首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In an 8‐week growth experiment, juvenile spiny lobsters (Panulirus ornatus) grew best on a feed containing at least 610 g kg?1 crude protein on a dry matter basis (DM) and a digestible protein to digestible energy ratio of 29.8 mg kJ?1. The study entailed a six treatment by four replicate randomized block experiment with 222 wild‐caught P. ornatus of mean initial weight (±SD) of 2.5 ± 0.19 g. The lobsters were fed one of five isolipidic feeds (approximately 130 g kg?1 DM) in which the crude protein was serially incremented between 330 and 610 g kg?1 DM, or a reference diet comprising the flesh of frozen green‐lip mussels. Lobsters fed the pelleted feeds had high survival (79 ± 4.5%) and responded to increasing dietary crude protein content with progressively higher growth rates, with the daily growth coefficient improving from 0.72% day?1 with 330 g kg?1 crude protein to 1.38% day?1 with 610 g kg?1 crude protein. Both growth rate and survival were low with the mussel diet (0.80% day?1and 41 ± 4.5%, respectively). These results demonstrate that tropical spiny lobsters grow well when fed high‐protein, high lipid, pelleted feeds, but feeding on a sole diet of freshly thawed green‐lip mussels was unsatisfactory.  相似文献   

2.
Critical to the development of a cost‐effective feed for the tropical spiny lobster Panulirus ornatus is knowledge of its response to the protein and lipid (or energy) content of the feed. An experiment of 12 weeks duration was carried out to examine growth responses of juvenile lobsters to pelleted diets that provided six crude protein (CP) levels [320–600 g kg?1 dry matter (DM)] and two lipid levels (nominally 60 and 100 g kg?1 DM). Lobsters (mean initial weight of 1.8 g) were held in groups of nine or 10 animals in 24 × 350 L tanks, fed twice daily at a restricted level, and maintained at 28 °C. Maximal growth responses occurred at dietary CP contents of 474 g kg?1 for the 60 g kg?1 lipid series and 533 g kg?1 for the 100 g kg?1 lipid series. A second experiment, of 4 weeks duration, compared two dietary treatments: a mixture of two of the best diets from the first experiment, and a commercial shrimp (Penaeus japonicus) feed. Lobsters were held under the same experimental conditions as in the first experiment, but were fed to excess twice daily. Their growth was significantly greater (P < 0.05) on the shrimp feed (0.68 g week?1) than on the laboratory‐pelleted diets used in the main study (0.32 g week?1). The results indicate that the optimal dietary protein and lipid content of the diet for P. ornatus is about 530 and 100 g kg?1, respectively.  相似文献   

3.
The effect of various carbohydrate sources (glucose, sucrose, agar, wheat, tapioca, maize, potato and dextrin), and inclusion levels of gelatinized maize starch (0, 70, 170, 270 g kg?1), incorporated in semi‐purified diets on the performance [growth, survival, food consumption (FC), enzyme activity and glycogen content of the digestive gland (DG)] of spiny lobster juveniles was investigated in a 12‐week culture experiment. There was no difference in specific FC among diets (1.1% BW day?1), but lobsters fed with fresh mussel grew significantly faster (specific growth rate = 1.8% BW day?1) than on the formulated diets (0.9–1.1% BW day?1). None of the carbohydrate supplements tested produced a significant improvement in growth or survival over a basal control diet. However, the diet containing 270 g kg?1 native wheat starch resulted in the highest moulting (mean = 2.1 moults per lobster), glycogen (3.3 mg g?1) and free glucose (1.1 mg g?1) concentrations among lobsters fed with the formulated diets, suggesting a superior utilization of this source of carbohydrate. The greater glycogen (8.0 mg g?1 tissue) and free glucose (2.0 mg g?1 tissue) concentrations, as well as higher specific activity of α‐amylase (2.3 versus <0.7 U mg?1 for other diets), found in the DG of lobsters fed with fresh mussel indicated a metabolism strongly directed to the utilization of glycogen.  相似文献   

