首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Histopathological assessment of infection by the crown rot pathogen Fusarium pseudograminearum in wheat seedling tissues was performed using fluorescence microscopy. The coleoptiles and leaf sheaths of four host cultivars of differing susceptibility were examined. Leaf sheaths were most frequently penetrated via stomata, indicated by initial lesions forming at the guard cells. Internally, cell wall penetration was facilitated by penetration structures which appeared as hyphal swellings or septate foot‐shaped appressoria. Colonization of leaf sheaths resulted in the re‐emergence of hyphae from stomata on both surfaces of the sheath. These hyphae are hypothesized to have two major roles; first as exploratory hyphae for colonization of new tissues, and secondly as sites of profuse conidial production. The formation of conidia on the leaf sheath surface was only recorded on the most susceptible bread wheat genotype. No other major differences in host–pathogen interactions were observed among these cultivars. Almost all cell types in the leaf sheath tissues were extensively colonized, except for the vascular bundles and silica cells. This investigation provides the first comprehensive assessment of F. pseudograminearum infection structures and growth patterns during the infection of wheat seedlings.  相似文献   

2.
核盘菌侵入油菜超微结构及侵染机制的研究   总被引:8,自引:0,他引:8  
杨谦 《植物病理学报》1994,24(3):245-249
 通过电子显微镜观察核盘菌在油菜叶片上侵染过程,发现该菌首先在叶片上形成复合附着器。每个分枝末端一般生出一个侵染钉。侵染钉侵入叶表面腊质、角质层和表皮细胞壁时.不仅靠附着器产生的压力,而且供助于酶对寄主表面的软化、消解作用。该菌通过角质层和表皮细胞壁侵入油菜叶片,尚未发现通过气孔侵入的现象。侵入叶片后,该菌的继续生长,导致了油菜组织的溃烂。然后菌丝在腐烂的叶片上集结形成菌核。  相似文献   

3.
 为明确一种新的香蕉(Musa sapientum)细菌性叶斑病病原菌,以云南省新平县香蕉园区发现的一种新病害为供试材料,通过分离培养、形态观察、致病性测定、生理生化试验和gyrB,16S rDNA 和 rpoB基因片段分析,对病原菌进行了鉴定。该病由克雷伯氏肺炎球菌肺炎亚种(Klebsiella pneumoniae subsp. pneumoniae)引起,病菌可侵染香蕉叶片、假茎和果实。茎干被病原菌侵入3 d后即可出现黑色小斑点,在接种部位附近呈上下方向蔓延趋势,7 d后茎干上出现大面积棕色坏死,内部组织褐变。本文在世界上首次报道克雷伯氏肺炎球菌肺炎亚种可侵染香蕉植株,引起香蕉细菌性叶斑病。  相似文献   

4.
 本文报道了通过微分干涉衬显微镜、荧光显微镜及扫描电镜和透射电镜所观察到的菜豆锈菌的侵入和扩展过程。菜豆锈菌夏孢子萌发多产生1个芽管,偶尔也产生双芽管。芽管以气孔侵入为主,也可从表皮直接侵入。侵入前形成或不形成明显的附着胞。气孔侵入的芽管首先在气孔腔内形成气孔下囊,再进一步分化出圆形的膨大体,由膨大体产生1~2支初生菌丝。初生菌丝与叶肉细胞壁接触后分化出吸器母细胞,吸器母细胞进入叶肉细胞内部形成吸器。初生侵染菌丝在产生吸器母细胞的部位的后部产生分枝,形成次生侵染菌丝在叶肉细胞间蔓延。  相似文献   

