首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
The objective of this study was to investigate the relationship between serum D- and L-lactate concentrations, and anion gap (AG) in neonatal calves. The association of AG with lactic acidosis in diarrheic calves has only been investigated by measurement of L-lactate in calves with experimentally induced diarrhea. D-lactate has recently been reported to be present in high concentrations in the serum of some diarrheic neonatal calves. The contribution of this acid to AG is not reported. The relationship between AG and L- and D-lactate concentrations was examined in 24 healthy calves and 52 calves with naturally occurring infectious diarrhea with metabolic acidosis. AG was calculated as [Na+ + K+] - [Cl- + HCO3-]. D- and L-lactate were quantified using high-performance liquid chromatography. There was no correlation between L-lactate and AG, contrary to previous reports in the literature. Moderate correlations between D-lactate concentration and AG (r = .74, P < .0001), and between DL-lactate and AG (r = .77), P < .0001) were detected. No differences existed due to the age or sex of the calf. This study indicates that AG provides information on the nature of acidosis in the diarrheic, neonatal calf and reinforces the importance of investigating clinical, in addition to experimental, populations.  相似文献   

2.
The origin of D-lactate, the most important acid contributing to metabolic acidosis in the diarrheic calf, is unknown. We hypothesized that because D-lactate is produced only by microbes, gastrointestinal fermentation is the source. The objective of this study was to determine whether D-lactate production occurs in the rumen, colon, or both, and to measure D- and L-lactate concentrations in urine. Fecal, rumen, blood, and urine samples were obtained from 16 diarrheic and 11 healthy calves. Serum electrolyte concentrations were measured in both groups, and blood gas analyses were performed for diarrheic calves. All samples were analyzed for D- and L-lactate by high performance liquid chromatography (HPLC). Diarrheic calves were generally hyperkalemic with high serum anion gap, depressed serum bicarbonate, and low blood pH. L-lactate was markedly higher in rumen contents (22.7 mmol/ L [median]) and feces (8.6 mmol/L) of diarrheic calves than healthy calves (0.5 mmol/L and 5.1 mmol/L, respectively), but not different in serum or urine. Rumen, fecal, serum, and urine D-lactate concentrations were all significantly higher (P < .05) in diarrheic calves (17.0, 25.4, 13.9, and 19.2 mmol/L, respectively) than in healthy calves (0.5, 9.1, 1.4, and 0.5 mmol/L, respectively). Higher D-lactate concentrations in the rumen and feces of diarrheic calves suggests these sites as the source of D-lactate in blood and urine.  相似文献   

3.
Diarrhea is a common occurrence in neonatal calves. Several veterinary probiotics claiming to prevent or treat calf diarrhea are available, but have not been well studied. This study assessed the capability of Lactobacillus rhamnosus strain GG (LGG) to maintain viability in the gastrointestinal tract of calves. We also determined whether LGG can be administered in an oral rehydration solution (ORS) without compromising the efficacy of the ORS or the viability of LGG, and whether LGG produces D-lactate or not. To investigate the intestinal survival of LGG, 15 calves were randomized into 3 groups and LGG was administered orally with their morning milk feeding on 3 consecutive days at a low (LD), medium (MD), or high (HD) dosage. Fecal samples were collected on days 0 (control), 1, 2, 3, 5, and 7 and incubated for 72 h on deMan, Rogosa, Sharpe agar. Twenty-four hours after the 1st feeding, LGG was recovered from 1 out of 5 calves in the LD group, 4 out of 5 calves in the MD group, and 5 out of 5 calves in the HD group. To determine if LGG caused the glucose levels in the ORS to drop below effective levels, 1.5 L of the ORS was incubated with LGG for 2 h at 37 degrees C and the glucose concentration was measured every 20 min using a glucose meter. This ORS was then further incubated for 10 h and aliquots analyzed by high performance liquid chromatography to determine if D-lactate was produced by LGG. Glucose concentrations did not change over the 2 h of incubation, and no D-lactate was produced after 48 h. The LGG maintained viability in ORS. Therefore, this study demonstrated that LGG survives intestinal transit in the young calf, produces no D-lactate, and can be administered in an ORS.  相似文献   

