共查询到20条相似文献,搜索用时 0 毫秒
1.
The rheological and thermal properties of aged starch gels (15:85 starch-water) from three waxy maize genotypes (wx, wx sh1, and du wx) during storage (4°C for up to 25 days) were studied. After storage, changes of storage modulus (G′) and phase angle (δ) of the gels as a function of temperature were measured using oscillatory rheometry. For the du wx samples, G′ at 25°C increased rapidly during the first four days of storage at 4°C, compared to the gradual increases over the 25-day storage period for the wx and wx sh1 samples. A peak in G′ at 45°C was observed during heating for the du wx samples after 10 days of storage and for the wx sample stored for 25 days. The G′ peak may have been due to syneresis in the gels. Retrogradation of amylopectin of the aged starch samples was examined using differential scanning calorimetry. The du wx starch had greater retrogradation enthalpies than the other two samples (which showed similar retrogradation behavior) throughout the storage. The retrogradation enthalpy of the du wx samples increased rapidly during the first seven days, followed by a slower increase through the rest of storage. For the wx and wx sh1 samples, no endotherm was observed during the first four days of storage, after which the enthalpy increased steadily as a function of storage time. Addition of sucrose delayed the formation of gel networks for all three starches. The greater tendency for gelling and retrogradation of the du wx starch might be attributed to the greater proportion of DP20–30 chains of the amylopectin. 相似文献
2.
The small deformation rheological properties of wheat flour doughs in relation to their structure and hydration were studied by dynamic mechanical thermal analysis, differential scanning calorimetry, and electron spin resonance. The effect of salt and triglycerides was also examined and compared with results we obtained previously on starch dispersions. Moisture content was adjusted to 48 or 60% (w/w, wb). Samples contained 0–16% NaCl (g/100 g of flour‐water) and 0–18% triolein or lard (g/100 g of flour‐water). The obtained results suggested that starch has an active role in determining the evolution of dough rheological characteristics during heating. The main factors controlling rheological behavior during thermal treatment are the volume fraction and deformability of starch granules. Gluten changes the viscoelasticity of the continuous phase and competes with starch for water. The addition of sodium chloride to flour dispersions shifted the structural disorganization and rigidity increased during heating to higher temperatures. At >7% NaCl, the reverse effect was observed. The mechanism controlling the effect of salt on dough rheological behavior was explained in terms of effect on water properties and on starch structure and hydration. Triglycerides had a lubricant effect (i.e., lowering G′ modulus) on the wheat flour dough system. These effects are of great importance for production and quality of bakery products. 相似文献
3.
The effect of flour type and dough rheology on cookie development during baking was investigated using seven different soft winter wheat cultivars. Electrophoresis was used to determine the hydrolyzing effects of a commercial protease enzyme on gluten protein and to evaluate the relationships between protein composition and baking characteristics. The SDS‐PAGE technique differentiated flour cultivars based on the glutenin subunits pattern. Electrophoresis result showed that the protease degraded the glutenin subunits of flour gluten. Extensional viscosities of cookie dough at all three crosshead speeds were able to discriminate flour cultivar and correlated strongly and negatively to baking performance (P < 0.0001). The cookie doughs exhibited extensional strain hardening behavior and those values significantly correlated to baking characteristics. Of all rheological measurements calculated, dough consistency index exhibited the strongest correlation coefficient with baking parameters. The degradation effects of the protease enzyme resulted in more pronounced improvements on baking characteristics compared with dough rheological properties. Stepwise multiple regression showed that the dough consistency index, the presence or absence of the fourth (44 kDa) subunit in LMW‐GS and the fifth subunit (71 kDa) subunit in HMW‐GS were predominant parameters in predicting cookie baking properties. 相似文献
4.
