共查询到18条相似文献,搜索用时 67 毫秒
1.
目的: 探讨随机森林、支持向量机分类器下机载高光谱影像和激光雷达点云数据源对林分类型识别的影响,并检验叶绿素在林分类型识别中的作用,为提高林分类型分类精度提供科学依据,为森林资源管理和监测提供技术支持。方法: 以东北林业大学帽儿山实验林场老山施业区为研究区,以机载高光谱影像和激光雷达点云为数据源,在多尺度影像分割基础上,从高光谱影像中提取光谱、纹理和叶绿素指数等特征,从LiDAR点云中提取高度、强度等特征。通过随机森林的特征选择,选取重要性较高的特征变量,在随机森林和支持向量机分类器下,以影像分割数据为试验样本,设置6种分类方案(随机森林分类器下高光谱影像与激光雷达点云数据结合、高光谱影像数据、激光雷达点云数据,支持向量机分类器下高光谱影像与激光雷达点云数据结合、高光谱影像数据、激光雷达点云数据),对阔叶混交林、樟子松林、落叶松林、红松林和蒙古栎林5种林分类型进行识别,比较不同分类器下不同数据源的分类效果。结果: 高光谱影像数据共提取34个特征变量,激光雷达点云数据共提取72个特征变量,经特征选择后,高光谱影像数据和激光雷达点云数据各选取11个重要性较高的特征(共22个),其中高光谱影像数据提取的归一化植被指数(NDVI)重要性最大。6种分类方案中,随机森林分类器下高光谱影像与激光雷达点云数据结合的分类精度最高(88.02%),支持向量机分类器下激光雷达点云数据的分类精度最低(76.19%)。多源数据协同的平均分类精度(86.22%)高于单源数据(79.98%),随机森林分类器的平均分类精度(82.92%)高于支持向量机分类器(81.19%)。叶绿素指数参与分类后,分类精度提高约3.32%。5种林分类型中,阔叶混交林分类效果最好,平均分类精度为92.62%,红松林分类效果最差,平均分类精度为49.67%。结论: 多数据源较单源数据可更好地提高分类精度,即2种数据协同可以提高林分类型识别精度;单一数据源相比,高光谱影像数据源的分类效果更好,光谱特征是林分类型识别的重要影响因子;林分类型识别时,不同机器学习模型相比,随机森林分类器较支持向量机分类器分类效果更优;叶绿素作为生物化学参数对林分类型识别有积极影响。 相似文献
2.
多时相高光谱卫星遥感包含树种光谱特征和生长季相差异信息,是解决森林树种识别精度不足的重要技术途径。本文利用不同季节3个时相CHRIS高光谱卫星影像,设计了以Bhattacharyya距离为可分性准则的波段选择经验算法,实现吉林省汪清研究区的优势树种多时相高光谱卫星填图。结果显示,多时相高光谱数据的可分性指标相比单一时相增幅明显;结合波段选择的多时相高光谱分类结果验证精度较单一时相分类结果和多时相全波段分类精度提高7.5%和1.6%;研究区主要优势树种的分类精度存在差异,柞树和落叶松的分类精度最高,杨树最低,红松与暗针叶林存在一定程度的误分,主要原因为二者的光谱接近且时相特征差异小。 相似文献
3.
4.
树种识别一直是困扰遥感研究的一个难点,而国产高分二号识别地物和树种具有巨大潜力。选取四川省甘孜州道孚县为研究区,利用高分二号4m多光谱遥感影像,并结合该县的森林资源二类调查结果数据,分别采用最大似然法和支持向量机方法,对利用高分二号数据在树种识别应用中的可能性进行探讨。研究结果表明:所采用的两种方法识别出研究区域主要树种的精度都高于80%,其中:采用最大似然法分类精度为81.79%,支持向量机方法分类精度为86.75%。在先验知识的支持下,利用高分二号多光谱影像也可用于树种识别研究中。 相似文献
5.
基于高光谱数据(Hyperion)混合像元分解的研究 总被引:1,自引:0,他引:1
本文以高光谱(Hyperion)数据为数据源,借助遥感手段对数据进行坏线修复、大气校正和几何校正等处理,通过有约束条件和无约束条件线性混合模型对像元对研究区域进行分类研究.研究结果表明:无约束条件和有约束条件进行混合像元的分类精度分别为90.1%和90.4%,两者的分类精度相差不是太大;就裸地而言,有约束条件的线性像元混合分解的精度要远高于无约束条件;从冗余的数据中提取有用信息和如何利用高光谱遥感的今后遥感图像分类研究的难点和热点. 相似文献
6.
