首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rapidly expanding global aquaculture requires sustainable, local protein sources to supplement the use of fishmeal. Lupin seed meal (Lupinus angustifolius) was tested as sustainable diet component for Whiteleg shrimp (Litopenaeus vannamei). Controlled feeding experiments were conducted in a recirculating aquaculture system for eight weeks. Juvenile shrimps were provided formulated diets containing various levels of lupin meal inclusion (0, 100, 200 and 300 g kg?1) supplementing the fishmeal component, and a commercial feed as general reference. Shrimp survival, growth, metabolic and immune parameters were analysed. Survival did not differ significantly between groups. Growth performance was significantly impaired in shrimp fed diets containing more than 100 g kg?1 lupin meal. Lupin meal supplementation did not affect haemolymph protein content, whereas glucose and acylglyceride concentrations varied between treatments and were highest in animals fed the 100 g kg?1 lupin meal diet. Phenoloxidase activity was highest in shrimp fed 100 g kg?1 lupin meal diet indicating improved immune status. The present study indicates that low inclusion levels of lupin meal do not cause adverse effects and seem to stimulate the immune system of juvenile L. vannamei.  相似文献   

2.
This study compared the nutritional profiles of menhaden fishmeal and pink salmon (Oncorhynchus gorbuscha) testes meal and investigated the nutritional values of the testes meal based on its effect on palatability, digestibility and growth performance of Pacific white shrimp (Litopenaeus vannamei). The testes meal replaced 0–91% of fishmeal protein in a control diet containing 150 g kg−1 fishmeal. Replacement of 69% of the fishmeal protein in the control diet significantly increased feed intake of shrimp from 0.61% to 1.10%. The apparent digestibility coefficient of dietary protein increased significantly when 91% of the fishmeal protein was replaced by the testes meal. Replacement of dietary fishmeal protein with up to 46% testes meal protein did not cause adverse effects on growth rate or nutritional composition of tail muscle. However, growth rate was significantly decreased in shrimp fed diets in which 69% or 91% of fishmeal protein was replaced by the testes meal. Results of this study indicate that the testes meal can be used as a feed additive to enhance the palatability and protein digestibility of low fishmeal diets for shrimp. It can replace up to 46% of fishmeal protein without any adverse effect on the growth performance of shrimp.  相似文献   

3.
This paper evaluates the resource and energy requirements of six different types of land-based, hatchery production systems located in the U.S. Pacific Northwest: flow-through with a gravity water supply, flow-through with a pumped water supply, flow-through with pure oxygen, partial reuse system, partial reuse with heating, and a reuse system for the production of Atlantic salmon (Salmo salar) smolts. Key parameters used in the evaluation include direct energy, indirect energy, transportation energy, greenhouse gas emissions, and pollutant discharges.Power (electricity and natural gas) and feed energy accounted for the majority of the required energy for all the rearing option evaluated. The sum of the fixed capital and chemicals components accounted for less than 2–12% of the total energy budget for any rearing option. The energy efficiency (energy output/energy input) of the six options ranges from 0.97% for flow-through with pumped supply to 3.49% for the flow-through with gravity supply. The rearing options with the three highest energy efficiencies were flow-through with gravity supply (3.49%), partial reuse (2.75%), and reuse (2.64%).On a kg of smolt produced basis, the six rearing options showed a wide range in performance. The reuse system had the lowest water (2 m3 kg− 1) and land (0.13 m2 kg− 1) requirements and the third lowest total energy requirement (288 MJ kg− 1). The partial reuse system had the second lowest total power requirement (276 MJ kg− 1), a low land requirement (0.21 m2 kg− 1), and moderate water requirements (33 m3 kg− 1). The partial reuse with temperature control had the second highest total power requirement (657 MJ kg− 1) and land and water requirements similar to the partial reuse system without temperature control. The flow-through system with pumped water supply had the highest water (289 m3 kg− 1), land (2.19 m2 kg− 1), and energy requirements (786 MJ kg− 1) of any of the rearing options. By comparison, the flow-through system with gravity water supply had the lowest energy requirement (218 MJ kg− 1), a moderate land requirement (0.78 m2 kg− 1), and a high water requirement (214 m3 kg− 1). The ranking of the six rearing options based capital and operating costs are likely to be quite different from those based on energy, water, and greenhouse gas emissions.  相似文献   