Thirteen different wheat cultivars were selected to represent GBSS mutations: three each of wildtype, axnull, and bxnull, and two each of 2xnull and waxy. Starch and A‐ and B‐granules were purified from wheat flour. Hearth bread loaves were produced from the flours using a small‐scale baking method. A‐granules purified from wildtype and partial waxy (axnull, bxnull, and 2xnull) starches have significantly higher gelatinization enthalpy and peak viscosity compared with B‐granules. A‐ and B‐granules from waxy starch do not differ in gelatinization, pasting, and gelation properties. A‐ and B‐granules from waxy starch have the highest enthalpy, peak temperature, peak viscosity, breakdown, and lowest pasting peak time and pasting temperature compared with A‐ and B‐granules from partial waxy and wildtype starch. Waxy wheat flour has much higher water absorption compared with partial waxy and wildtype flour. No significant difference in hearth bread baking performance was observed between wildype and partial waxy wheat flour. Waxy wheat flour produced hearth bread with significantly lower form ratio, weight, a more open pore structure, and a bad overall appearance. Baking with waxy, partial waxy, and wildtype wheat flour had no significant effect on loaf volume. 相似文献
5.
Shivananda K. Garimella Purna Yong‐Cheng Shi Lan Guan Jeff D. Wilson Robert A. Graybosch 《Cereal Chemistry》2015,92(5):529-535
Waxy wheat (Triticum aestivum L.) contains endosperm starch lacking in amylose. To realize the full potential of waxy wheat, the pasting properties of hard waxy wheat flours as well as factors governing the pasting properties were investigated and compared with normal and partial waxy wheat flours. Starches isolated from six hard waxy wheat flours had similar pasting properties, yet their corresponding flours had very different pasting properties. The differences in pasting properties were narrowed after endogenous α‐amylase activity in waxy wheat flours was inhibited by silver nitrate. Upon treatment with protease, the extent of protein digestibility influenced the viscosity profile in waxy wheat flours. Waxy wheat starch granules swelled extensively when heated in water and exhibited a high peak viscosity, but they fragmented at high temperatures, resulting in more rapid breakdown in viscosity. The extensively swelled and fragmented waxy wheat starch granules were more susceptible to α‐amylase degradation than normal wheat starch. A combination of endogenous α‐amylase activity and protein matrix contributed to a large variation in pasting properties of waxy wheat flours. 相似文献
6.
Katsuyuki Hayakawa Keiko Tanaka Toshiki Nakamura Shigeru Endo Tsuguhiro Hoshino 《Cereal Chemistry》1997,74(5):576-580
The viscoelastic properties and molecular structure of the starch isolated from waxy (amylose-free) hexaploid wheat (WHW) (Triticum aestivum L.) were examined. WHW starch generally had lower gelatinization onset temperature, peak viscosity, and setback than the starch isolated from normal hexaploid wheat (NHW). Differential scanning calorimetry (DSC) showed that WHW starch had higher transition temperatures (To, Tp, and Tc) and enthalpy (ΔH) than NHW starch. However, when compared on the basis of amylopectin (AP) content, ΔH of WHW starch was almost statistically identical to that of its parental varieties. Typical A-type X-ray diffraction patterns were observed for the starches of WHW and its parental varieties. Somewhat higher crystallinity was indicated for WHW starch. WHW starch was also characterized by having greater retrogradation resistance. The high-performance size-exclusion chromatography (HPSEC) of amylopectin showed that each amylopectin yielded two fractions after debranching. Although WHW amylopectin had somewhat long B chains, little difference was observed in the ratio of Fr.III/ Fr.II between WHW and its parental varieties. 相似文献
7.
