首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gluten‐free breads, which are composed of gluten‐free flours, starch, and hydrocolloids, differ from wheat and rye breads in relation to texture, volume, and crumb structure. Moreover, the dietary fiber content is lower compared with wheat or rye breads. Cereal isolates of lactic acid bacteria frequently produce oligo‐ and homopolysaccharides from sucrose, which can improve the nutritional and technological properties of gluten‐free breads as prebiotic carbohydrates and hydrocolloids, respectively. Sorghum sourdough was fermented with Lactobacillus reuteri LTH5448 or Weissella cibaria 10M, which synthesize fructooligosaccharides (FOS) and levan, and isomaltooligosaccharides and dextran, respectively. The gluten‐free bread was produced with 14% sourdough addition. L. reuteri LTH5448 formed FOS and 1.5 g of levan/kg DM in quinoa sourdoughs. FOS were digested by the baker's yeast during proofing, and the levan could be qualitatively detected in the bread. W. cibaria 10M produced >60 g of isomaltooligosaccharides/kg DM and 0.6 g of dextran/kg DM, which could still be detected in the bread. Breads prepared with W. cibaria 10M were less firm compared with breads prepared with L. reuteri LTH5448 or a FOS and levan‐negative mutant of L. reuteri LTH5448. The addition of sourdoughs fermented with oligo‐ and polysaccharide forming starter cultures can increase the content of prebiotic oligosaccharides in gluten‐free breads.  相似文献   

2.
The objective of this study was to test whether sourdough could improve quality and delay staling of gluten-free (GF) bread. Three strains of lactic acid bacteria used were Lactobacillus plantarum 2115KW, L. plantarum FST 1.11, and L. sanfranciscensis TMW 1.52, and these were subsequently compared with nonacidified control and chemically acidified sourdoughs, batters, and GF breads. Bread characteristics such as pH, total titratable acidity, and crumb hardness (five-day storage) were evaluated. Extrusion (texture analyzer) measurements showed that the sourdoughs became significantly softer during 24 hr of fermentation (P < 0.001). Both LP 2115KW and LP FST 1.11 strains grew better and produced more acid than LS 1.52. Confocal laser-scanning microscopy also revealed a breakdown in the structure of the sourdoughs over time. Crumb hardness increased significantly for all breads (P < 0.05). After five days of storage, two strains yielded significantly softer bread than the nonacidified control (P < 0.05). This was in distinct contrast to the chemically acidified control that at day 5 was significantly firmer than all other breads (P < 0.05). It was concluded that sourdough improves the delay in staling of GF bread, although the positive effects were smaller than those found in wheat bread.  相似文献   

3.
4.
Flours obtained by a specific polishing process were used to prepare sourdough and bread. Three fractions designated C‐1 (100–90%), C‐5 (60–50%), and C‐8 (30–0%) were studied. The pH, total titratable acidity levels, and buffering capacity of sourdoughs made from polished flours were significantly different from those of the control sourdough with No. 1 Canada Western Red Spring (CW), and they provided sourdough breads with better qualities than that of CW. The growth of lactic acid bacteria and yeast in polished flour sourdoughs were significantly accelerated during fermentation over that in CW sourdough. Higher maturation of polished flour sourdoughs softened the hardness of mixed dough. The intricate network of honeycomb structure gluten and uneven surface of starch granules were distinctly observed in SEM images. Substitutions of C‐5 or C‐8 sourdoughs for CW significantly increased the loaf volume and softened breadcrumbs more than CW sourdough. Flour qualities of polished flours such as suitable acidity and good buffering capacity caused by the bran fraction were effective for better growth and longer life of yeast in the dough during fermentation. Therefore, application of polished flours in sourdough bread would improve rheological properties of dough and bread as compared with CW sourdough.  相似文献   