4.
In order to test the hypothesis that ruminal drinking in calves can lead to D-lactic metabolic acidosis, ruminal acidosis was induced in nine calves by intraruminal application of untreated whole milk via a stomach tube. The amount of the daily force-fed liquid was 3 x 1 l. The experimental design called for an end of intraruminal applications if two or more of the following signs were observed: severe depression, estimated degree of dehydration >10%, absence of sucking reflex, lack of appetite for two consecutive feedings, severe metabolic acidosis with calculated Actual Base Excess (ABE) <-15 mmol/l. The procedure was scheduled to be discontinued on the 17th day of experiment. The onset of ruminal acidification occurred rapidly, and mean pH value fell from 6.70 (+/-0.48) to 4.90 (+/-0.38) after the first application. The following days the pH values varied between 4 and 5. Rumen acidity was characterized biochemically by a significant increase in both isomers of lactic acid. The effects of the intraruminal administration on the calves were detrimental; eight of nine calves showed an acute disease process. According to the pre-established clinical standard, seven of nine calves were removed from the intraruminal feeding schedule. All but one of the calves developed severe systemic acidosis. The increase in anion gap demonstrated the net acid load. In all the calves D-lactate levels were found to show a significant and rapid increase. On the contrary, L-lactate never deviated from physiological levels. These observations confirm that, in young calves as in adult cattle, ruminal acidosis may lead to a clinically manifested D-lactic metabolic acidosis.  相似文献   

5.
The objective of this study was to test for correlations between alopecia and ruminal drinking in young calves. 331 calves up to an age of 31 days were tested for evidence of generalized hair loss daily during their stay in the clinic. Incidence of diarrhoea and the results of ruminal fluid and blood analysis were compared between the groups with and without alopecia. Calves with alopecia showed a significantly higher incidence of diarrhoea and of ruminal acidosis persisting for at least 24 hours. Blood analysis revealed significant differences in degree of acidosis, in concentrations of D-lactate, urea, and creatinine in serum as well as in the activities of glutathione peroxidase, aspartate amino transferase, and creatine kinase. Alopecia in calves is correlated to longer periods of diseases, which are known to be accompanied by the production of D-lactate in the gastrointestinal tract, such as diarrhoea and ruminal drinking. The question, whether alopecia is due to formation of toxic substances or to deficiency of essential substances can not be answered.  相似文献   

6.
The objective of this prospective study was to elucidate whether amounts of bicarbonate needed for correction of acidosis and normalization of clinical signs are influenced by blood D-lactate concentrations in calves with diarrhoea. In 73 calves up to 3 weeks old with acute diarrhoea and base excess values below -10 mmol/l correction of acidosis was carried out within 3.5-h by intravenous administration of an amount of sodium bicarbonate which was calculated using the formula: HCO (mmol) = body mass (kg) x base deficit (mmol/l) x 0.6 (l/kg). Clinical signs, venous base excess, and plasma D-lactate concentrations were monitored immediately following admission, following correction of acidosis at 4 h and 24 h after admission. The base excess and plasma D-lactate concentrations throughout the study were -17.8 +/- 4.0, -0.4 +/- 0.4, -3.0 +/- 5.5 mmol/l (base excess), and 10.0 +/- 4.9, 9.8 +/- 4.8, 5.4 +/- 3.4 mmol/l (D-lactate) for the three times of examination. Metabolic acidosis was not corrected in more than half of the calves (n = 43) by the calculated amount of bicarbonate, whereas the risk of failure to correct acidosis increases with D-lactate concentrations. The study shows that calves with elevated D-lactate concentrations do not need additional specific therapy, as D-lactate concentrations regularly fall following correction of acidosis and restitution of body fluid volume, for reasons that remain unclear. However, calves with distinct changes in posture and demeanour need higher doses of bicarbonate than calculated with the factor of 0.6 in the formula mentioned above probably because of D-hyperlactataemia.  相似文献   