Jingyuan Xu Jerold A. Bietz Frederick C. Felker Craig J. Carriere Denis Wirtz 《Cereal Chemistry》2001,78(2):181-185
Flour and doughs represent rheologically complex materials whose properties are dependent on many factors including processing conditions. To avoid some of the problems associated with the rheological characterization of dough, we have initiated a study focused on the rheological properties of one of the major components of dough, vital wheat gluten. Suspensions of vital wheat gluten were prepared with concentrations of 225–325 mg/mL.The moduli of the gluten suspensions was 0.2 Pa at 225 mg/mL to 37 Pa at 325 mg/mL. At <250 mg/mL, the gluten suspensions exhibited fluidlike behavior. The crossover frequency, (G′[ω] = G″[ω]) shifted slightly from 0.5 rad/sec at 225 mg/mL to 0.9 rad/sec at 250 mg/mL. At >300 mg/mL, the gluten suspensions exhibited solidlike behavior. The crossover frequencies were independent of concentration and equal to 100 rad/sec. At <250 mg/mL, the high‐frequency behavior of moduli were proportional to ω3/4, as expected for a semiflexible coil. At >300 mg/mL, the high‐frequency behavior of moduli were proportional to ω1/2, indicating a flexible coil. These results suggest vital wheat gluten suspensions undergo a structural change between 250 and 300 mg/mL. 相似文献
8.
Zhiming Geng Pingping Zhang Jinbao Yao Dan Yang Hongxiang Ma Patricia Rayas‐Duarte 《Cereal Chemistry》2012,89(5):237-241
The relationship of solvent retention capacity (SRC) values with four solvents, alveograph and farinograph properties, and cookie‐baking performance was evaluated with 20 Chinese soft wheat genotypes, including four cultivars and 16 advanced lines grown in the 2009–2010 season. Significant positive correlations were observed between water SRC (WSRC), sodium carbonate SRC (SOSRC), lactic acid SRC, and sucrose SRC (SUSRC) values. WSRC, SUSRC, and SOSRC showed significant positive correlations with farinograph water absorption (WA), alveograph P (tenacity), and P/L (ratio of tenacity to extensibility). Cookie diameter was significantly correlated with wet gluten (r = –0.491, P < 0.05), WSRC (r = –0.882, P < 0.001), SUSRC (r = –0.620, P < 0.01), SOSRC (r = –0.712, P < 0.001), P (r = –0.787, P < 0.001), L (r = 0.616, P < 0.01), P/L (r = –0.766, P < 0.001) and WA (r = –0.620, P < 0.01), respectively. SRC values were effective predictors of cookie quality in Chinese soft wheat. Alveograph parameters were more closely correlated to cookie quality than were farinograph parameters. 相似文献
9.
Alessandra Marti Xiaoxue Qiu Tonya C. Schoenfuss Koushik Seetharaman 《Cereal Chemistry》2015,92(5):434-440
Intermediate wheatgrass (IWG) (Thinopyrum intermedium) is a perennial grass with desirable agronomic traits and positive effects on the environment. It has high fiber and protein contents, which increase the interest in using IWG for human consumption. In this study, IWG flour was blended with refined wheat at four IWG‐to‐wheat ratios (0:100, 50:50, 75:25, and 100:0). Samples were analyzed for proximate composition, microstructure features, pasting properties (Micro Visco‐Amylo‐Graph device), protein solubility, and total and accessible thiols. Gluten aggregation properties (GlutoPeak tester) and mixing profile (Farinograph‐AT device) were also evaluated. IWG flour enrichment increased the pasting temperature and decreased the peak viscosity of blended flours. IWG proteins exhibited higher solubility than wheat, with a high amount of accessible and total thiols. The GlutoPeak tester highlighted the ability of IWG proteins to aggregate and generate torque. Higher IWG flour enrichment resulted in faster gluten aggregation with lower peak torque, suggesting weakening of wheat gluten strength. Finally, the addition of IWG to refined wheat flour resulted in a decrease in dough development time and an increase in consistency, likely because of the higher levels of fiber in IWG. The 50% IWG flour enrichment represents a good compromise between nutritional improvement and maintenance of the pasting properties, protein characteristics, and gluten aggregation kinetics. 相似文献
10.