5.
We compared the effects of spontaneous fermentation of the bran fraction and fermentation with added yeast or added yeast and lactic acid bacteria (Lactobacillus brevis) on the quality of wheat bread supplemented with bran. Prefermentation of wheat bran with yeast or with yeast and lactic acid bacteria improved the loaf volume, crumb structure, and shelf life of bread supplemented with bran. The bread also had added flavor and good and homogenous crumb structure. Elasticity of the crumb was excellent. Spontaneous fermentation of the bran fraction did not have the same positive effects on bread quality. The microstructure of the breads was characterized by light microscopy. The positive effect of fermentation of bran on bread quality was evident when comparing the well‐developed protein network structure of the breads baked with fermented bran with the control bread. Prefermentation of the bran with yeast and lactic acid bacteria had the greatest effect on the structure of starch. The starch granules were more swollen and gelatinized in the breads made with prefermented bran. The pretreatments of the bran fraction had no detectable effect on the microstructure of the cell wall particles in the test breads.  相似文献   

6.
Free asparagine is an important precursor for acrylamide in cereal products. The content of free asparagine was determined in 11 milling fractions from wheat and rye. Whole grain wheat flour contained 0.5 g/kg and whole grain rye flour 1.1 g/kg. The lowest content was found in sifted wheat flour (0.2 g/kg). Wheat germ had the highest content (4.9 g/kg). Fermentation (baker's yeast or baker's yeast and sourdough) of doughs made with the different milling fractions was performed to investigate whether the content of free asparagine was reduced by this process. In general, most of the asparagine was utilized after 2 hr of fermentation with yeast. Sourdough fermentation, on the other hand, did not reduce the content of free asparagineas efficiently but had a strong negative impact on asparagine utilization by yeast. This indicates that this type of fermentation may result in breads with higher acrylamide content than in breads fermented with yeast only. The effect of fermentation time on acrylamide formation inyeast‐leavened bread was studied in a model system. Doughs (sifted wheat flour with whole grain wheat flour or rye bran) were fermented for a short (15+15 min) or a long time (180+180 min). Compared with short fermentation time, longer fermentation reduced acrylamide content in bread made with whole grain wheat 87%. For breads made with rye bran, the corresponding reduction was 77%. Hence, extensive fermentation with yeast may be one possible way to reduce acrylamide content in bread.  相似文献   

7.
Investigations were made to test the effect of two different sourdough starter culture types on wheat dough and bread quality. Two single‐strain starter cultures consisting of well‐defined strains of lactic acid bacteria (Lactobacillus plantarum, L. brevis) and a traditional mixed‐strain sourdough culture (containing L. crispatus, L. pontis, and Saccharomyces cerevisiae) were evaluated for their effects on the rheological characteristics of wheat dough using both fundamental rheological and standard baking tests. Two other doughs were also evaluated, one which was chemically acidified to a comparable pH value by the addition of lactic acid, and a control which was not acidified. Dynamic oscillation tests were performed using a controlled stress rheometer. The phase angle and the absolute value of the complex dynamic modulus were measured for all doughs at frequencies of 0.1–10 Hz. The addition of sourdough prepared using single‐strain or mixed‐strain cultures significantly increased the phase angle and reduced the complex modulus of the doughs at all frequencies (P < 0.05). Significant differences were found between the dough which was chemically acidified and those doughs which were biologically acidified. The addition of sourdough effected an increase in loaf specific volume relative to both the chemically acidified and the nonacidified doughs.  相似文献   

8.
The effect of various sourdoughs and additives on bread firmness and staling was studied. Compared to the bread produced with Saccharomyces cerevisiae 141, the chemical acidification of dough fermented by S. cerevisiae 141 or the use of sourdoughs increased the volume of the breads. Only sourdough fermentation was effective in delaying starch retrogradation. The effect depended on the level of acidification and on the lactic acid bacteria strain. The effect of sourdough made of S. cerevisiae 141-Lactobacillus sanfranciscensis 57-Lactobacillus plantarum 13 was improved when fungal alpha-amylase or amylolytic strains such as L. amylovorus CNBL1008 or engineered L. sanfranciscensis CB1 Amy were added. When pentosans or pentosans, endoxylanase enzyme, and L. hilgardii S32 were added to the same sourdough, a greater delay of the bread firmness and staling was found. When pentosans were in part hydrolyzed by the endoxylanase enzyme, the bread also had the highest titratable acidity, due to the fermentation of pentoses by L. hilgardii S32. The addition of the bacterial protease to the sourdough increased the bread firmness and staling.  相似文献   