4.
A 6‐week growth trial was conducted to investigate the effect of dietary supplementation with maggot meal (MGM) and soybean meal (SBM) on the growth performance and antioxidant responses of gibel carp (GC) and darkbarbel catfish (DC). The basal diet was formulated to contain 114 g kg−1 fish meal (FM) and 200 g kg−1 SBM. The basal diet was supplemented with either 280 g kg−1 FM (Control), 390 g kg−1 MGM or 450 g kg−1 SBM to obtain three isonitrogenous (crude protein: 380 g kg−1) and isocaloric (gross energy: 16 kJ g−1) diets. For GC, a significant decrease in specific growth rate (SGR) was only observed in fish fed the SBM diet compared with the control (< 0.05). Principal components analysis (PCA) of GC showed a higher similarity in antioxidant response to dietary supplementation with MGM and SBM proteins between liver and intestine, but the DC did not. The present results suggest that supplementing 390 g kg−1 MGM protein to basal diet cause an enhancement of the antioxidant capacity in GC, but supplementing 390 g kg−1 MGM and 450 g kg−1 SBM proteins to basal diets resulted in a significant attenuation of the antioxidant capacity in DC.  相似文献   

5.
Li  Meifeng  Zhang  Li  Hu  Bing  Liu  Lei  Huang  Feng  Tian  Juan  Hu  Xianqin  Wang  Yuanyuan 《Aquaculture International》2022,30(4):1675-1692

A 60-day feeding trial was conducted to estimate the optimum phosphorus requirement of juvenile bighead carp (Aristichthys nobilis). Fish (initial body weight: 2.42?±?0.08 g) were hand-fed with six isoproteic (437 g kg?1) and isolipidic (68 g kg?1) diets containing graded phosphorus levels (0.90, 4.40, 8.30, 11.90, 15.50, and 19.30 g kg?1) thrice daily to apparent satiation. Each diet was randomly assigned to triplicate tanks, and each tank was stocked with 30 fish. The highest weight gain rate (WGR, 288.94%) and specific growth rate (2.28% day?1) and the best feed conversion rate (FCR, 1.91) were recorded in fish fed 8.30 g kg?1 phosphorus. The body composition analysis showed that the phosphorus contents in the whole body, muscle, vertebra, and plasma of fish fed the phosphorus-supplemented diets were higher than those of fish fed the control diet, whereas the phosphorus retention rate and crude lipid contents in the whole body and muscle presented the reverse results. The highest activity of lipase (41.97 U g?1 prot) in the intestine was found in fish fed the diet with 11.90 g kg?1 phosphorus. Further, the contents of total protein, albumin, and globulin in plasma were increased as dietary phosphorus levels ranged from 0.90 to 11.90 g kg?1 and then decreased with further increased phosphorus levels. The highest contents of triglyceride (1.85 mmol L?1) and total cholesterol (2.16 mmol L?1) in plasma occurred at dietary phosphorus level of 0.90 g kg?1. Broken-line model analysis based on WGR, FCR, and the phosphorus contents of the whole body and vertebra indicated that the optimal phosphorus requirements for juvenile bighead carp were 7.16, 9.02, 10.88, and 11.04 g kg?1, respectively.

  相似文献   

6.
In this study, the pharmacokinetic profile of enrofloxacin (EF) and its major metabolite, ciprofloxacin (CF), were investigated in brown trout (Salmo trutta fario) (n = 150) after intravenous (i.v.) and oral (p.o.) administrations of a single dose of 10 mg kg− 1 body weight (b.w.) at 10 °C. The plasma concentrations of the drugs were determined by high-performance liquid chromatography (HPLC-UV) from 0.08 to 120 h. Pharmacokinetic parameters were described by the two-compartment open model for intravenous and oral administrations, respectively. After intravenous administration, the elimination half-life (t1/2β), apparent volume of distribution at steady-state (Vss) and total body clearance (Cltot) of enrofloxacin were 19.14 ± 1.51 h, 3.40 ± 0.18 L kg− 1 and 0.14 ± 0.01 L kg h− 1, respectively. After oral administration, the maximum plasma concentration (Cmax), time of maximum concentration (tmax) and bioavailability (F%) were 2.30 ± 0.08 µg mL− 1, 8 h and 78 ± 4%, respectively. Ciprofloxacin was not detected in the present study. The elimination half-life for enrofloxacin following oral administration was longer than values calculated for other animals. After oral administration, the mean plasma concentration was well above the minimum inhibitory concentrations (MICs)—that is, > 0.5 µg mL− 1 at 36 h—for most gram-negative fish pathogens. It is possible and practical to obtain therapeutic blood concentrations of enrofloxacin in brown trout (S. trutta fario) using oral administration of 10 mg kg− 1 body weight; therefore, it may be effective in the therapy for brown trout diseases.  相似文献   