4.
The carotenoid astaxanthin (Axn) plays a vital role in shrimp pigmentation, with direct influence on product quality, and forms a significant cost component of shrimp aquaculture feeds. However, the effects of dietary Axn on other measures of shrimp physiological performance are varied, and the efficiency of carotenoid uptake from the diet and deposition in shrimp tissues is poorly defined. This study fed juvenile shrimp (Penaeus monodon) diets that contained 0, 25, 50 or 100 mg kg?1 Axn for 6 weeks. Shrimp fed carotenoid‐free diets had significantly reduced colour and growth than those fed carotenoids, but survival was unaffected. Carotenoid digestibility improved as dietary carotenoid levels increased, and was 98.5% in shrimp fed 100 mg kg?1 Axn. After 6 weeks, whole body carotenoid levels were significantly depleted in 0 or 25 mg kg?1 fed shrimp, compared with those fed 50 or 100 mg kg?1 or compared with initial shrimp. This study also showed that Axn monoesters were enriched with saturated fatty acids, whereas Axn diesters were enriched with monounsaturated and polyunsaturated fatty acids. Combined, these studies demonstrate that a total dietary carotenoid intake of between 25 and 50 mg kg?1 Axn is required for normal shrimp growth and health in P. monodon. Evidence suggests that there is a functional role for the accumulation of carotenoids and the formation of specific Axn fatty acid esters, and these may be linked to the metabolism, storage, mobilization or deposition of Axn within various tissues.  相似文献   

5.
Development of a pelleted dry feed as an alternative to feeding fresh fishery by‐catch is an environmental priority for tropical spiny lobster aquaculture. Earlier studies have shown the lobster's acceptance of pelleted dry feed diminishes rapidly after immersion in water. In this work, we quantified the rate at which dry matter, total protein, soluble protein and individual and total free amino acids were lost from pieces of green‐lipped mussel Perna canaliculus, a commercially‐extruded Penaeus japonicus (kuruma) shrimp feed (KSF) and four laboratory‐made, fishmeal‐based, pelleted feeds upon immersion for up to 7.5 h. The laboratory‐made feeds contained homogenates of either green‐lipped mussel, polychaete (Marphysa sanguinea), prawn (Metapenaeus bennettae) or squid (Sepioteuthis spp.). After being immersed in water for 0, 2.5 or 5 h, these same feeds were offered as a paired choice with KSF in two preference feeding studies with juvenile Panulirus ornatus lobsters. The loobster's preference for fresh mussel always exceeded that of KSF, irrespective of immersion time. Regression of the proportional intake of test feeds against the relative leach rate of KSF identified soluble protein, glycine and taurine as the principal leachate components having the highest positive correlations with the lobster's feeding preference.  相似文献   

6.
A single‐factor experiment was conducted to investigate the effects of dietary astaxanthin concentration on the skin colour of snapper. Snapper (mean weight=129 g) were held in white cages and fed one of seven dietary levels of unesterified astaxanthin (0, 13, 26, 39, 52, 65 or 78 mg astaxanthin kg?1) for 63 days. Treatments comprised four replicate cages, each containing five fish. The skin colour of all fish was quantified using the CIE L*, a*, b* colour scale after 21, 42 and 63 days. In addition, total carotenoid concentrations of the skin of two fish cage?1 were determined after 63 days. Supplementing diets with astaxanthin strongly affected redness (a*) and yellowness (b*) values of the skin at all sampling times. After 21 days, the a* values increased linearly as the dietary astaxanthin concentration was increased before a plateau was attained between 39 and 78 mg kg?1. The b* values similarly increased above basal levels in all astaxanthin diets. By 42 days, a* and b* values increased in magnitude while a plateau remained between 39 and 78 mg kg?1. After 63 days, there were no further increases in measured colour values, suggesting that maximum pigmentation was imparted in the skin of snapper fed diets >39 mg kg?1 after 42 days. Similarly, there were no differences in total carotenoid concentrations of the skin of snapper fed diets >39 mg kg?1 after 63 days. The plateaus that occurred in a* and b* values, while still increasing in magnitude between 21 and 42 days, indicate that the rate of astaxanthin deposition in snapper is limited and astaxanthin in diets containing >39 mg astaxanthin kg?1 is not efficiently utilized. Astaxanthin retention after 63 days was greatest from the 13 mg kg?1 diet; however, skin pigmentation was not adequate. An astaxanthin concentration of 39 mg kg?1 provided the second greatest retention in the skin while obtaining maximum pigmentation. To efficiently maximize skin pigmentation, snapper growers should commence feeding diets containing a minimum of 39 mg unesterified astaxanthin kg?1 at least 42 days before sale.  相似文献   