5.
嘧菌酯对扁豆纹枯病的物理作用方式及其生物动力学特性   总被引:2,自引:0,他引:2  
以多菌灵和福美双为对照药剂,测定了嘧菌酯对立枯丝核菌Rhizoctonia solani的抑制活性,并用离体叶片法测定了嘧菌酯对该病原菌引起的扁豆纹枯病的物理作用方式及其生物动力学特性。嘧菌酯、多菌灵和福美双对立枯丝核菌菌丝生长的EC50值分别为0.072 4、1.134 4和1.202 6 μg/mL。施药后立即接种, 250 μg /mL嘧菌酯、500 μg /mL多菌灵和1 000 μg /mL福美双对扁豆纹枯病的保护效果分别为95.61%、99.88%和81.45%;施药3 d后再接种,嘧菌酯、多菌灵和福美双对扁豆纹枯病的保护效果分别为92.27%、100%和46.96%;接种36 h后再施药,3种药剂对扁豆纹枯病的治疗效果分别为90.40%、95.75%和61.94%。表明嘧菌酯对扁豆纹枯病具有很好的保护作用、持效性和治疗作用。在叶片基部施药后在顶部接种,嘧菌酯、多菌灵和福美双对扁豆纹枯病的防治效果分别为87.81%、42.09%和7.24%;在叶片背面施药后在正面接种,3种药剂对扁豆纹枯病的保护效果分别为87.30%、37.00%和16.15%。表明嘧菌酯在扁豆叶片中具有很好的木质部输导和跨层转移活性。  相似文献   

6.
The formation of lesions on ray florets of gerbera flowers caused by single conidia ofBotrytis cinerea was studied in two cultivars infected by two isolates of the pathogen. No differences in reaction after inoculation with conidia of either isolate were seen on either cultivar. The conidia produced usually one germ tube not longer than 10 m, but conidia with five germ tubes were also seen. Direct penetration of germ tubes through the upper cuticle of ray florets was observed. No appressoria or other specialised structures were observed before penetration, and degradation of the cuticle did not occur. Germination of conidia and subsequent flower infection was dependent on the availability of free water, but not on the addition of external nutrients.Between 18 to 25°C, fungal development usually stopped after cuticle penetration, two to four cells around the site of penetration becoming necrotic. This number did not increase when inoculated flowers were subsequently placed at 4°C, conditions conductive for the formation of spreading lesions. When flowers were incubated constantly at 4°C, lesions became visible 3 days after inoculation as a group of 10 to 14 cells. Initially from a vesicle-like structure, mycelium spread subcuticularly or in the lumen of epidermal cells resulting in the death of 40 to 50 cells at 18 days after inoculation. Ungerminated conidia and conidial germlings which has not yet penetrated the cuticle did not cause any visible symptoms in underlying epidermal cells.  相似文献   

7.
立枯丝核菌侵染玉米的研究   总被引:7,自引:0,他引:7  
 用获自水稻及玉米的立枯丝核菌(Rhizoctonia solani Khn) AG-11A接种玉米发生典型纹枯症状,其致病力显著强于AG-4。玉米拔节期,上位叶鞘抗性较强,抽雄及抽丝期抗性减弱,下位叶鞘无论在拔节期或抽雄、抽丝期,均较上位叶鞘感病。接种玉米后8小时,形成侵染垫及附着胞,从这些结构上形成侵入钉侵入,AG-4侵染上位叶鞘时,常以菌丝直接穿透表皮或从气孔侵入。在去掉菌体的叶鞘表面,发现有周边光滑或稍破损的侵入孔。接种后12小时,在叶鞘细胞中发现菌丝,它们在穿过细胞壁进入邻近细胞时,明显变细。接种后16小时,新生出的菌丝从气孔成丛出现。  相似文献   

8.
为明确苹果炭疽叶枯病病原菌围小丛壳Glomerella cingulata的侵染致病特征,在分离获得该病原菌的基础上,采用形态学观察、ITS序列分析和致病性测定对其进行了鉴定,并利用光学和扫描电子显微镜对病原菌在嘎啦苹果叶片上的侵染过程进行了研究.结果表明,在陕西咸阳地区分离获得的9株病原菌均为围小丛壳G.cingulata.25 ℃下接种9 h后,分生孢子中间产生隔膜,双胞化,并萌发产生芽管和附着胞;24 h后分生孢子的2个细胞均可萌发并形成芽管及附着胞,部分芽管顶端可产生次级分生孢子;48 h后次级分生孢子萌发形成附着胞;72 h后,附着胞下形成的侵染钉可直接入侵寄主,在表皮细胞内形成初生菌丝和次生菌丝,此时叶片表面已出现褐色斑点.接种7 d后叶片病斑处出现分生孢子盘和子囊壳.表明陕西省近年出现的苹果炭疽叶枯病病原菌为围小丛壳G.cingulata,该病菌在嘎啦叶片上的一些特殊侵染行为可能是导致该病害易在短时间内暴发的重要原因.  相似文献   