7.
Three hundred bucket-fed diarrhoeic calves up to the age of 21 days were used to investigate the degree in which D-lactic acid contributes to metabolic acidosis in bucket-fed calves with naturally acquired neonatal diarrhoea. Fifty-five percent of all diarrhoeic calves had serum D-lactate concentrations higher than 3 mmol/l. Mean (+/-SD) D-lactate values were 5.7 mmol/l (+/-5.3, median: 4.1 mmol/l). D-lactate values were distributed over the entire range of detected values from 0 to 17.8 mmol/l in calves with base excess of -10 to -25 mmol/l. Serum D-lactate concentration was higher in patients with ruminal acidosis (6.6 +/- 5.2 mmol/l; median: 5.9 mmol/l) than in those with physiological rumen pH (5.3 +/- 5.4 mmol/l; median: 3.7 mmol/l). There was no evidence of a correlation (r = 0.051) between the serum levels of D-lactate and creatinine (as an indicator of dehydration). D-lactate was correlated significantly with both base excess (r = -0.685) and anion gap (r = 0.647). The proportion of cured patients was not significantly different between the groups with elevated (>3 mmol/l) and normal serum D-lactate concentrations. This study shows that hyper-D-lactataemia occurs frequently in diarrhoeic calves, has no impact on prognosis but may contribute to the clinical picture associated with metabolic acidosis in these animals.  相似文献   

8.
犊牛消化不良是犊牛胃肠道发生机能紊乱,引起胃肠道粘膜卡他性炎症及消化功能障碍的一种以腹泻或排粪迟滞为特征的犊牛疾病。本病多发于10~20日龄犊牛,常因犊牛初生后管护不到位而引发。通过采用中西医结合的治疗方法,有效提高了治愈率,获得了满意的疗效。  相似文献   

9.
The alkalinizing effect of citrate, acetate, propionate, gluconate, L and DL-lactate were compared in healthy neonatal calves. The calves were infused for a 3.5 hour period with 150 mmol/L solutions of the sodium salts of the various bases. Blood pH, base excess, and metabolite concentrations were measured and the responses compared with sodium bicarbonate and sodium chloride infusion. D-gluconate and D-lactate had poor alkalinizing abilities and accumulated in blood during infusion suggesting that they are poorly metabolized by the calf. Acetate, L-lactate and propionate had alkalinizing effects similar to bicarbonate, although those of acetate had a slightly better alkalinizing effect than L-lactate. Acetate was more effectively metabolized because blood acetate concentrations were lower than L-lactate concentrations. There was a tendency for a small improvement in metabolism of acetate and lactate with age. Sodium citrate infusion produced signs of hypocalcemia, presumably because it removed ionized calcium from the circulation. D-gluconate, D-lactate and citrate are unsuitable for use as alkalinizing agents in intravenous fluids. Propionate, acetate and L-lactate are all good alkalinizing agents in healthy calves but will not be as effective in situations where tissue metabolism is impaired.  相似文献   

10.
For evaluation of physiologically significant organic anions in the colonic environment, 87 samples of normal feces were collected from the rectum of 15 calves less than 60 days old. The calves were fed milk replacer with free access to starter diet and hay. After fecal extraction with water, pH, D- and L-lactate, succinate, and volatile fatty acid (VFA) concentrations were determined. There was wide variation in fecal pH (4.3 to 7.7). Higher lactate concentrations were observed in feces samples with lower pH, and most of these samples were collected during the first 4 weeks of life. Elevated lactate concentrations included both the D- and L-isomers, and the D-isomer comprised approximately 30-50% of total lactate. Elevated succinate concentrations were observed in only 8 fecal samples, while other samples had lower or trace amounts of succinate. Elevated fecal succinate showed no relationship with fecal pH or VFA concentrations. Fecal VFA concentrations were lower in samples collected in the early postnatal stage, but fecal VFA concentrations were not necessarily related to age. We confirmed that fecal D- and L-lactate concentrations increased with a concomitant decrease of VFA in the acidic lumen of the colon, although acidic feces were not necessarily accompanied by elevated concentrations of lactate. In contrast, succinate production was not related to fecal pH or VFA concentrations.  相似文献   