7.
The effects of dietary astaxanthin supplemented at 0, 40, 80 or 150 mg astaxanthin kg−1 on growth, survival, moult frequency, osmoregulatory capacity (OC) and selected metabolic and haematological variables in Litopenaeus vannamei acclimated to low‐salinity water (3 g L−1) were evaluated. Supplemented astaxanthin at 80 mg kg−1 improved growth, survival and moult frequency in shrimp. The lowest OC was also exhibited in shrimp fed with dietary astaxanthin at 80 mg kg−1. Shrimp haemolymph concentrations of glucose, lactate, haemocyanin and total haemocyte count were all significantly enhanced by feeding the diet supplemented with 80 mg astaxanthin kg−1 compared with shrimp fed with the other diets. On the basis of these results, dietary astaxanthin supplementation of 80 mg kg−1 is recommended for juvenile L. vannamei cultured in low‐salinity water.  相似文献   

8.
Atlantic salmon fry hatched from pigment-free eggs and from eggs containing the pigment astaxanthin were fed eleven casein/gelatine-based purified diets with varying levels of astaxanthin, ranging from 0 to 317 mg kg?1, to determine the optimum dietary astaxanthin level for satisfactory growth and survival during the start-feeding period. The fish were fed the experimental diets for a period of 11 weeks. No difference in performance was found between the two types of fry originating from the pigment-free eggs and those containing pigment. However, the dietary astaxanthin concentration was found to have a significant effect on both the growth and the survival of fry. Fish fed diets with astaxanthin concentrations below 5.3 mg kg?1 were found to have marginal growth. In addition, mortality was high in the groups fed diets with astaxanthin concentrations below 1.0 mg kg?1. The specific growth rate (SGR) was also affected by the dietary treatment. The lipid content was higher and the moisture content was lower in the fish fed the diets containing astaxanthin concentrations above 5.3 mg kg?1. The vitamin A and astaxanthin concentrations in whole-body samples of the fry were significantly affected by the dietary level of astaxanthin. A plateau level in whole-body vitamin A concentration was observed at dietary levels of approximately 80 mg astaxanthin kg?1 and higher, while no maximum astaxanthin concentration in whole-body samples was observed within the dietary levels used. The results suggest the need for a minimum dietary astaxanthin concentration of 5.1 mg kg?1 to achieve maximum growth and survival during the start-feeding period. The results indicate a low bioavailability of vitamin A palmitate and acetate and the results also suggest a provitamin A function for astaxanthin during the same period.  相似文献   