9.
Northern corn leaf blight (NCLB) caused by Setosphaeria turcica is a major foliar disease of maize. The early-stage infection events of this pathogen on maize leaves are unclear. We investigated the optimum temperature for conidial germination and appressorium formation, and characterized penetration and growth of S. turcica in maize leaf sheath and onion epidermis cells, including use of histological staining to assess plant cell viability. The results showed that the optimum temperature for conidial germination and appressorium formation was 20°C. On the maize leaf sheath, the appressoria were formed by germinated conidia, and penetration on the epidermal cells occurred at 8 h postinoculation (hpi). Round vesicles developed beneath the appressoria. Between 16 and 24 hpi, the branched invasive hyphae invaded three to five adjacent cells at most infection sites. The invasive hyphae tended to move along the cell wall and crossed from one cell to another. In the onion epidermis cells, the appressoria formed at 8 hpi, and in most cases the epidermal cells were penetrated through the juncture of the cell walls. At 16–24 hpi, the primary hyphal terminus swelled to a vesicle. The maize leaf sheath cells died at 8 hpi, whereas the onion cells did not. Our findings documented in detail the penetration and invasive hyphal growth in maize leaf sheath and onion epidermis, as well as viability of plant cells, at the early stages of infection, and provide a foundation for elucidating the underlying mechanism of S. turcica–maize interactions.  相似文献   

10.
The interaction between Stagonospora nodorum and a susceptible wheat cultivar was investigated using a range of microscopic techniques. Germination of pycnidiospores occurred approximately 3 h after making contact with the leaf surface and was followed by attempted penetration 8–12 h later. Penetration was observed through stomata and also directly through periclinal and anticlinal epidermal cell walls. Penetration down the anticlinal cell walls appeared to occur without a differentiated penetrating structure whilst structures identified as either lateral appressoria or hyphopodia were typically present when penetrating over a periclinal cell wall. Once inside the leaf, the fungus continued to grow for the next 4–5 days colonising all parts of the leaf except the vascular bundles. Only in the later phase of the infection was total host cell collapse apparent. Evidence of polyphenolic compounds was observed. The infection cycle was completed within 7 days as indicated by sporulation on the leaf surface. These results have allowed us to understand how the fungus physically interacts with the leaf and will help the overall understanding of the infection process.  相似文献   

11.
Quambalaria spp. are eucalypt leaf and shoot pathogens of growing global importance, yet virtually nothing is known regarding the manner in which they infect and colonize their hosts. A study of the infection process of Q. pitereka and Q. eucalypti on Corymbia and Eucalyptus species was thus undertaken using light, scanning and transmission electron microscopy after artificial inoculation. Conidial germination was triggered when relative humidity levels exceeded 90% and commenced within 2 h in the presence of free water. Light reduced germination but did not prevent germination from occurring. Conidial germination and hyphal growth occurred on the upper and lower leaf surfaces with penetration occurring via the stomata or wounds on the leaf surface or juvenile stems. There was no evidence of direct penetration of the host. Following penetration through the stomata, Q. pitereka and Q. eucalypti hyphae grew only intercellularly without the formation of haustoria or interaction apparatus, which is characteristic of the order Microstromatales. Instead, the presence of an interaction zone is demonstrated in this paper. Conidiophores arose through stomatal openings producing conidia 7 days after infection.  相似文献   