11.
Fecal coliform bacteria were isolated from three herbivores (cattle, horse, and red panda) and shown to produce primarily the D-form of lactate, plus acetate and ethanol when grown anaerobically in 1.0% glucose broth. To evaluate coliform contribution to D-lactate acidosis in cattle, experiments involving a forage-adapted steer (fasted or normally fed) and four 500-ml fermentors were compared during 3 d of grain overload. In both systems, coliforms and D- and L-lactic acid production were greater from fasted than from normally fed steer inoculum. With fasted inoculum, coliform counts peaked (3 x 10(7)/ml at 7 h after initial engorgement) and receded to 10(3)/ml by the time D-lactate concentration peaked, indicating that bacteria other than coliform were responsible for the delayed peaking of D- (48 h) compared with L-lactate (24 h). Increases in lactobacilli more closely mimicked D-lactate increases than did changes in coliforms. The comparisons between the steer and fermentors showed many similar shifts in end-products and groups of bacteria, more so with the experiment initiated with fasted than with normal inoculum. With normal inoculum, VFA content and moles of butyrate/100 mol of VFA were greater in vitro than in vivo; VFA content presumably was larger because of VFA absorption in vivo. In a separate experiment, cultures initiated with identical inoculum and given the same amount of feed accumulated more lactate when pH was permitted to decrease to 5.0 than when pH was maintained at 5.5 for 6.0 or above, indicating the role buffers can have in controlling acidosis during diet change to concentrates.  相似文献   

12.
Beef calves in a 48-cow herd were studied during one calving season from birth to ten days of age to determine the presence or absence of potentially enteropathogenic bacteria, viruses, and/or chlamydia in both normal and diarrheic calves. Calves were born and raised outside in large pens unless the ambient temperature was below minus 10 degrees F when calving was done inside. Fecal swabs, fecal aliquots, and nasal swabs were taken from each calf at 32, 128 plus or minus 3, and 248 plus or minus 3 hours of age and as soon after the onset of diarrhea as possible. Diarrhea was defined as that condition in which the feces contained less than 10% dry matter. Enteropathogenic Escherichia coli in feces were identified using the ligated gut loop procedure in calves and by feeding broth cultures to colostrum fed lambs seven to 16 hours old. Potentially enteropathogenic viruses were detected using a variety of methods which included tissue culture, fluorescent antibody, hemadsorption, and electron microscope techniques. Of the 40 calves studied, 32 (80%) developed diarrhea before ten days of age. Twenty-two strains of Escherichia coli which caused dilation of calf ligated intestinal loops were isolated from 11 scouring calves and from one normal calf. Nine out of ten strains of Escherichia coli which dilated ligated loops also caused diarrhea when fed to colostrum-fed lambs seven to 16 hours old. Using antibody technique a Reo-like virus was detected in the feces of 15 calves before, during, and after the onset of diarrhea. Four calves excreted both loop dilating strains of E. coli and Reo-like virus in the feces before ten days of age; in all cases the loop dilating E. coli were isolated from the feces prior to the demonstration of Reo-like virus. A Corona-like virus was also demonstrated in three of the 15 calves infected with Reo-like virus and a noncytopathogenic strain of bovine virus diarrhea virus was isolated from two of the 15 calves infected with Reo-like virus. A loop dilating strain of Citrobacter was isolated from one diarrheic calf. There was no consistent pattern of onset or duration of diarrhea in calves which excreted different infectious agents. Salmonella species, infectious bovine rhinotracheitis virus, parvovirus, adenoviruses, parainfluenza-3 virus, and Chlamydia species could not be demonstrated in any of the calves or their dams. No potentially enteropathogenic agents could be demonstrated in 11 of the 32 calves which scoured. These findings emphasize the complexity of the infectious aspect of the neonatal diarrhea syndrome and illustrate the difficulty in making an etiological diagnosis in field outbreaks of the calf scours complex.  相似文献   