9.
Atlantic salmon, Salmo salar L., juveniles, with a mean initial weight of 1.75 g, were fed casein-based purified diets which had been supplemented with different levels of astaxanthin for a 10-week period. The astaxanthin content of the diets ranged from 0 to 190 mg kg?1 dry diet. The growth and survival of the juveniles were recorded throughout the experiment. The proximate composition, astaxanthin and vitamin A content were determined from whole-body samples at the start and termination of the experiment. The dietary treatment was found to affect growth significantly (P < 0.05). A reduction in the mean weight of the juveniles was observed in the groups fed the diets without astaxanthin supplementation. There was no difference in growth rate between the fish in the groups fed the diets containing 36 or 190 mg astaxanthin kg?1 dry diet, whereas the fish in the group fed the diet containing 5.3 mg astaxanthin kg?1 dry diet had a lower growth rate. There was a tendency to higher survival in the groups fed the diets containing astaxanthin when compared with the groups fed the non-supplemented diets. The moisture and ash contents were significantly lower and the lipid content was higher in the groups fed the astaxanthin-supplemented diets. The astaxanthin and the vitamin A concentrations in the fish were found to be dependent upon the dietary astaxanthin dose; the highest values were found in the fish fed the diet with the highest astaxanthin content. These results strongly indicate that astaxanthin functions as a provitamin A for juvenile Atlantic salmon. The body storage of vitamin A increased in the fish fed the diets containing astaxanthin. However, the increase was low in the fish fed the diet containing 5.3 mg astaxanthin kg?1 dry diet.  相似文献   

10.
Atlantic salmon, Salmo salar L., were fed nine experimental diets containing from 0 to 200 mg astaxanthin per kg?1 for six time periods, ranging from 3 to 21 months, in sea cages at Matre Aquaculture Research Station, Matredal, Norway. The sampled fish had an initial mean weight of 115 g and reached a weight of 3.2 kg at the termination of the experiment. Every third month, 10 fish from each dose and time group were sampled and the astaxanthin concentration in the flesh determined. The amount of astaxanthin in the flesh ranged from 0.7 to 8.9 mg kg?1 at the termination of the experiment. This paper discusses deposition of astaxanthin in the flesh of Atlantic salmon in relation to dietary carotenoid levels in the 0–200 mg kg?1 range and feeding times of 3–21 months. Under the conditions of this experiment, no significant effect on astaxanthin deposition rate could be achieved by increasing the astaxanthin level above 60 mg kg dry feed?1. Atlantic salmon should be fed astaxanthin-supplemented diets during the whole seawater stage in order to obtain maximal astaxanthin level in the flesh.  相似文献   

11.
This study examined the effects of dietary esterified astaxanthin concentration on coloration, accumulation of carotenoids, and the composition of carotenoids over time in the skin of Amphiprion ocellaris. Juveniles of 30 days-post-hatch were fed 40, 60, 80, or 160 mg esterified astaxanthin per kg diet (mg kg?1) for 90 days. Skin coloration was analyzed using the hue, saturation, and luminosity model. Increased astaxanthin concentrations and duration on diet lead to improvements in skin color, that is, lower hues (~27–29 to ~14–17; redder fish), higher saturation (~77 to ~87 %), and lower luminosity (~43 to ~35 %). Fish fed 80 and 160 mg kg?1 astaxanthin feed showed significant coloration improvements over fish fed lower astaxanthin feeds. Increasing both dietary astaxanthin concentration and time on the feed resulted in significant increases in total skin carotenoid concentration (0.033–0.099 μg mm?2). Furthermore, there was a significant linear relationship between hue and total skin carotenoid concentration. Compositionally, free astaxanthin and 4-hydroxyzeaxanthin were the major skin carotenoids. 4-hydroxyzeaxanthin was previously unreported for A. ocellaris. Carotenoid composition was affected by duration on diet. Fraction 4-hydroxyzeaxanthin increased by ~15 %, while free astaxanthin decreased equivalently. The transition from 4-hydroxyzeaxanthin to free astaxanthin appears to follow a reductive pathway. Results suggest that managing coloration in the production of A. ocellaris juveniles requires manipulation of both dietary astaxanthin concentration and period of exposure to astaxanthin containing diet. In order to achieve more orange–red-colored fish, feeding 80–160 mg kg?1 esterified astaxanthin for an extended duration is recommended.  相似文献   