9.
《Cereal Chemistry》2017,94(6):991-1000
Wheat, an important crop in North Dakota and the United States, is often used for bread. Health concerns related to chronic diseases have caused a shift toward consumption of whole wheat bread. There has been some indication that the rate and amount of starch digestibility of whole wheat breads may be lower than for their refined flour counterparts. This research investigated the components of whole wheat bread that may reduce starch digestibility and impact nutritional quality. Six formulations of flour were used, which included two refined flours, two whole wheat flours, and two whole wheat flours with added starch. The starch was added to whole wheat flours to increase the starch level to that of the refined flour so that we can determine whether or not the dilution of the starch in whole wheat bread was a factor in lowering the estimated glycemic index (eGI) of whole wheat bread. White and whole wheat flours and breads were evaluated for chemical composition, baking quality by 1 , and eGI by the Englyst assay. Whole wheat breads had significantly (P < 0.05) higher mineral, protein, arabinoxylan, and phenolic acid contents, as well as significantly (P < 0.05) lower eGI. The starch molecular weight was also significantly (P < 0.05) higher for whole wheat and whole wheat + starch breads compared with white breads. The eGIs of refined flour breads were 93.1 and 92.7, whereas the eGIs of whole wheat and whole wheat + starch breads ranged from 83.5 to 85.1. Overall, several factors in the whole wheat bread composition can be found to affect the quality and starch hydrolysis.  相似文献   

10.
The effect of baking method on folates of rye and wheat breads, as well as the effect of sourdough fermentation of rye, were examined. Sourdough fermentations were performed both with and without added yeast, and samples were taken throughout the baking process. Samples were analyzed microbiologically for their total folate content after trienzyme extraction. Individual folate vitamers were determined by HPLC after affinity chromatographic purification. The lowest folate contents for both rye and wheat breads were found from breads baked without added yeast. Total folate content increased considerably during sourdough fermentation due to increased amounts of 10‐HCO‐H2folate, 5‐CH3‐H4folate, and 5‐HCO‐H4folate. Baker's yeast contributed markedly to the final folate content of bread by synthesizing folates during fermentation. Proofing did not influence total folate content but changes in vitamer distribution were observed. Folate losses in baking were ≈25%. The variety of sourdoughs and baking processes obviously lead to great variation in folate content of rye breads. The possibilities to enhance natural folate content of rye bread by improving folate retention in technological processes and by screening and combining suitable yeasts and lactic acid bacteria should be further investigated.  相似文献   

11.
This research investigated the impact of semolina dough formulation (percentage of sourdough [SD] addition and presence of yeast [Y] or common wheat gluten [G]) added singly and in combination on the sensory and physicochemical profiles of fresh and stored sourdough‐started durum breads, particularly Moddizzosu type. Main distinctive features of breads were identified, and optimal amounts of SD addition in presence of either yeast or gluten were used to achieve high‐quality fresh and stored soured durum breads made with semolina and remilled semolina at a ratio of 80:20. Common features of durum breads included color parameters and crumb grain characteristics of either fresh or stored samples. Increasing SD significantly increased scores for overall acceptability. In yeasted costarted samples, a linear promotion of both aroma and taste intensity resulted from increasing amounts of SD, whereas the opposite trend was observed for unyeasted breads. Higher values for degree of acidification, specific volume, crumb cohesiveness, resilience, and springiness but lower pH, moisture content, crumb hardness, and chewiness in durum samples were achieved with increased SD. The presence of Y counteracted acidification, harmonized volume increase, hardness, cohesiveness, springiness, and resilience, minimizing the effects of the SD added. Y and G acting singly as crumb softeners when added together to soured durum breads started with SD at a dose >10% provided lower and slower crumb firming kinetics. Breads with especially slow retrogradation kinetics corresponded to yeasted started samples with or without added gluten, regardless the presence or absence of SD. In unyeasted soured breads, the dose of SD slightly decreased the rate and extent of amylopectin retrogradation, irrespective of gluten addition.  相似文献   