7.
The aim of this study was to non-invasively determine fat and pigment concentrations in salmon muscle based on visible and near infrared (VIS/NIR) spectroscopy measurements of live/whole fish and fillets, and by means of digital photography (DP) of fillets. The fish used were two populations of farmed Atlantic salmon (Salmo salar L.) consisting of 46 salmon averaging 0.7 kg (range 0.17–1.7 kg, Group S) and 30 salmon averaging 2.3 kg (range 1.4–4.1 kg, Group L). Chemical analyses (fat and pigment content) and computerized tomography, CT (fat content) were used as reference methods. Group L was analysed in the live state (VIS/NIR), after gutting (VIS/NIR and CT), and as fillets (VIS/NIR and DP). Group S was analysed in the gutted state (VIS/NIR) and as fillets (VIS/NIR and DP). VIS spectroscopy predictions of pigment in whole salmon from Group S were obtained with a root mean square error of prediction (RMSEP) of 0.9 mg kg− 1 astaxanthin, and a correlation between VIS spectroscopy predicted and chemically measured pigment of r = 0.85 (p < 0.0001). The fat concentration was determined by the NIR spectroscopy in live fish with RMSEP = 1.0 fat% unit, and a correlation with chemical reference values of r = 0.94 (p < 0.0001). Fat predictions from NIR spectroscopy correlated also well with predictions from CT analyses, r = 0.95 (p < 0.0001). VIS spectroscopy and DP were equally well suited to determine pigment concentrations in salmon fillets, with prediction errors of only 0.4 mg kg− 1 astaxanthin, and a correlation with chemically determined pigment of r = 0.92 (p < 0.0001). The results obtained in the present study are the first to demonstrate successful non-invasive pigment predictions in whole salmon using VIS/NIR spectroscopy, and the possibility for simultaneous, rapid and non-destructive quantification of fat and pigment concentrations.  相似文献   

8.
Effect of apidaecin on common carp (Cyprinus carpio) based on growth performance, feed utilization (Feed Conversion Ratio, FCR) and immune parameters were investigated. Twelve aquaria with three replicates for G1-3 and control were used. The synthesized apidaecin peptide was added to common carp basal diets (Control) as additives in three concentrations: 10.0 mg kg− 1 (G1), 15.0 mg kg− 1 (G2) and 30.0 mg kg− 1 (G3) by wet weight of basal diet. After an 80-day feeding experiment, G2 and G3 showed significantly better (P < 0.05) results of growth performances and FCR than the control. However, there was no remarkable difference (P > 0.05) between G2 and G3. As for G1, the final weight, SGR (Specific Growth Rate) and DG (Daily Gain) were increased and the FCR was decreased, but not significantly (P > 0.05) compared with the control. The serum lysozyme activity of G2 and G3 was significantly increased (P < 0.05) than the control. As for the alternative complement pathway activity, G2 and G3 were also higher (P < 0.05) than the control. However, no significant difference (P > 0.05) was found whichever between G2 and G3 or between G1 and G2 in both lysozyme and the alternative complement pathway activities. Furthermore, there was no remarkable difference between G1 and the control in immune parameters.  相似文献   

9.
Five 2‐week feeding trials were conducted to investigate five stimulants on P. sinensis. Two isonitrogenous and isoenergetic diets were formulated, one contained 600 g kg–1 fishmeal (FM diet) and the other contained 420 g kg–1 fishmeal and 225 g kg–1 animal protein blend (APB diet), and each tested one stimulant with four levels. The feeding stimulant candidates were betaine, 2‐carboxy‐ethyl dimethyl sulphonium bromide (DMPT), inosine‐5′‐monophosphate (IMP), taurine and squid extract. In the experiment on each stimulant, turtles (10.85 ± 0.10 g) were equally divided into FM and APB groups and fed with an equal mixture of corresponding diets containing four levels of stimulants, respectively. Each diet contained a unique rare earth oxide as inert marker. Turtles were fed twice daily (8:00 and 17:00), and faeces were collected. Preference for each diet was estimated based on the relative concentration of each marker in the faeces. In the FM group, only IMP showed the enhanced attraction. But in APB groups, all the stimulants, except IMP, showed higher preference than basal diets for at least one inclusion level, and the optimum level was 10 g kg–1 for betaine, 0.1 g kg–1 for DMPT, 0.1 g kg–1 for IMP, 5 g kg–1 for taurine and 10 g kg–1 for squid extract, and the squid extract had the strongest stimulating effect among the stimulants.  相似文献   