南方主要针叶树种高光谱数据降维分类研究 总被引:1,自引:0,他引:1
《中南林业科技大学学报(自然科学版)》2010,(11)
采用ASD公司生产的FieldSpec HandHeldTM地物光谱仪,分别于2005、2006、2008年冬季跟踪观测杉木、马尾松、黑松、雪松等针叶树种的高光谱数据,经筛选后获取有效观测数据160条,其中120条作为训练集,40条作为测试集。将平滑去噪的一阶微分高光谱数据进行PCA方法和GA方法降维,然后利用BP神经网络和支持向量机(SVM)对降维后的测试集数据进行分类。结果表明:PCA—BP神经网络模型分类准确率95%,PCA—SVM分类准确率97.5%,GA和BP分类准确率92.5%,GA-SVM分类准确率100%。这说明两种降维方式结合支持向量机的分类均优于其与BP神经网络结合的分类,基于GA的降维方法对高光谱波段的选择更有效率,具有较好的应用前景。 相似文献
7.
基于AISA Eagle II机载高光谱数据的普洱市山区森林分类 总被引:2,自引:0,他引:2
山区森林的精细分类一直是遥感研究的一个难点,而利用高光谱技术识别地物和树种具有巨大潜力。山区的AISA Eagle II机载高光谱数据需经过大气校正和地形辐射校正后才能获得准确的树种光谱信息。采用Support Vector Machine(SVM)方法对山区森林按照森林类型以及树种进行分类,分类结果与实测样地数据和CCD高分辨率影像验证表明:利用AISA Eagle II机载高光谱数据对试验区的森林类型区分具有较好的分类结果,总体精度为97.74%;在树种分类方面也同样具有不错的分类潜力,总体精度为92.11%,但在阔叶树种间存在错分、漏分的现象。 相似文献
8.
利用阿达玛变换近红外光谱结合支持向量机,对制浆造纸常用木材树种的快速识别进行研究。将各树种近红外光谱先进行多点平滑和标准正态变换预处理以消除噪音干扰和光散射导致的测量偏差,然后基于不同建模策略建立一对多和一对一两种支持向量机模型,考察这两种模型对多树种属间分类和种间分类的预测能力,并与传统的偏最小二乘判别分析分类法进行对比。结果表明,支持向量机预测模型对桉木、相思木、杨木、水杉等树种的属间分类正确率达到98%以上,种间分类正确率均达到95%以上,在处理复杂分类问题时模型稳健性明显优于传统分类方法,从方法上证明了近红外技术工业化应用的可能性,为进一步建立近红外在线检测木片材性分析系统奠定了基础。 相似文献
9.
[目的]研究对象特征对高空间分辨率遥感影像与星载全极化SAR数据协同面向对象林分类型识别的影响,评价2种数据协同林分类型识别的适宜性,为多源遥感影像结合面向对象分类技术提供科学依据。[方法]以QuickBird遥感影像和Radarsat-2数据为试验数据,选取福建省三明市将乐县将乐国有林场为试验区进行杉木、马尾松和阔叶林面向对象分类。在面向对象分类过程中,采用基于QuickBird多光谱波段分割、基于Radarsat-2数据分割和QuickBird & Radarsat-2协同分割3种分割方案,每种分割方案采用10种尺度(25~250,步长为25),应用QuickBird遥感影像和Radarsat-2数据提取的光谱、地形、高度和强度4方面32个特征指标,进行4种不同特征组合,运用支持向量机分类器进行面向对象林分类型分类,利用混淆矩阵计算的生产者精度、用户精度、总精度和Kappa系数4个指标对分类结果进行精度评价。[结果]所有组合的分类精度(Kappa系数)均随着尺度增大表现出先增加后降低的趋势,且以只使用单一光谱特征的分类精度最低,依次低于光谱+地形两特征和光谱+地形+高度三特征的分类精度,引入强度后的四特征组合分类与三特征组合无明显差异。QuickBird&Radarsat-2协同且在最优尺度参数为100时,结合对象光谱、地形、高度和强度四特征组合进行面向对象林分类型分类精度最高(OA=86%,Kappa=0.86)。[结论]高空间分辨率遥感影像(QuickBird)与SAR数据(Radarsat-2)协同最优尺度多特征组合进行面向对象林分类型分类优势明显,在光谱和地形特征中引入高度特征可进一步提高分类精度。本研究结果可提高面向对象分类中的特征选择效率和科学性,能够为其他影像的面向对象分类技术提供较好的参考依据。 相似文献
10.
11.
[目的]利用星载激光雷达波形数据对森林类型识别时,受地形、噪声和林层结构等因素影响,针叶林、阔叶林和混交林森林类型识别精度较低,为提高森林类型识别精度,需提取与森林类型相关的波形特征参数.[方法]结合回波仿真原理与林分冠层特征对GLAS回波波形进行理论分析,提出了与森林类型相关的波形特征参数147R-cafit-、K1... 相似文献
12.