12.
Microsphaeropsis sp. strain P130A was evaluated for the control of tuber-borne inoculum of Rhizoctonia solani based on the viability of sclerotia produced in vitro and on both the viability and production of tuber-borne sclerotia. The interactions between the antagonist and the pathogen, as well as the effect of the toxins produced by the antagonist on mycelial growth of R. solani were studied using transmission electron microscopy. On sclerotia produced in vitro, for all incubation periods (1 to 42 days), Microsphaeropsis sp. significantly reduced germination. Percent germination of sclerotia treated with Microsphaeropsis sp. decreased with increasing incubation period from an average of 82.0% after 1 day to stabilize at an average of 5.8% after 35 days. Similarly, percent germination of tuber-borne sclerotia was significantly lower when tubers were treated with Microsphaeropsis sp. Both 2% formaldehyde and Microsphaeropsis sp. treatments significantly reduced sclerotia germination to approximately 10% after 42 days of incubation at 4 degrees C. Furthermore, on tubers treated with the antagonist, the number of sclerotia per square centimeter decreased from 1.6 to 0.5 during the 8 months of storage at 4 degrees C, whereas an increase from 1.2 to 7.8 sclerotia per square centimeter was observed on untreated tubers. Microsphaeropsis sp. (strain P130A) colonized hyphae of R. solani within 4 days after contact on culture media. Transmission electron microscopic observations showed that the antagonist induced a rupture of the pathogen plasma membrane and that a chitin-enriched matrix was deposited at sites of potential antagonist penetration. Host penetration was not associated with pathogen cell wall alterations, which occurred at the time of progress of the antagonist in the pathogen cytoplasm. In the presence of a crude extract of Microsphaeropsis sp., cells of R. solani showed cytoplasm disorganization and breakdown of plasma membranes. Antibiosis and mycoparasitism were involved in the antagonism of R. solani by Microsphaeropsis sp., but the sequence by which these events occur, as well as the significance of wall appositions produced by R. solani, is yet to be established.  相似文献   

13.
为了筛选出防治苹果炭疽叶枯病的有效杀菌剂, 采用室外先接种后施药和先施药后接种的方法, 测试了6种药剂的内吸治疗效果和8种药剂的保护效果。在病菌侵染后的72 h内使用吡唑醚菌酯, 或在病菌侵染后的24 h内使用咪鲜胺对病斑的显症有一定的治疗效果。波尔多液在喷施后18 d, 对炭疽叶枯病菌侵染的抑制效果仍达50%, 肟菌?戊唑醇、烯酰?吡唑酯和唑醚?代森联3种药剂在施药后的第11天, 其保护效果与对照仍有显著差异, 持效期达11 d, 代森锰锌、甲基硫菌灵、氢氧化铜和咪鲜胺4种保护剂的持效期只能维持6 d。炭疽叶枯病的防治应以波尔多液为主, 并与吡唑醚菌酯等有机杀菌剂交替使用, 有机铜制剂不能替代波尔多液。  相似文献   

14.
Experiments in controlled environments were carried out to determine the effects of temperature and leaf wetness duration on infection of oilseed rape leaves by conidia of the light leaf spot pathogen, Pyrenopeziza brassicae . Visible spore pustules developed on leaves of cv. Bristol inoculated with P. brassicae conidia at temperatures from 4 to 20°C, but not at 24°C; spore pustules developed when the leaf wetness duration after inoculation was longer than or equal to approximately 6 h at 12–20°C, 10 h at 8°C, 16 h at 6°C or 24 h at 4°C. On leaves of cvs. Capricorn or Cobra, light leaf spot symptoms developed at 8 and 16°C when the leaf wetness duration after inoculation was greater than 3 or 24 h, respectively. The latent period (the time period from inoculation to first spore pustules) of P. brassicae on cv. Bristol was, on average, approximately 10 days at 16°C when leaf wetness duration was 24 h, and increased to approximately 12 days as temperature increased to 20°C and to 26 days as temperature decreased to 4°C. At 8°C, an increase in leaf wetness duration from 10 to 72 h decreased the latent period from approximately 25 to 16 days; at 6°C, an increase in leaf wetness duration from 16 to 72 h decreased the latent period from approximately 23 to 17 days. The numbers of conidia produced were greatest at 12–16°C, and decreased as temperature decreased to 8°C or increased to 20°C. At temperatures from 8 to 20°C, an increase in leaf wetness duration from 6 to 24 h increased the production of conidia. There were linear relationships between the number of conidia produced on a leaf and the proportion of the leaf area covered by 'lesions' (both log10-transformed) at different temperatures.  相似文献   