10.
Commercial salmonid diets are not typically supplemented with selenium (Se) as they naturally contain relatively high levels of this essential trace element; however supplementation may be necessary to meet requirements during physical stress. Adopting an integrated approach by simultaneously determining Se status, various health parameters and interactions with other trace elements, this study aimed to determine the role of supra-supplemented selenite and Se-yeast (Selplex®) on the growth and health of rainbow trout (Oncorhynchus mykiss), both under normal conditions and after exposure to chronic physical stress. Fish were fed one of seven diets; a basal un-supplemented diet (0.73 mg kg− 1 Se) or diets supplemented with Se-yeast or sodium selenite to provide 2, 4, or 8 mg kg− 1 Se for 10 weeks prior to subjection of daily handling and confinement stressors for seven days. Net whole body Se retention was significantly greater for Se-yeast than selenite at all levels. In normal conditions activities of hepatic glutathione peroxidase (GSH-Px) and thioredoxin reductase (Trx-R) indicate that Se requirements were met by the basal diet. Similarly, pre-stress supra-supplementation of selenite and Se-yeast did not affect oxidative status (total antioxidant capacity of serum and hepatic malondialdehyde), immuno-competence (respiratory burst activity, serum lysozyme, and leukocyte counts) or other haematological and growth parameters (nuclear abnormalities in erythrocytes, and specific growth rate). In contrast, the trend towards a higher GSH-Px post-stress in Se supplemented diets over the basal diet, particularly in Se-yeast fed fish, indicates that Se requirements may not be met by the un-supplemented practical diet in stressed fish. Seven days of chronic physical stress decreased whole body Se and increased GSH-Px activity signifying an increased Se utilisation. During stress Se status was more effectively maintained by Se-yeast than selenite. Increased hepatic lipid peroxidation in stressed fish fed 8 mg kg− 1 selenite indicates a possible pro-oxidant effect of selenite. A positive interaction was observed between dietary selenite and whole body copper, but no such interaction was observed with Se-yeast. This study concludes that physical stressors can result in an elevated Se utilisation and consequently supplementation of commercial diets may be necessary such that Se reserves are available as a contingency for stress.  相似文献   

11.
Nucleotide (NT) could enhance growth, feeding and immunity in higher vertebrate and fish. Chinese perch (Siniperca chuatsi) refuse artificial diet in natural water, whereas the NT might promote its feeding of domestication diet. The present study was designed to investigate the effect of dietary NT on growth, feed intake, feed utilization, body composition, serum biochemistry and nitrogen metabolism in juvenile Siniperca chuatsi. 0, 0.5, 1.0, 1.5, 2.0 and 4.0 g NT kg?1 diet were supplemented in each diet, respectively. Triplicate groups of Chinese perch (36.21 ± 0.98 g) were fed twice a day to apparent satiation for 8 weeks. The results showed that fish fed with 1.5 g NT kg?1 diet had the highest weight gain (WG), specific growth rate, feed efficiency, feed intake, protein efficiency ratio and protein retention efficiency. The crude protein content in whole body was highest in fish fed the diet containing 1.5 g NT kg?1 diet. Dietary NT supplementation significantly increased the neuropeptide Y gene expression and significantly decreased the agouti‐related protein and pro‐opiomelanocortin gene expressions in brain. NT supplementation decreased urea nitrogen content, aspartate aminotransferase (AST) and alanine aminotransferase activities in serum. The hepatic AST activity was increased first and then decreased, and the highest activity was observed in fish fed with 1 g NT kg?1 diet. Inversely, the activity of glutamate dehydrogenase (GDH) in liver and adenosine 5′‐monophosphate deaminase in muscle decreased first and then increased, and the lowest activity was observed in fish fed with 1.5 g NT kg?1 diet. Similarly, the gene expression levels of GDH and arginase in liver were lowest in fish fed with 1.5 g NT kg?1 diet. Based on the broken‐line regression analysis of WG in the present experimental condition, 1.44 g NT kg?1 diet was the optimum supplementation level in juvenile Siniperca chuatsi.  相似文献   