12.
为促进大豆副产物资源利用,开发新型营养面制品,本试验以豆渣为原料,利用柠檬明串珠菌E12为发酵剂制作豆渣酸面团,探究不同豆渣酸面团添加量(0%、20%、30%和40%)对馒头面团(对应编号分别为S0、S20、S30和S40)发酵活力、动态流变特性、抗氧化特性以及膳食纤维含量的影响,并研究豆渣酸面团馒头(对应编号分别为CS0、CS20、CS30和CS40)的感官品质,以及在贮藏期间馒头质构和水分含量的变化。结果表明,添加豆渣酸面团会降低馒头面团的弹性、黏性和综合黏弹性。馒头面团的抗氧化特性以及膳食纤维含量随着豆渣酸面团添加量的增加而显著增加;当添加量为40%时,S40馒头面团的1,1-二苯基-2-三硝基苯肼(DPPH)自由基清除率和2,2-联氮-二(3-乙基-苯并噻唑-6-磺酸)二铵盐(ABTS)自由基清除率分别达到15.61%和79.59%,比S0增加了5.10和15.02个百分点,总膳食纤维含量达到3.91 g·100g-1,比S0增加了138.79%。豆渣酸面团的添加量为20%时,CS20馒头的比容和延展率与CS0相比无显著差异,但对馒头的外观、色泽、风味和口感产生了积极影响,整体可接受度达到7.8。在贮藏5 d后,CS0的硬度、咀嚼性和胶着性分别增加了180.85%、69.62%和98.08%,而CS40分别增加了76.19%、30.88%和33.96%,与CS0相比增加量显著减小,且在贮藏期间CS40的水分含量始终高于CS0,表明豆渣酸面团有利于减缓馒头的老化。本研究为实现豆渣资源的合理化应用以及新型营养的酸面团产品开发提供了一定的理论基础。  相似文献   

13.
《Cereal Chemistry》2017,94(6):922-927
The degradation of inositol hexakisphosphate (IP6) was evaluated in whole meal wheat dough fermented with baker's yeast without phytase activity, different strains of Saccharomyces cerevisiae (L1.12 or L6.06), or Pichia kudriavzevii with extracellular phytase activity to see if the degradation of IP6 in whole meal dough and the corresponding bread could be increased by fermentation with phytase‐active yeasts. The IP6 degradation was measured after the dough was mixed for 19 min, after the completion of fermentation, and in bread after baking. Around 60–70% of the initial value of IP6 in the flour (10.02 mg/g) was reduced in the dough already after mixing, and additionally 10–20% was reduced after fermentation. The highest degradation of IP6 was seen in dough fermented with the phytase‐active yeast strains S. cerevisiae L1.12 and P. kudriavzevii L3.04. Activity of wheat phytase in whole meal wheat dough seems to be the primary source of phytate degradation, and the degradation is considerably higher in this study with a mixing time of 19 min compared with earlier studies. The additional degradation of IP6 by phytase‐active yeasts was not related to their extracellular phytase activities, suggesting that phytases from the yeasts are inhibited differently. Therefore, the highest degradation of IP6 and expected highest mineral bioavailability in whole meal wheat bread can be achieved by use of a phytase‐active yeast strain with less inhibition. The strain S. cerevisiae L1.12 is suitable for this because it was the most effective yeast strain in reducing the amount of IP6 in dough during a short fermentation time.  相似文献   