12.
Atlantic salmon, Salmo salar, fitted with permanent dorsal aorta cannulae were fed diets containing either 0, 30, 60 mg kg?1 or combinations of astaxanthin and canthaxanthin, with the aim of comparing the uptake efficiencies to blood of the two pigments and evaluating possible interactions during absorption when formulated in the same diet. Given either astaxanthin or canthaxanthin in separate diets, at dietary levels of <30 mg kg?1, an identical linear relationship (R2 = 0.97) between dietary levels and blood concentrations was observed for both carotenoids. At dietary astaxanthin inclusions above 30 mg kg?1, blood astaxanthin concentration approached saturation at an average level of 1.2 ± 0.04 μg mL?1 (arithmetic mean ± SD), whereas blood levels of canthaxanthin continued to increase linearly throughout the inclusion range tested (0–60 mg kg?1). When both carotenoids were presented in the same diet, a reduction in the absorption efficiency of both pigments was observed (P < 0.05). This manifested itself as a lower level in blood than the level observed when each carotenoid was administered separately. The negative interaction was most prominent for astaxanthin, the maximum average blood saturation level of which fell (P < 0.05) to 0.73 ± 0.03 μg mL?1 (arithmetic mean ± SD). Our data support the conclusion that at higher dietary inclusions, canthaxanthin is more efficiently absorbed from the digestive tract into the blood of S. salar than astaxanthin.  相似文献   

13.
The immunostimulatory role of carotenoid extract from shrimp processing discards was evaluated by feeding common carp fingerlings with a diet containing carotenoid extract for 21 weeks at 100 and 200 mg kg?1 astaxanthin levels. Haemoglobin content was significantly (P < 0.05) higher in the blood of fish fed with carotenoid diet (>8.1 g dL?1) compared with that from fish fed with carotenoid deficient diet (6.86 g dL?1) and also leukocyte counts were higher (P < 0.05). No differences (P > 0.05) were observed in total serum protein, globulin level and albumin‐globulin ratio, but albumin content was higher (P < 0.05). Respiratory burst activity was significantly (P < 0.05) higher, the serum lysozyme activity almost doubled and the serum bactericidal activity was significantly increased when the fish were fed with diet containing 200 mg kg?1 of astaxanthin but no significant differences were observed in serum trypsin inhibitory activity. There was a significant (P < 0.05) increase in leukocyte myeloperoxidase activity due to dietary carotenoids. Challenging fish with Aeromonas hydrophila after the feeding period resulted in 50% mortality in the control group while in the group fed with diet containing 100 mg kg?1 astaxanthin, the mortality rate was 15%. No mortality and even symptoms of infection was not observed in the group fed with diet containing 200 mg kg?1 of astaxanthin. The study indicated that carotenoid extract from shrimp processing discards can effectively be used as immunostimulants in aquaculture of carps and dietary carotenoids were found to enhance various immune defence mechanisms and also provide protection against the infection of pathogen A. hydrophila.  相似文献   