12.
Six isoenergetic diets were formulated as follows: fish meal (FM) 700 g kg–1 (control, C), FM 300 g kg–1 + soy protein concentrate 300 g kg–1 (SPC), FM 300 g kg–1 + enzyme‐treated SPC 300 g kg–1 (ESC), FM 170 g kg–1 + soy protein isolate 300 g kg–1 (SPI), FM 160 g kg–1 + enzyme‐treated SPI 300 g kg–1 (ESI) and FM 150 g kg–1 + conglycinin 300 g kg–1(CG). Forty fish (3.9 g) were randomly distributed into each of eighteen 300‐L tanks, fed twice daily until satiation for 8 weeks. The final body weight, specific growth rate and condition factor did not show significant differences among the fish fed with diets C, SPC, ESC and ESI (> .05). The survival was significantly lower in fish fed with diets SPI and CG. Feed efficiency was significantly higher in fish fed with diets SPC and C than in fish fed with other diets (< .05). There were no significant differences in nutrients retention efficiencies in fish fed with diets C, SPC, ESC and ESI. A significantly higher phosphorus retention efficiency in fish fed with soymilk protein diets resulted in lower phosphorus discharge to the environment (< .05). These results suggest that the soymilk proteins can comfortably replace 570–770 g FM kg–1 diet of red sea bream juvenile, which will ensure significant ecological benefits through reducing phosphorus load to the environment.  相似文献   

13.
Two experiments were done to evaluate the effects of poultry meal (PM), meat meal (MM) or solvent-extracted soybean meal (SBM) inclusion on the performance of Australian snapper Pagrus auratus. In each experiment, test feeds were formulated with similar contents of digestible protein (DP) and digestible energy (DE) using previously determined digestibility coefficients for this species. In experiment 1, groups of snapper (initial weight 14 g) were fed 4 feeds containing 360, 480, 610 or 730 g kg−1 PM; 3 feeds containing 345, 320 or 500 g kg−1 MM; 3 feeds containing 420, 600 or 780 g kg−1 SBM. In experiment 2, groups of snapper (initial weight 87 g) were fed 3 extruded test feeds that contained combinations of PM, MM, SBM or blood meal (BM) which replaced all but 600, 250 or 160 g kg−1 of fishmeal in respective diet formulations. Both experiments included a proprietary extruded aquafeed (COM) to benchmark fish performance. In experiment 1, weight gain was highest in snapper fed feeds containing 360, 345 or 420 g kg−1 of PM, MM or SBM, respectively, and was similar (P > 0.05) to snapper fed the COM feed. Nonetheless, weight gain and protein retention efficiency tended to decrease as the amount of each test ingredient was increased. Relative feed intake was not affected by the inclusion level of PM, MM or BM, but declined significantly in snapper fed diets containing 600 or 780 g kg−1 SBM. Feeding behaviour indicated fish found these feeds unpalatable. In experiment 2, the harvest weight of snapper fed the 3 extruded test feeds was similar (P > 0.05), but lower than snapper fed the COM feed (i.e. 234 vs. 256 g). Feed conversion ratio (FCR) was best in snapper fed the COM feed (FCR = 1.53); however, the FCR of snapper fed feeds containing 160 (FCR = 1.66), 250 (FCR = 1.70) or 600 g kg−1 fishmeal (FCR = 1.60) was not different (P > 0.05). Australian snapper will readily accept feeds containing high levels of PM, MM or SBM and feeds containing these ingredients will support rapid weight and protein gain with little affect on whole body composition. In combination, these feed ingredients were able to replace all but 160 g kg−1 of fishmeal in an extruded test feed. As such, they serve as valuable alternatives to fishmeal and extend the manufacturing options available to aquafeed producers.  相似文献   