14.
A. Amr  R. Ajo 《Cereal Chemistry》2005,82(5):499-503
Two types of flat bread (thin and thick) were produced from straight‐grade flour by the traditional straight dough (SD) and sponge and dough (SPD) methods using 50 and 60% sponges. Quality of the resulting bread was evaluated with respect to specific volume, crumb distribution between layers, moisture content, overall sensory quality, and rate of staling. The results showed that the method of production has a significant effect (P < 0.05) on the specific volume of the crumb‐rich thick flat bread but not on the almost crumb‐free thin type. The study showed that breads produced with the SPD method were superior to those produced by the SD method with respect to their overall quality and resistance to staling, and that using 50% sponge gave bread with superior overall sensory quality to that obtained using 60% sponge. The results indicate that the Structograph can be used to follow the staling of these breads. Nonetheless, using the SPD method has some drawbacks, mainly longer fermentation time, and more space, mixing, and labor requirements that are expected to limit its use in commercial production of flat bread types.  相似文献   

15.
The influence of fermentation temperatures (8, 16, and 32°C) and yeast levels (2, 4, and 6%) on the formation of volatile compounds in the crumb of whole‐meal wheat bread was investigated. Volatile compounds were extracted by dynamic headspace extraction and analyzed by gas chromatography–mass spectrometry. Results were evaluated with multivariate data analysis and ANOVA. Bread fermented at a high temperature (32°C) had higher peak areas of the Maillard reaction products 2‐furancarboxaldehyde, 2‐acetylfuran, 2‐methylpyrazine, and phenylacetaldehyde compared with bread fermented at lower fermentation temperatures. Bread fermented at low temperatures (8 and 16°C) was characterized by having higher peak areas of the fermentation products 3‐methylbutanal, 2‐methylbutanal, ethyl acetate, ethyl hexanoate, ethyl propanoate, and 3‐methylbutanol. Fermentation of bread with 6% yeast resulted in a higher peak area of the important fermentation product 2‐phenylethanol. It also reduced the peak areas of important lipid oxidation products. The peak area of 2,3‐butanedione was also relatively higher in bread fermented with 6% yeast compared with lower yeast levels; however, an interaction was seen between the high yeast level and all three fermentation temperatures. In contrast, fermentation with a low yeast level (2%) resulted in bread with relatively higher peak areas of 2‐ and 3‐methylbutanal, as well as (E)‐2‐nonenal and (E,E)‐2,4‐decadienal, which are important lipid oxidation compounds in bread.  相似文献   

16.
The aim of this work was to study the influence of process parameters and the starter culture on the characteristics of wheat sourdough by using response surface methodology. Influence of fermentation temperature (16–32°C), ash content of flour (0.6–1.8%), and fermentation time (6–20 hr) were considered as independent factors and their effects were studied in sourdough fermented with Lactobacillus plantarum, L. brevis, Saccharomyces cerevisiae, or with a combination of yeast and lactic acid bacteria. Formation of acidity, free amino acids, and volatile compounds were considered the main responses. A possibility to enhance formation of potential flavor compounds and precursors without excessive acidity formation in wheat sourdoughs was established. The total amount of amino acids increased by 25–50%, depending on the strain and fermentation conditions. The total amount of volatile compounds increased seven‐ to 100‐fold, depending on the strain and fermentation conditions. Sourdough started with S. cerevisiae was an effective way to optimize the amount of volatile compounds without excessive acidity formation in appropriate processing conditions. Ash content of flour and fermentation time were the most significant factors to modify metabolic activity of wheat sourdoughs. Frequent interactions between the studied factors were observed on the formation of acidity, amino acids, and volatile compounds with most of the strains studied. Possibility to improve current industrial fermentation processes and control flavor attributes of breads by using optimized sourdough was established.  相似文献   