14.
The optimal concentration of a panel of individual and combined carotenoid sources on skin pigmentation in fancy carp was investigated by nine experimental diets that were formulated and supplemented with astaxanthin at 25 mg kg?1, lutein at 25 and 50 mg kg?1, β‐carotene at 25, 50 and 75 mg kg?1, and lutein combined with β‐carotene at 25 : 25 and 50 : 50 mg kg?1, while a diet without supplemented carotenoid served as a control. The results showed that serum TC of fish fed diets containing supplemented with lutein plus β‐carotene at 25 : 25; 50 : 50 mg kg?1 and lutein 50 mg kg?1 diet were higher than the other treatments (P ≤ 0.05). Serum TC of the respective treatments was 6.2 ± 2.0, 7.8 ± 3.3 and 7.3 ± 1.9 μg mL?1 serum, respectively. Fish fed diets combined with lutein and β‐carotene at 25 : 25, 50 : 50 mg kg?1 and lutein 50 mg kg?1 diet had serum astaxanthin concentrations similar to fish fed the diet with astaxanthin alone at 25 mg kg?1. Serum astaxanthin concentrations was 0.7 ± 0.01, 0.9 ± 0.01, 0.4 ± 0.02 and 1.7 ± 0.18 μg mL?1 serum, respectively. The chromaticity of fish body skin of red and white position was assessed by colourimetry using the CIE L*a*b (CIELAB) system. Pigmentation response of skin redness of fancy carp fed with diets combined with lutein and β‐carotene at 25 : 25, 50 : 50 mg kg?1 and lutein 50 mg kg?1 were higher than other treatments (P ≤ 0.05) but they were similar to fish fed with 25 mg kg?1 astaxanthin diet. The redness (a* values) of fish fed diets with diets combined with lutein and β‐carotene at 25 : 25, 50 : 50 mg kg?1 and lutein 50 mg kg?1 were 28.3 ± 0.53, 29.9 ± 1.38, 28.8 ± 3.95 and 28.5 ± 2.49, respectively. After 3 weeks of feeding the experimental diets, the fish fed on a diet without carotenoid supplement for one week demonstrated that the same three groups still retained their redness and had an overall tendency to improve skin colouring. Finally, concentrations 50 mg kg?1 of lutein, or the combination of lutein and β‐carotene at 25 : 25 mg kg?1 showed the highest efficiency for improving skin pigmentation and redness of skin.  相似文献   

15.
The aim of this work was to evaluate the effects of Haematococcus pluvialis (H. pluvialis) (carotenoid source) and H. pluvialis plus soy lecithin on development, carotenoid content, and pigmentation of shrimp (Litopenaeus vannamei). One hundred and eighty shrimps (7.8 g) were divided in six tanks (n = 30) and fed with control food, H. pluvialis, and H. pluvialis plus soy lecithin for 2 weeks. Carotenoids were extracted with acetone and quantified by UV–vis spectrophotometry, and astaxanthin was determined by high‐performance liquid chromatography. Colour was analysed by colorimetry. Lecithin/H. pluvialis group presented higher survival rate (100%) when compared to control group (93.3%). Haematococcus pluvialis and lecithin/H. pluvialis groups presented higher red‐like colour (a* 16.4 and 19.9) than control (a* 20.6). Lecithin/H. pluvialis group presented higher carotenoids content (8.2 mg kg?1 muscle, 26.8 mg kg?1 exoskeleton) and astaxanthin (8.5 mg kg?1 muscle, 23.3 mg kg?1 exoskeleton) than control (carotenoids: 4.2 mg kg?1 muscle, 12.3 mg kg?1 exoskeleton; astaxanthin: 3.2 mg kg?1 muscle, 8.1 mg kg?1 exoskeleton). Feeding with 60 ppm carotenoids (from H. pluvialis) during 2 weeks was sufficient for favouring red‐like pigmentation in shrimp, and lecithin increased astaxanthin content only in exoskeleton.  相似文献   