[目的]研究林隙主被动遥感协同自动识别方法,为进一步量化林隙特征提供技术支持。[方法]以真彩色航空正射影像(0.2 m)和机载LiDAR(3.7点·m-2)为主被动遥感数据源,选取东北典型天然次生林——帽儿山实验林场东林施业区为研究区进行面向对象林隙识别。在面向对象分类过程中,通过对比3种分割方案(航空影像分割、LiDAR数据分割、航空影像&LiDAR协同分割)、10种尺度(10~100,步长为10)确定最优分割方案及尺度参数。在最优分割结果基础上应用航空影像的光谱特征、LiDAR数据提取的高度特征及共同特征,应用支持向量机分类器(SVM)进行林隙识别。[结果]3种分割方案的最优尺度均为20;所有尺度均是基于LiDAR数据分割ED3modified(0.52±0.11)低于基于航空影像分割(0.58±0.07)与航空影像&LiDAR协同数据分割(0.58±0.07)。在LiDAR数据最优尺度(20)下,采用光谱和高度共同特征的主被动识别与单独采用光谱特征的主动识别及单独使用高度特征的被动识别相比,分类精度分别提高36.71%和8.17%。[结论]3种分割方案中,基于LiDAR数据分割结果最好;使用主被动遥感协同自动识别进行林隙分类时精度最高(OA=87.73%,Kappa=0.81)。 相似文献
13.
【目的】以福建省顺昌县大干镇的毛竹为研究对象,研究毛竹叶片氮元素含量的最优估测模型,为毛竹生长状态分析与林地土壤肥力估测提供基础。【方法】通过对毛竹叶片原始光谱、一阶微分光谱及相关的植被指数与叶片氮元素含量进行相关性分析来筛选氮元素敏感特征参数,并构建了多元线性回归模型、随机森林模型以及支持向量机模型,利用决定系数最优原则筛选3个模型中的最优模型并进行精度验证。【结果】R387、DR663、NDVIg-b(R575、R440)、SIPI、PRI和PPR 6个参数与毛竹叶片氮含量具有较为显著的相关性,基于这6个敏感参数所构建的3种模型中,多元线性回归模型与随机森林模型拟合效果较差,精度验证结果R2分别为0.4355、0.4371,惩罚因子C和核参数Sigma分别设为3和0.1的支持向量机模型估测结果最好,其实测值与预测值拟合决定系数为0.8031,总体精度为94.02%。【结论】基于R387、DR663、NDVIg-b(R575、R440)、SIPI、PRI和PPR 6个叶片光谱参数所构建的支持向量机模型能够较为准确地估测毛竹叶片氮元素含量。 相似文献
14.
15.
16.
17.
基于面向对象变化向量分析法,进行森林资源变化检测。
应用国产高分二号多光谱影像,以森林采伐和造林活动多、林地变化频率高的广西壮族自治区上思县为研究区,应用随机森林平均精确率减少的方法进行变化特征的选择,通过选取的不同特征向量和常规的基于光谱均值、光谱均值和标准差的变化向量分析法,以及基于NDVI差值法的变化检测结果对比,获取较好的森林资源变化检测方法和结果。
高分二号多光谱影像的蓝、绿、红波段光谱均值和NDVI值共4个特征参与的变化向量分析法,识别森林资源变化精度高,总体精度92.94%,Kappa系数0.763 0,变化地类误检率15.63%,漏检率22.86%。
经过特征选择后,基于面向对象变化向量分析法比常规的多特征参与的变化向量分析法识别森林资源变化的效果好。
18.
利用遥感数据开展森林资源优势树种的分类对森林资源的监测、森林可持续经营及生物多样性研究具有重要意义。研究针对复杂地形区域的破碎化森林,采用高分二号(GF-2)的多光谱影像作为基础数据进行森林优势树种的精细分类。本文以地形复杂、森林破碎化的湖北省竹山县九华山林场为研究对象,采用面向对象分类方法对树种进行精细分类,比较支持向量法、最近邻法(KNN)和随机森林(RF)三种不同分类算法的分类效果。在尺度阈值为30、合并阈值为95时分割的基础上,利用SVM、KNN和RF分类结果和分类精度差异较大。分类精度最高的是SVM分类方法,总体精度为68.52%,Kappa系数为0.62;其次为随机森林分类法,总体精度为60.29%,Kappa系数为0.54;KNN分类方法精度最低,总体精度为59.41%,Kappa系数为0.53。GF-2号数据能满足树种分类基本需求,在复杂地形和景观破碎化地区用支持向量机进行树种的分类精度更高,但仍存在一定的局限性。 相似文献