17.
18.
The amino acid release was determined in wheat doughs supplied with salt, acid, dithiothreitol, or starter cultures to evaluate the relevance of the amino acid concentration on bread flavor. Wheat flour proteinases almost linearly released amino acids and the highest activity of wheat flour proteinases was found in acidified and reduced doughs. The effects of starter cultures on amino acid concentrations depended on their composition. Yeasts exhibited a high demand for amino acids, however, the total amino acid concentrations were not markedly affected by lactic acid bacteria. The individual amino acid contents were determined by the pH during fermentation and microbial metabolism. The formation of proline was favored by values higher than pH 5.5, whereas release of phenylalanine, leucine and cysteine mainly occurred at lower pH. Ornithine was found only in doughs fermented with Lactobacillus pontis. To determine effects of the amino acid concentration on bread aroma, fermented doughs were evaluated in baking experiments. An increased intensity of bread flavor was obtained by preferments prepared with lactic acid bacteria. The roasty note of wheat bread crust could be markedly enhanced by L. pontis. This results support the assumption that flavor of wheat bread is enhanced by increasing the concentration of free amino acids and especially ornithine in dough.  相似文献   

19.
One of the main problems associated with gluten‐free bread is obtaining a good structure. Transglutaminase (TGase), an enzyme that catalyzes acyl‐transfer reactions through which proteins can be cross‐linked could be a way to improve the structure of gluten‐free breads. The objective of this study was to evaluate the impact of TGase at different levels (0, 0.1, 1, and 10 U of TGase/g of protein) on the quality of gluten‐free bread. The recipe consisted of white rice flour (relative amount: 35), potato starch (30), corn flour (22.5), xanthan gum (1), and various protein sources (skim milk powder [SMP] [12.5], soya flour, and egg powder). The influence of the various proteins in combination with the different addition levels of TGase on bread quality (% bake loss, specific volume, color, texture, image characteristics, and total moisture) was determined. Confocal laser‐scanning microscopy (CLSM) was used to evaluate the influence of TGase on the microstructure of the bread. Baking tests showed that TGase had an effect on the specific volume of the bread. For instance, the SMP bread with 10 U of enzyme contained the most compact structure, which was reflected in the crumb texture profile analysis results (highest values) (P < 0.05), digital image analysis (highest level of cells/cm2) (P < 0.05), and CLSM micrographs (network formation). Finally, it can be concluded that it is possible to form a protein network in gluten‐free bread with the addition of TGase. However the efficiency of the enzyme is dependent on both the protein source and the level of enzyme concentration.  相似文献   

20.
A detailed analysis was developed, focused on the neutral lipids (NL) in free (FL), bound (BL), and starch lipid (SL) extracts of maize and rye flours, sourdough, and broa (a traditional bread manufactured in Portugal). Selective sequential extraction of said lipids with hexane at 20°C, water‐saturated n‐butanol at 20°C, and n‐propanol‐water (3:1, v/v) at 100°C was performed to clean the lipid extracts from extraneous impurities, and isolation thereof from glyco‐ and phospholipids was by solid phase extraction of NL; these classes were then quantitatively assayed by HPLC, using evaporative light scattering detection, with calibration curves prepared with standard mixtures of NL. The BL and SL contents in the original flours increased and that of FL decreased throughout the fermentation and baking processes. The dominant NL class was not the same in all lipid extracts; the highest concentrations of triacylglycerols and the lowest concentrations of free fatty acids were detected in FL—with the former accounting for 82, 76, and 71% of the total FL in flours, sourdough, and bread, respectively. Triacylglycerols and free fatty acids also accounted for the highest concentrations found in BL: these, together with diacylglycerols, contributed up to 84% of the total neutral BL. High levels of free fatty acids and low levels of the remaining NL classes were typically found in SL: free fatty acids, triacylglycerols, sterol esters, and diacylglycerols accounted for ≈90% of the total SL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号