16.
Three 2‐factor experiments were conducted to determine the effects of background colour and synthetic carotenoids on the skin colour of Australian snapper Pagrus auratus. Initially, we evaluated the effects on skin colour of supplementing diets for 50 days with 60 mg kg?1 of either astaxanthin (LP; Lucantin® Pink), canthaxanthin (LR; Lucantin® Red), apocarotenoic acid ethyl ester (LY; Lucantin® Yellow), selected combinations of the above or no carotenoids and holding snapper (mean weight=88 g) in either white or black cages. In a second experiment, all snapper (mean weight=142 g) from Experiment 1 were transferred from black to white, or white to white cages to measure the short‐term effects of cage colour on skin L*, a* and b* colour values. Skin colour was measured after 7 and 14 days, and total carotenoid concentrations were determined after 14 days. Cage colour was the dominant factor affecting the skin lightness of snapper with fish from white cages much lighter than fish from black cages. Diets containing astaxanthin conferred greatest skin pigmentation and there were no differences in redness (a*) and yellowness (b*) values between snapper fed 30 or 60 mg astaxanthin kg?1. Snapper fed astaxanthin in white cages displayed greater skin yellowness than those in black cages. Transferring snapper from black to white cages increased skin lightness but was not as effective as growing snapper in white cages for the entire duration. Snapper fed astaxanthin diets and transferred from black to white cages were less yellow than those transferred from white to white cages despite the improvement in skin lightness (L*), and the total carotenoid concentration of the skin of fish fed astaxanthin diets was lower in white cages. Diets containing canthaxanthin led to a low level of deposition in the skin while apocarotenoic acid ethyl ester did not alter total skin carotenoid content or skin colour values in snapper. In a third experiment, we examined the effects of dietary astaxanthin (diets had 60 mg astaxanthin kg?1 or no added carotenoids) and cage colour (black, white, red or blue) on skin colour of snapper (mean weight=88 g) after 50 days. Snapper fed the astaxanthin diet were more yellow when held in red or white cages compared with fish held in black or blue cages despite similar feed intake and growth. The skin lightness (L* values) was correlated with cage L* values, with the lightest fish obtained from white cages. The results of this study suggest that snapper should be fed 30 mg astaxanthin kg?1 in white cages for 50 days to increase lightness and the red colouration prized in Australian markets.  相似文献   

17.
This study was conducted to evaluate the effects of extruded diets and pelleted diets with varying dietary lipid levels on growth performance and nutrient utilization of tilapia. Six diets, containing three levels of lipid at 40, 60 or 80 g kg?1 (with the supplemental lipid of 0, 20 or 40 g kg?1, respectively), were prepared by extruding or pelleting and then fed to tilapia juveniles (8.0 ± 0.1 g) in cages (in indoor pools) for 8 weeks. The results indicated that the fish that were fed the diet with 60 g kg?1 of lipid had a higher weight gain (WG), specific growth rate (SGR), protein efficiency ratio (PER), lipid retention (LRE), energy retention (ERE), apparent protein digestibility, apparent dry matter digestibility and a lower feed conversion ratio (FCR) than those fed the diet with 40 g kg?1 lipid in both the extruded diet and pelleted diet (P < 0.05). As the dietary lipid level increased from 60 to 80 g kg?1, these parameters were not further improved, even digestibilities of the crude protein and dry matter decreased (P < 0.05). With the dietary lipid level increased, whole‐body lipid content significantly increased (P < 0.05), serum aspartate aminotransferase, alkaline phosphatase, total cholesterol and low‐density lipoprotein cholesterol (LDL‐C) tended to increase (P > 0.05), whereas whole‐body protein content, serum triglyceride (TG), high‐density lipoprotein cholesterol (HDL‐C) and HDL‐C/LDL‐C tended to decrease (P > 0.05). Fish fed with the extruded diets had a higher WG, SGR, hepatosomatic index (HSI), PER, protein retention (PRE), LRE, ERE, TG, apparent digestibility of protein and dry matter, as well as a lower FCR, than those fed with the pelleted diets at the same dietary lipid level (P < 0.05). These results suggested that tilapia fed with the extruded diets had a better growth and higher nutrient utilization than fish fed with the pelleted diets, when dietary lipid level ranged from 40 to 80 g kg?1 and at dietary crude protein level was 280 g kg?1. The optimum dietary lipid level was 60 g kg?1 in both the pelleted and extruded diets, and extrusion did not affect dietary lipid requirement of the tilapia.  相似文献   