13.
Fourteen dogs had shown chronic or intermittent diarrhea for more than 1 year. Diarrhea had been successfully treated with tylosin for at least 6 months but recurred when treatment was withdrawn on at least 2 occasions. Tylosin-responsive diarrhea (TRD) affects typically middle-aged, large-breed dogs and clinical signs indicate that TRD affects both the small and large intestine. Treatment with tylosin eliminated diarrhea in all dogs within 3 days and in most dogs within 24 hours. Tylosin administration controlled diarrhea in all dogs, but after it was discontinued, diarrhea reappeared in 12 (85.7%) of 14 dogs within 30 days. Prednisone given for 3 days did not completely resolve diarrhea. Probiotic Lactobacillus rhamnosus GG did not prevent the relapse of diarrhea in any of 9 dogs so treated. The etiology of TRD, a likely form of antibiotic-responsive diarrhea (ARD) is unclear. The following reasons for chronic diarrhea were excluded or found to be unlikely: parasites, exocrine pancreatic insufficiency, inflammatory bowel disease, small intestinal bacterial overgrowth, enteropathogenic bacteria (Salmonella spp., Campylobacter spp., Yersinia spp., or Lawsoni intracellularis), and Clostridium perfringens enterotoxin and Clostridium difficile A toxin. A possible etiologic factor is a specific enteropathogenic organism that is a common resident in the canine gastrointestinal tract and is sensitive to tylosin but difficult to eradicate. Additional studies are required to identify the specific cause of TRD.  相似文献   

14.
BACKGROUND: The clinical efficacy of IV administered hypertonic saline solution and hypertonic bicarbonate solution (HBS) in the treatment of inappetent diarrheic calves has not been compared yet. HYPOTHESIS: HBS is more advantageous than hypertonic saline in the treatment of calves with severe metabolic acidosis. ANIMALS: Twenty-eight dehydrated, inappetent calves with neonatal diarrhea. METHODS: In 2 consecutive clinical studies, calves were initially treated with saline (5.85%; 5 mL/kg body weight [BW] over 4 minutes; study I: N = 16) or bicarbonate solution (8.4%; 10 mL/kg BW over 8 minutes; study II: N = 12), respectively, followed by oral administration of 3 L isotonic electrolyte solution 5 minutes after injection. Clinical and laboratory variables were monitored for 72 hours. RESULTS: Treatment failed in 6 calves of study I and in 1 calf of study II as indicated by a deterioration of the general condition. All treatment failures had more severe metabolic acidosis compared with successfully treated calves before treatment. In the latter, rehydration was completed within 18 hours after injection; metabolic acidosis was corrected within 24 hours (study I) and 6 hours (study II) after injection. CONCLUSIONS AND CLINICAL IMPORTANCE: Diarrheic calves with slight metabolic acidosis (base excess [BE] >-10 mM) can be treated successfully with hypertonic saline. HBS is appropriate in calves without respiratory problems with more severe metabolic acidosis (BE up to -20 mM). Intensive care of the calves is required to ensure a sufficient oral fluid intake after the initial IV treatment.  相似文献   

15.
This work was conducted to investigate calf-level factors that influence the risk of neonatal diarrhea and shedding of Cryptosporidium parvum oocysts in calves, on dairy farms in Ontario with histories of calf diarrhea or cryptosporidiosis. Fecal samples were collected weekly for 4 weeks from each of 1045 calves under 30 days of age on 11 dairy farms in south-western Ontario during the summer of 2003 and the winter of 2004. A questionnaire designed to gather information on calf-level management factors was administered on farm for each calf in the study. Samples were examined for C. parvum oocysts by microscopy, and a subset of specimens was also tested for enterotoxigenic Escherichia coli, Salmonella, bovine rotavirus and bovine coronavirus. The consistency of each sample was scored and recorded at the time of collection in order to assess the presence or absence of diarrhea. In addition, a blood sample was taken from each calf upon enrollment in the study, for assessment of maternal antibody transfer and for polymerase chain reaction testing for persistent bovine viral diarrhea virus infection. Using the GLLAMM function in Stata 9.0, multilevel regression techniques were employed to investigate associations between management practices and the risk of C. parvum shedding or diarrhea. C. parvum oocysts were detected in the feces of 78% of the 919 calves from which all four fecal samples had been collected. Furthermore, 73% of the 846 calves for which all four fecal consistency scores had been recorded were diarrheic at the time of collection of at least one sample. Significant predictors of the calf-level risk of C. parvum shedding included the use of calf diarrhea prophylaxis in pregnant cows, and the type of maternity facilities in which the calves were born. Factors associated with an increased risk of diarrhea were leaving the calf with the dam for more than an hour after birth, and the birth of a calf in the summer as opposed to winter. Calves shedding C. parvum oocysts had 5.3 (95% CI 4.4, 6.4) times the odds of diarrhea than non-shedding calves, controlling for other factors included in the final multivariable model. Furthermore, infected calves shedding more than 2.2 x 10(5) oocysts per gram of feces were more likely to scour than infected calves shedding lower numbers of oocysts (OR= 6.1, 95% CI 4.8, 7.8). The odds of diarrhea in calves shedding oocysts that had been allowed to remain with their dams for more than an hour were higher than the odds of diarrhea in shedding calves that had been separated from their dams within an hour after birth.  相似文献   

