum lipid profile of rats fed a high‐fructose diet was evaluated. A dose of 0.93 g/kg was used in the experiments to simulate the snack consumption level by humans (average content of a small package, which is twice the portion recommended by the U.S. Department of Agriculture). Compared with a high‐fructose reference diet, consumption of both snacks decreased weight gain, fasting serum glucose, and triglycerides. The effect was more pronounced for snack B, with higher chickpea content. Consumption of these snacks may also have beneficial effects against obesity and cardiometabolic complications. Chickpea flour is a promising functional ingredient for the development of antiobesity foods.  相似文献   

20.
Effects of nonwaxy (21% amylose, 79% amylopectin) and waxy (100% amylopectin) rice starch-lipid complexes on the rate of in vitro digestibility were determined. Long-chain (≥C:18) saturated emulsifiers reduced digestibility more than short-chain (<C:18) saturated and unsaturated emulsifiers when complexed with nonwaxy and waxy rice starch. The largest decrease in digestibility (33%) was achieved with Polyaldo 10-1-2 (100% C18:0 with decaglyceryl monostearate modification) for nonwaxy rice. Waxy rice starch did not complex with most of the emulsifiers, in contrast to nonwaxy rice starch. Most of the emulsifiers that reduced digestibility by 10% or less were composed of unsaturated monoglycerides, including some acetylated and succinylated monoglycerides. The fluid behavior of nonwaxy rice starch-emulsifier solutions was more pseudoplastic than waxy rice starch-emulsifier solutions. The consistency index varied with emulsifiers. The nonwaxy rice starchemulsifier solutions and some of those prepared using waxy rice starch would be suitable for semisolid food applications. The waxy rice starchemulsifier solutions with low consistency (0.4–0.7) and high-flow behavior (0.7–0.8) indices would be suitable for beverage applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号