15.
16.
Kilic-Ekici O  Yuen GY 《Phytopathology》2003,93(9):1103-1110
ABSTRACT Induced resistance was found to be a mechanism for biological control of leaf spot, caused by Bipolaris sorokiniana, in tall fescue (Festuca arundinacea) using the bacterium Lysobacter enzymogenes strain C3. Resistance elicited by C3 suppressed germination of B. sorokiniana conidia on the phylloplane in addition to reducing the severity of leaf spot. The pathogen-inhibitory effect could be separated from antibiosis by using heat-inactivated cells of C3 that retained no antifungal activity. Application of live or heat-killed cells to tall fescue leaves resulted only in localized resistance confined to the treated leaf, whereas treatment of roots resulted in systemic resistance expressed in the foliage. The effects of foliar and root applications of C3 were long lasting, as evidenced by suppression of conidial germination and leaf spot development even when pathogen inoculation was delayed 15 days after bacterial treatment. When C3 population levels and germination of pathogen conidia was examined on leaf segments, germination percentage was reduced on all segments from C3-treated leaves compared with segments from non-treated leaves, but no dose-response relationship typical of antagonism was found. Induced resistance by C3 was not host or pathogen specific; foliar application of heat-killed C3 cells controlled B. sorokiniana on wheat and also was effective in reducing the severity of brown patch, caused by Rhizoctonia solani, on tall fescue. Treatments of tall fescue foliage or roots with C3 resulted in significantly elevated peroxidase activity compared with the control.  相似文献   

17.
18.
MTB-951 is a potential mycoherbicide using a fungal plant pathogen ( Drechslera monoceras ) isolated from native Echinochloa species in Japan. Conidia of this pathogen were used as the active ingredient and its herbicidal performance was examined in a greenhouse. The efficacy of MTB-951 on Echinochloa crus-galli L. was higher in deep water (7–9 cm) than in relatively shallow water (3–5 cm). In a postemergence application, the efficacy decreased as the leaf stage of E. crus-galli proceeded between the 1 and 2.5 leaf stage. For example, the control ratio (%) of E. crus-galli was 95% when applied at the 1 leaf stage, and 72% at the 2.5 leaf stage in 5 cm water. Generally, mycoherbicidal efficacy was less when applied pre-emergence rather than postemergence. Efficacy was also influenced by the duration of submergence in deep water. For example, when water depth was kept at 5 cm for more than 7 days after application and then decreased down to 3 cm, the efficacy was high. However, when the water depth was kept at 5 cm for less than 7 days, the efficacy was low. Efficacy was lower under high temperatures (35°C/25°C, day/night) than under low temperatures (25°C/15°C, day/night). Water management, application timing and temperature are important factors on herbicidal efficacy of MTB-951 to control E. crus-galli .  相似文献   

19.
 水稻紫鞘病是我国南方稻区生产上的一个新问题,发生面广,为害较重。经1978~1984年的研究,找到了引起紫鞘的病原茵是Acrocylindrium oryzae。带菌种子是本病的主要初次侵染来源;保存在干燥状态下的病稻草也有传病作用,稻田后期的某些虫、螨,可以传播病菌。紫鞘病病原菌的主要侵染方式是系统侵染。水稻孕穗期喷雾接菌,也能形成紫鞘,但注射法伤口接种时,大多形成虎纹斑烂鞘。因此,紫鞘是水稻叶鞘腐败病的又一种典型症状。病菌生长与产生孢子的适温为25~30℃。孕穗期接菌,其潜育期:30℃为1天,25~28℃为2天,23℃为3天,19℃为4天。  相似文献   

20.
The growth behaviour of several Alternaria species on leaf discs of host and nonhost plants was examined by u.v. microscopy. Specific patterns of development were found for the pathogens. Differences in development which correlated to host specificity, or which differentiated specialized pathogens from weak or opportunistic pathogens, were obvious only after attempted penetration. Thus, little variation was observed amongst different plants for individual Alternaria species in the rate of germination, in the extent of germ-tube growth or in the frequency of appressorium production. However, plant responses to attempted penetration, which included the formation of callose-containing papillae, callose deposition in the walls of attacked cells and their neighbours and cell necrosis, varied with specific pathogen–plant interactions. Callose deposition occurred at sites of both successful and unsuccessful penetrations and may, therefore, not be a determining factor in the plant–pathogen interactions examined. A biplot technique is used to illustrate the different degrees of host specificity apparent at pre- and post-penetration stages of fungal development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号