16.
Over a period of 3 summers, 21 colostrum-fed Holstein bull calves, 1 to 3 days old, were assigned to 7 replicates, each consisting of 3 calves. Within each replicate of 3 calves, 2 were selected at random, to be given 100,000 to 146,000 sporulated coccidia oocysts (principally Eimeria bovis) orally 60 hours after arrival at the college research farm. On the thirteenth day after coccidia inoculation, 1 of the 2 calves that had been given coccidia and the third calf that had not been inoculated, were given coronavirus by intranasal and oral routes. Calves were observed daily, and consistency of feces was scored visually. Nasal swab specimens for indirect immunofluorescent antibody testing for coronavirus and fecal samples for oocyst determination were obtained approximately every third day. Of 7 calves that were given only coronavirus, 3 developed diarrhea of short duration. Of 7 calves that were given only coccidia oocysts, 6 developed diarrhea. All 7 calves inoculated initially with coccidia and subsequently with coronavirus developed diarrhea. For 5 of 7 replicates, calves that were given coccidia and coronavirus developed diarrhea first. When overall severity, measured by fecal score and by blood in the feces, was compared, calves inoculated with coccidia followed by coronavirus were more severely affected (P less than 0.05) than were calves that were given only coronavirus. Calves that were given only coccidia oocysts appeared more severely affected than calves that were given only coronavirus, but differences were not significant.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Two experiments were conducted to evaluate detection of Escherichia coli heat-stable enterotoxin (ST) in the feces of calves as a method for implicating E coli in neonatal calf diarrhea. The first experiment evaluated the use of the infant mouse test for detection of ST in the feces of calves with naturally occurring diarrhea. Simultaneous identification of bovine enteropathogenic strains of E coli (EEC) and of other infective agents implicated in neonatal calf diarrhea was attempted in these samples. The ST was detected with certainty in only 7 of 41 samples from calves less than or equal to 3 weeks old. Enteropathogenic E coli, however, was detected in 27 samples. In 23 of these 27 samples, EEC was the only recognizable diarrheagenic agent. In a small percentage of the samples, Salmonella, rotavirus, coronavirus, and cryptosporidium were recognized alone, in combination with each other, or with EEC. In the second experiment, 6 calves were fed colostrum from cows inoculated with the bovine EEC strain B44; 6 were given colostrum from cows vaccinated with non-EEC strain 28F, and 4 were given milk from nonvaccinated heifers. Two of the calves that were given colostrum from cows inoculated with strain B44 were challenge exposed with the non-EEC strain 28F. The remaining calves were challenge exposed with the EEc strain B44. Fecal samples were taken from these calves at intervals and were examined for the presence of ST and of the challenge-exposure organism. The ST was detected in approximately one half of the fecal samples obtained, and it was most often detected in the early stages of the induced diarrhea. Calves were observed to shed the challenge-exposure EEC strain for long periods in the absence of diarrhea or detectable amounts of ST in the feces. The ST was detectable in fecal samples when the diarrhea was severe and when the dry matter content of the fecal samples was low.  相似文献   