18.
Experimental lobster feeds are currently based on fish meal and fish oil formulations, and although survival and growth similar to that of lobsters fed fresh blue mussels has been achieved, varying the protein level in previous experimental feeds has not increased growth beyond that of lobsters fed natural food. This experiment assessed the growth performance of lobsters fed pelleted feeds containing constant amounts of protein, lipid and energy where the lipid was provided by a range of oil-rich ingredients (fish oil, FO; fish oil with added soybean lecithin, FOL; canola oil, CO; tuna oil, TO; mussel meal, MM; and squid meal, SQM). Feed performance was assessed by lobster growth rate, survival, final biochemical composition, nutrient retention and nutrient efficiency. Twenty tanks containing 15 post-larval lobsters each (1.5 ± 0.04 g) were randomly allocated one of six test feeds in triplicate, and the two remaining tanks were fed freshly opened blue mussels (FRM) as a reference feed. Lobsters were fed daily to excess for 10 weeks. Final individual weights of whole body and digestive gland were measured, and tissue chemical composition analysed. There were no significant differences in survival (88.4 ± 3.3%), or specific growth rate (1.3 ± 0.1%.day− 1) among the formulated feed fed lobsters, which were significantly lower than the survival (100 ± 0.0%) and SGR (2.2 ± 0.1%.day− 1) of FRM fed lobsters. The SQM fed lobsters had a significantly lower lipid efficiency ratio and lipid productivity value than lobsters fed TO, FOL and MM feeds. The digestive gland lipid content (g.100 g wet tissue− 1) of lobsters fed the feeds TO (3.7 ± 0.4), FO (3.5 ± 0.3) and SQM (2.2 ± 0.2) were significantly lower than lobsters fed feeds MM (9.9 ± 1.1), FOL (9.0 ± 2.3) and FRM fed lobsters contained most digestive gland lipid (12.3 ± 1.5).  相似文献   

19.
The influence of α-tocopheryl acetate (α-TOAc) on plasma concentration and fillet deposition of dietary astaxanthin was investigated in Atlantic salmon Salmo salar L. The diets were added 30 or 50 mg kg–1 astaxanthin, and 200, 400 or 800 mg kg–1α-TOAc at each astaxanthin level. Improved flesh deposition of astaxanthin by 8–14% was achieved for fish fed diets with 30 and 50 mg kg–1 astaxanthin, respectively, by the dietary addition of 800 compared with 200 mg kg–1α-TOAc. These results were supported by CIE[1976]L*a*b* tristimulus redness measurements (a* value). Plasma astaxanthin concentration mirrored the muscle astaxanthin concentration in the groups of fish fed a diet containing 30 mg kg–1 astaxanthin. The salmon fed a high astaxanthin and low α-TOAc diet had the highest plasma concentration of idoxanthin (P < 0.05). Astaxanthin retention was significantly higher (P < 0.001) in salmon fed 30 mg kg–1 astaxanthin than in those fed 50 mg kg–1 astaxanthin, but was not significantly affected by dietary α-TOAc. Liver weight, body weight, specific growth rate, feed/gain ratio and mortalities were not affected by dietary α-TOAc levels. In conclusion, the dietary addition of α-TOAc appears to increase astaxanthin fillet deposition in salmonids and may reduce the demand for astaxanthin supplementation. The effect was rather small and requires verification.  相似文献   

20.
The absorption of astaxanthin from diets (30 mg kg?1 inclusion) supplemented with either unesterified astaxanthin; isolated astaxanthin monoesters, diesters or a cell‐free carotenoid extract from Haematococcus pluvialis were studied in rainbow trout (>200 g). No significant differences (P > 0.05) were recorded in the apparent digestibility coefficients (ADC) (≈60–65%) between astaxanthin sources. However, following consumption of a single meal, peak serum astaxanthin levels at 32 h (≈1.0–1.6 μg mL?1) were significantly higher (P < 0.05) in fish fed unesterified astaxanthin and astaxanthin monoester, compared to fish fed astaxanthin diester and the cell free extract. However, no significant differences (P > 0.05) were recorded in serum astaxanthin uptake rates between sources of astaxanthin. Results suggest that the extent of carotenoid esterification negatively influences the peak serum levels of astaxanthin in rainbow trout.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号