Andreas Redl Marie Hlne Morel Joëlle Bonicel Bruno Vergnes Stephane Guilbert 《Cereal Chemistry》1999,76(3):361-370
Gluten-glycerol dough was extruded under a variety of processing conditions using a corotating self-wiping twin-screw extruder. Influence of feed rate, screw speed, and barrel temperature on processing parameters (die pressure, product temperature, residence time, specific energy) were examined. Use of flow modeling was successful for describing the evolution of the main flow parameters during processing. Rheological properties of extruded samples exhibited network-like behavior and were characterized and modeled by Cole-Cole distributions. Changes in molecular sizes of proteins during extrusion were measured by chromatography and appeared to be correlated to molecular size between network strands, as derived from the rheological properties of the materials obtained. Depending on operating conditions, extrudates presented very different surface aspects, ranging from very smooth-surfaced extrudates with high swell to completely broken extrudates. The results indicated that extrudate breakup was caused by increasing network density, and some gliadins may have acted as cross-linking agents. Increasing network density resulted in decreasing mobility of polymeric chains, and “protein melt” may no longer have been able to support the strain experienced during extrusion through the die. Increasing network density was reflected in increased plateau modulus and molecular size of protein aggregates. Increasing network structure appeared to be induced by the severity of the thermomechanical treatment, as indicated by specific mechanical energy input and maximum temperature reached. 相似文献
11.
A unique wheat genotype carrying waxy‐type allelic composition at the Wx loci, Gunji‐1, was developed, and its starch properties were evaluated in comparison to parental waxy and wild‐type wheat varieties. Gunji‐1 was null in all three of the Wx genes but exhibited a lower level of Wx proteins than the wild‐type. Starch amylose content and cold water retention capacity were 10.1 and 70.5% for Gunji‐1, 4.2 and 76.6% for waxy, and 27.9 and 65.0% for wild‐type, respectively. No significant differences were observed in microstructure, granule size distribution, and X‐ray diffractograms of the starch granules isolated from Gunji‐1 compared with those of waxy and wild‐type wheat varieties. Starch pasting peak, breakdown, and setback viscosities and peak temperature of Gunji‐1 were intermediate between waxy and wild‐type wheat. In starch gel hardness, Gunji‐1 (1.1 N) was more similar to waxy wheat (0.5 N) than to the wild‐type variety (17.6 N). Swelling power, swelling volume, paste transmittance during storage, and gelatinization enthalpy of Gunji‐1 were lower than those of waxy wheat but greater than those of wild‐type wheat. Retrogradation of starch stored for one week at 4°C expressed with DSC endothermic enthalpy was absent in the waxy wheat variety, whereas Gunji‐1 exhibited both retrogradation of amylopectin and amylose‐lipid complex melting similar to the wild‐type parent, even though enthalpies of Gunji‐1 were much smaller than the wild‐type parent. 相似文献
12.
13.
Wheat preprocessing technology produces a bran fraction rich in both soluble (8.5%) and insoluble (29.2%) fibers. The fraction, prepared by the Tkac and Timm commercial process, contained 9% alkaline extractable nonstarch polysaccharides (NSP). Conditions for extraction of NSP were chosen on the basis of both yield and molecular size of product. The extracted NSP was composed of an arabinoxylan and a mixed linkage(1→3)(1→4)-β-d -glucan. The NSP differed from previously reported wheat pentosans by exhibiting shear-thinning flow behavior at low concentration in water (0.5%, 25°C) and, more importantly, forming a thermally reversible gel upon cooling at 4°C. This unique gelling property is neither the commonly described irreversible gelation brought about by oxidation of wheat endosperm pentosans nor a characteristic property of cereal β-glucan. The low degree of substitution of the xylan chain of the arabinoxylan (xylose-to-arabinose ratio = 3) in this NSP might be responsible for the rheo-logical behavior. 相似文献
14.