18.
One hundred and twenty-four calves with neonatal diarrhoea were investigated in order to assess the prevalence of hyperkalaemia and the associated clinical signs. Hyperkalaemia (potassium concentration >5.8 mmol/L) was recognized in 42 (34%) calves and was more closely associated with dehydration than with decreases in base excess or venous blood pH. In 75 calves with normal blood concentrations of D-lactate (i.e. ?3.96 mmol/L), K concentrations were moderately correlated with base excess values (r = ?0.48, P < 0.001). In contrast, no significant correlation was observed in 49 calves with elevated D-lactate. Only three hyperkalaemic calves had bradycardia and a weak positive correlation was found between heart rate and K concentrations (r = 0.22, P = 0.014). Ten of the 124 calves had cardiac arrhythmia and of these seven had hyperkalaemia indicating that cardiac arrhythmia had a low sensitivity (17%) but a high specificity (96%) as a predictor of hyperkalaemia.In a subset of 34 calves with base excess values ??5 mmol/L and D-lactate concentrations <5 mmol/L (of which 22 had hyperkalaemia), changes in posture/ability to stand could be mainly explained by elevations of K concentrations (P < 0.001) and to a lesser extent by increases in L-lactate concentrations (P = 0.024). Skeletal muscle weakness due to hyperkalaemia alongside hypovolaemia may produce a clinical picture that is similar to that in calves with marked D-lactic acidosis. However, since reductions in the strength of the palpebral reflex are closely correlated with D-lactate concentrations, a prompt palpebral reflex can assist the clinical prediction of hyperkalaemia in calves presenting with a distinct impairment in their ability to stand (specificity 99%, sensitivity 29%).  相似文献   

19.
Experiments were conducted with 40 steers to evaluate the effects of diet (alfalfa hay vs high concentrate) on the rates of elimination of D- and L-lactate from plasma. Plasma L- and D-lactate clearance rates were determined before (Period I) and 114 d after (Period II) an abrupt switch from the alfalfa hay to the high concentrate diet. One group of steers received the hay diet throughout the experiment. Diet or period did not alter the rate of disappearance of L-lactate from plasma; the half-life was 13.5 to 15.5 min. D-lactate disappearance from plasma followed an exponential decay curve with at least two components; however, diet or period did not alter the calculated rates of disappearance. The half-life of the first component was 9 to 28 min and the second component was 207 min. Characteristics describing D- or L-lactate metabolism were not highly correlated with lactate utilization for fatty acid synthesis. These data demonstrate that, in steers adapted to a high concentrate diet consuming 18.2 Mcal ME X head-1 X d-1, clearance of D(-)- or L(+)-lactate is not different from that in steers fed alfalfa hay consuming 23.1 Mcal ME X head-1 X d-1.  相似文献   

20.
Twenty Holstein-Friesian male calves were obtained within 4 hours after bith (colostrum deprived) and allotted to 1 of 4 groups, each given a different feeding: colostrum, milk replacer, polyvinylpyrrolidone (PVP), and saline solution (0.85% NaCl). Each calf was fed 2 L of the respective diets every 12 hours. Rectal temperatures were recorded and blood samples were collected immediately before each feeding. At approximately 27 hours of age, all calves were inoculated orally with 1.5 X 10(10) viable organisms of a septicemia-producing Escherichia coli serotype O26: K60:NM. Within 8 hours, all calves had diarrhea. Coli-septicemia (E coli cultured from liver, spleen, and cardiac blood) was present in 1 of the 5 calves fed colostrum, in 5 or the 5 calves fed milk replacer, in 5 of the 5 calves fed PVP, and in 4 of the 5 calves fed saline solution. At necropsy of the calves (12 to 48 hours after oral inoculation), the same organism was isolated by cultural technique from small intestines of 19 of the 20 calves. Serum immunoglobulin G concentrations increased (P less than 0.01) in calves fed the colostrum diet in sharp contrast to the agammaglobulinemia occurring in calves fed the milk replacer, PVP, or saline solution. Results indicate that colostrum fed to the calf soon after birth provides protection from colisepticemia, but does not prevent the diarrhea of colibacillosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号