14.
This study shows that alternatives for fishmeal in a fish diet affect not only fish growth but also faeces stability and nitrogen (N) and phosphorus (P) waste production. Wheat gluten diet (WGD), soybean meal extract diet (SBE), soybean meal diet (SBM), duckweed diet (DWD) and single‐cell protein diet (SCP) were evaluated as a fishmeal replacement on a 15% weight weight?1 basis in tilapia diets. Fishmeal replacement affected dry matter (dm), protein, ash and P digestibility significantly. Faeces recovery (6.8–11.2%) was not significantly affected, although the amount of non‐recovered faeces and total faeces showed significant differences. Duckweed diet and SCP resulted in the largest amounts of non‐recovered and total faeces (199–210, 224–225 g dm kg?1 feed dm). Compared with fishmeal diet (FMD), the WGD and SBE resulted in similar growth, but higher non‐faecal N losses (471–495 vs. 416 g N kg?1 N). Soybean meal diet, DWD and SCP resulted in lower growth but less non‐faecal loss (409–450 g N kg?1 N). The DWD and FMD had the highest N retention (480 g N kg?1 N) compared with the other diets (431–451 g N kg?1 N). Carbon retention, faecal and non‐faecal losses and P retention were similar for all diets (302–358, 142–176 and 489–523g C kg?1 C, 606–704 g P kg?1 P). Phosphorus faecal loss was lower for all diets (329–381 g P kg?1 P) than for the FMD (401 g P kg?1 P).  相似文献   

15.
Atlantic salmon fed diets devoid of fishmeal but added 0.5 g  kg?1 fish protein concentrate (FPC) showed reduced growth and lipid deposition without affecting protein accretion as compared to fish fed a fishmeal‐based control diet. The aim of the current study was to assess whether higher inclusion of FPC improved the growth and lipid deposition of Atlantic salmon (initial body weight 380 g) fed high plant protein diets. Quadruplicate groups of fish were fed diets containing 200 g kg?1 fishmeal of which was replaced with FPC (150, 112, 75, 38 and 0 g kg?1) for a period of 79 days. The rest of the diet protein was a mixture of plant proteins. The lipid source used was fish oil. A fishmeal‐based diet was included as a positive control for growth performance. None of the test diets differed from the positive control‐fed fish in voluntary feed intake, growth performance or nutrient accretion. Thus, the test diets were found appropriate to assess the effect of FPC inclusion. Replacement of fishmeal with increasing concentration of FPC did not affect voluntary feed intake (P = 0.56), but growth performance decreased (P = 0.02) resulting in an increased feed conversion ratio (P = 0.003). Viscerosomatic index decreased as diet FPC inclusion increased (P = 0.012) without affecting the dress out weight (P = 0.08). Thus, the apparently improved growth in fish fed the diets with the low FPC inclusion was because of a higher visceral mass. Possible reasons for the reduced visceral mass following addition of FPC to high plant protein diets are discussed.  相似文献   

16.
Rainbow trout (23.1 ± 0.4 g) were fed either a fishmeal‐ or plant‐based diet supplemented with various levels of zinc (0, 15, 30, 60 or 120 mg kg?1) for 12 weeks. Trout fed the fishmeal diet had significantly higher weight gain than with the plant‐based diet. Zinc supplementation in the fishmeal diet had no effect on growth performance, suggesting that additional dietary supplementation of zinc is not required. However, in trout fed the plant‐based diet, growth increased significantly up to 30 mg kg?1 zinc after which growth was not affected. Trout fed the plant‐based diet containing no zinc exhibited severe growth retardation, and in fish fed the 0 and 15 mg kg?1 zinc diets, cataracts were present. Use of broken‐line quadratic modelling suggests that dietary supplementation of zinc needed to prevent deficiency and promote adequate growth in rainbow trout fed the plant‐based diet in this study was 30.1 mg kg?1 (80 mg kg?1 total dietary zinc). This is higher than the NRC (2011, Nutrient Requirements of Fish and Shrimp) dietary recommended level of 15 mg kg?1 for rainbow trout. Following the NRC recommendation could lead to zinc deficiency in rainbow trout fed a plant‐based diet.  相似文献   

17.
《Aquaculture Research》2017,48(4):1759-1766
A shrimp protein hydrolysate (SPH) containing 894.2 g kg−1 crude protein (CP) and 54.3 g kg−1 total lipids was tested as a partial replacement for fish meal (FM) in diets of juvenile cobia. The effects of increasing dietary levels of SPH on the survival, weight gain (WG), specific growth rate (SGR), feed conversion ratio (FCR), nitrogen retention efficiency (NRE) and daily feed intake (DFI) of cobia with initial body weight of 11.9 g were evaluated. Four isoproteic (from 431.1 to 439.7 g kg−1) and isoenergetic (20 825–21 347 MJ kg−1) diets were formulated to contain 0 (Control), 120, 240 or 360 g kg−1 of dietary CP derived from SPH. Survival, WG, SGR, FCR, NRE and DFI ranged from 90 to 100%, 40.2–56.5 g, 4.7–6.1% day−1, 1.04–1.54, 26.3–44.0% and 4.7–6.0% fish−1 day−1 respectively. Survival and DFI were not affected by the dietary treatments. On the other hand, fish fed the control diet and the one containing 120 g kg−1 SPH had higher WG, SGR and FCR. Nitrogen retention efficiency was significantly higher for fish fed diets 0 and 120. It is concluded that up to 120 g kg−1 of SPH in cobia diets can be used with no significant effects on feed utilization and fish performance.  相似文献   