Charmaine I. Clarke Tilman J. Schober Peter Dockery Kathleen O'Sullivan Elke K. Arendt 《Cereal Chemistry》2004,81(3):409-417
The fundamental rheological characteristics of a biologically acidified, a chemically acidified, and a neutral preferment (sourdough) were monitored over the course of a 24‐hr fermentation period using a split‐plot design. Three doughs were subsequently prepared in which 20% of the flour was in the form of the respective preferment. A control dough containing no fermented material was also prepared. The fundamental rheological properties of both the dough and its isolated wet gluten were determined. Laser‐scanning confocal microscopy was used to capture images of selected preferments and doughs. Results from the preferment showed that there was a decrease in elasticity (phase angle data from oscillatory measurements and relative recovery values from creep tests) and viscosity with fermentation time for all three preferments, all of which reached similar end values for these parameters. The microscopy images illustrated that the gluten strands were dissolved to a more amorphous structure during the fermentation period. Changes in the nature of the preferments were reflected in the rheological characteristics of the respective doughs and their wet glutens, which were significantly less elastic (phase angle and relative recovery data) and softer (maximum creep compliance) than the control treatment. It is concluded that degrading processes over time are key to the sourdough process. 相似文献
15.
Naofumi Morita Tomoko Maeda Megumi Miyazaki Makoto Yamamori Hideho Miura Ichiro Ohtsuka 《Cereal Chemistry》2002,79(4):491-495
The dough properties and baking qualities of a novel high‐amylose wheat flour (HAWF) and a waxy wheat flour (WWF) (both Triticum aestivum L.) were investigated by comparing them with common wheat flours. HAWF and WWF had more dietary fiber than Chinese Spring flour (CSF), a nonwaxy wheat flour. Also, HAWF contained larger amounts of lipids and proteins than WWF and CSF. There were significant differences in the amylose and amylopectin contents among all samples tested. Farinograph data showed water absorptions of HAWF and WWF were significantly higher than that of CSF, and both flours showed poorer flour qualities than CSF. The dough of WWF was weaker and less stable than that of CSF, whereas HAWF produced a harder and more viscous dough than CSF. Differential scanning calorimetry data showed that starch in HAWF dough gelatinized at a lower temperature in the baking process than the starches in doughs of WWF and CSF. The starch in a WWF suspension had a larger enthalpy of gelatinization than those in HAWF and CSF suspensions. Amylograph data showed that the WWF starch gelatinized faster and had a higher viscosity than that in CSF. The loaves made from WWF and CSF were significantly larger than the loaves made from HAWF. However, the appearance of bread baked with WWF and HAWF was inferior to the appearance of bread baked with CSF. Bread made with WWF became softer than the bread made with CSF after storage, and reheating was more effective in refreshing WWF bread than CSF bread. Moreover, clear differences in dough and bread samples were revealed by scanning electron microscopy. These differences might have some effect on dough and baking qualities. 相似文献
16.
Starch and gluten were isolated from 10 wheat cultivars or lines with varied amylose content. The rheological properties of 30% wheat flour gel, starch gel, and the gel of isolated gluten mixed with common starch were determined in dynamic mechanical testing under shear deformation, creep‐recovery, and compression tests under uniaxial compression. Variation of wheat samples measured as storage shear modulus (G′), loss shear modulus (G″), and loss tangent (tan δ = G″/G′) was similar between flour and starch gels and correlated significantly between flour and starch gel. The proportion of acetic acid soluble glutenin exhibited a significant relationship with tan δ of gluten‐starch mixture gel. The small difference in amylose content strongly affected the rheological parameters of flour gels in creep‐recovery measurement. Wheat flour gel with lower amylose content showed higher creep and recovery compliance that corresponded to the trend in starch gel. Compressive force of flour gel at 50 and 95% strain correlated significantly with that of starch gel. Gel mixed with the isolated gluten from waxy wheat lines appeared to have a weaker gel structure in dynamic viscoelasticity, creep‐recovery, and compression tests. Starch properties of were primarily responsible for rheological changes in wheat flour gel. 相似文献
17.