18.
By feeding Atlantic salmon diets with 64% of the fish oil (FO) replaced by vegetable oil, and with decreasing fishmeal (FM) inclusion levels from 213, 178 and 143 g kg−1 (accumulated level during the seawater phase) in a full‐scale experiment producing 3.1 thousand tonnes fish, no significant negative effects on fish performance, health and product quality were observed. All dietary groups showed, however, moderate intestinal inflammation. Reduced growth and feed efficiency were seen with decreasing fishmeal inclusion levels. Two dietary groups demonstrated net marine protein production, while none of the groups showed net fish production (FIFO ≥1.65) due to the equal low FO inclusion. High plant oil level gave lower fillet level of persistent organic pollutants (POPs) compared with the levels surveyed on the Norwegian market. The study gave predictable incorporation rates of essential n‐3 long‐chain fatty acids in the fillet. Cooked salmon fillet from all dietary groups showed minor differences in sensory quality. Based on the present full‐scale production results, dietary FM inclusion down to 160 g kg−1 (accumulated) during the seawater phase, concurrent to replacing ~70% of the FO with a suitable plant oil, is not regarded to represent any risk to fish performance, health or quality.  相似文献   

19.
The experiment was designed to investigate the dietary factors that might enhance or interfere with astaxanthin (Ax) absorption in salmon including potentially interfering factors such as certain carotenoids (zeaxanthin and lutein), plant sterols, fibre and enhancing compounds such as cholesterol and vitamin E. Two hundred and eighty‐eight salmon (778 ± 78 g) were reared in sea water under controlled conditions and fed practical experimental diets. The experimental diets were supplemented with 40 mg Ax kg?1, in addition to various dietary factors, including cholesterol (2%), vitamin E (450 IU kg?1), wheat bran (5%), lutein (40 mg kg?1), zeaxanthin (40 mg kg?1) and phytosterol (2%). After 26 days of feeding, blood was collected and plasma was separated to determine the plasma Ax concentration. Ax was not detected in the plasma of fish fed the non‐pigmented diet. Fish fed diet containing 2% cholesterol significantly improved Ax absorption, which was reflected in the higher Ax concentration in plasma of Atlantic salmon. Other supplements including vitamin E, wheat bran, lutein, zeaxanthin and phytosterols in diet had no significant effect on plasma Ax concentration . Fish fed diet containing 2% cholesterol significantly increased cholesterol concentration in fish plasma. Phytosterol had no benefit to lower cholesterol plasma level in fish fed 2% phytosterol‐supplemented diet.  相似文献   

20.
《Aquaculture Research》2017,48(4):1767-1777
A feeding trial was conducted to evaluate the effects of replacing soybean meal (SBM) with rubber seed meal (RSM) on digestive enzyme activity, nutrient digestibility and retention in juvenile tilapia (Oreochromis niloticus × Oreochromis aureus). Five isonitrogenous and isoenergetic diets were formulated with 0 (control), 100, 200, 300 and 400 g kg−1 RSM replacing graded levels of SBM respectively. Each diet was randomly assigned to triplicate groups of 30 fish (initial average weight 5.2 g) per aquarium in a rearing system maintained at 29 ± 1°C for 8 weeks. The hepatic protease and lipase activities gradually decreased with increasing dietary RSM level, but no significant differences were observed among the low inclusion level (0–200 g kg−1) groups. The apparent digestibility coefficients of dry matter, crude protein, crude lipid and ash showed a similar trend as the hepatic protease and lipase activities. The retentions of protein and individual essential amino acid (except lysine, threonine and leucine) in fish fed diet with 200 g kg−1 RSM were similar to those in fish fed the control diet. These results indicate that dietary RSM inclusion level up to 200 g kg−1 did not markedly affect the digestive enzyme activity, nutrient digestibility and retention in tilapia, whereas these were depressed by the inclusion of 400 g kg−1 RSM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号