Shouchen Sun Beverley M. Watts Odean M. Lukow Susan D. Arntfield 《Cereal Chemistry》2006,83(4):340-347
This research investigated the effects of micronization, at different moisture levels, on the chemical and rheological properties of wheat. A set of tests designed to analyze protein fraction characteristics and rheological behaviors were conducted on samples from four wheat cultivars (AC Karma, AC Barrie, Glenlea, and Kanata). After being subjected to infrared radiation at three moisture levels (as‐is, 16%, and 22%), the seeds were milled to produce straight‐grade flour. The protein fractionation test revealed significant decreases (P ≤ 0.01) in both monomeric proteins (from 54% of total protein in the control to 37% in the tempered micronized sample) and soluble glutenins (9.4–2.5%). There was a strong negative correlation (r = ‐0.98) between the percentages of monomeric proteins and insoluble glutenins. Total extractable proteins of micronized samples tempered to 22% moisture decreased 43.5% when compared with nonmicronized control samples using size‐exclusion HPLC (SE‐HPLC). Micronization had a significant effect on gluten properties, as seen from a decrease in water absorption (P ≤ 0.01) and dough development time (P ≤ 0.01). Results showed that micronization at 100 ± 5°C had detrimental effects on wheat flour gluten functionality, including a decrease in protein solubility and impairment of rheological properties. These phenomena could be due to the formation of both hydrophobic and disulfide bonds in wheat during micronization. 相似文献
18.
Kari M. Tronsmo Ellen Merethe Magnus Ellen Mosleth Frgestad J. David Schofield 《Cereal Chemistry》2003,80(5):575-586
The rheological properties of fresh gluten in small amplitude oscillation in shear (SAOS) and creep recovery after short application of stress was related to the hearth breadbaking performance of wheat flours using the multivariate statistics partial least squares (PLS) regression. The picture was completed by dough mixing and extensional properties, flour protein size distribution determined by SE‐HPLC, and high molecular weight glutenin subunit (HMW‐GS) composition. The sample set comprised 20 wheat cultivars grown at two different levels of nitrogen fertilizer in one location. Flours yielding stiffer and more elastic glutens, with higher elastic and viscous moduli (G′ and G″) and lower tan δ values in SAOS, gave doughs that were better able to retain their shape during proving and baking, resulting in breads of high form ratios. Creep recovery measurements after short application of stress showed that glutens from flours of good breadmaking quality had high relative elastic recovery. The nitrogen fertilizer level affected the protein size distribution by an increase in monomeric proteins (gliadins), which gave glutens of higher tan δ and flatter bread loaves (lower form ratio). 相似文献
19.
The effects of oxido-reductants on the rheological properties of wheat flour dough were evaluated by using a capillary rheometer and an oscillatory rheometer at three temperatures. The oxidants potassium iodate (KIO3) and l -ascorbic acid (l -AA) significantly increased the apparent viscosity and G′ and decreased loss tangent at low temperatures of 30 and 60°C due to enhanced formation of disulfide bonds. The reductant glutathione (GSH) had the opposite effect. Heating caused the gelatinization of starch, which diminished the effects of the oxido-reductants and produced doughs with similar rheological properties at 80°C. The correlation between dough rheology and characteristics of extruded noodles was also studied. 相似文献
20.
Starches from eight soft wheat samples (two parent lines and six offspring) were isolated; relationships between their structures and properties were examined. Branch chain‐length distributions of amylopectins were determined by using high‐performance anion exchange chromatography equipped with an amyloglucosidase reactor and a pulsed amperometric detector (HPAEC‐ENZ‐PAD). Results showed that the average chain length of the eight samples varied at DP 25.6–26.9. Starch samples of lines 02, 60, 63, 95, and 114 consisted of amylopectins with more long chains (DP ≥ 37) and longer average chain length (DP 26.2–26.9) than that of other samples. These starch samples of longer branch chain length displayed higher gelatinization temperatures (55.3–56.5°C) than that of other samples (54.4–54.9°C) and higher peak viscosity (110–131 RVU) and lower pasting temperature (86.3–87.6°C) than others (83–100 RVU and 88.2–88.9°C, respectively). The Mw of amylopectins, determined by using high‐performance size exclusion chromatography equipped with multiangle laser‐light scattering and refractive index detectors (HPSEC‐MALLS‐RI), were similar for all samples (6.17 × 108 to 6.97 × 108). There were no significant differences in amylose and phosphorus contents between samples. These results indicated that physical properties of wheat starch were affected by the branch‐chain length of amylopectin. 相似文献