首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
【目的】研究灌浆期不同时段高温对稻米淀粉组成、结构和理化特性的影响,揭示高温对稻米淀粉理化特性影响的时段效应,阐明高温、结构和功能之间的关系。【方法】以耐热水稻品种黄华占和热敏感的9311近等位基因系为实验材料,利用人工气候箱设置高温[38℃(昼)/30℃(夜)]和对照[28℃(昼)/22℃(夜)],研究灌浆前期(齐穗期后1-15 d)和后期(齐穗期后16 d至成熟)高温对稻米的加工品质、外观品质、淀粉组成、支链淀粉链长分布、粒度分布、胶稠度、黏度特性、糊化特性、结晶特性和颗粒形态的影响。【结果】灌浆期高温使糙米率、精米率、整精米率显著下降,使垩白粒率和垩白度显著升高,导致加工品质和外观品质变差。灌浆期高温使总淀粉含量、直链淀粉含量、短支链淀粉含量、大淀粉粒占比、直/支链淀粉比显著下降,而中等支链淀粉含量、小中淀粉粒占比、糊化温度和糊化焓显著上升,黏度特性显著改变,结晶类型不变但结晶度显著改变,淀粉颗粒表面出现小孔,表面变得凹凸不平,导致淀粉颗粒更加碎片化和蒸煮食味品质变劣。灌浆期不同时段高温对稻米品质的影响不同,灌浆前期高温对稻米淀粉的影响大于灌浆后期,耐热品种受影响小于热敏感品种。灌浆前期高温处理下供试材料具有较高的消减值和较低的崩解值,黏度特性变差;灌浆后期高温处理下供试材料具有较低的消减值和较高的崩解值,黏度特性变好。【结论】灌浆前期高温对淀粉理化特性的影响最大,进而导致稻米的加工品质、外观品质和蒸煮食味品质变劣,灌浆后期高温提升了黏度特性。  相似文献   

2.
High temperature (HT) and drought stress (WS) severely affect rice quality by altering the starch structure in rice. The morphological and physicochemical properties of starches isolated from two rice varieties grown under three stress treatment (HT, WS and WS + HT) during the grain filling stage were investigated. The results showed that WS increased amylose content (AC%) and the proportion of large starch granules (LSG) and made the surface of the starch granule smooth and flat. As a result, a lower relative crystallinity, surface order, swelling power, setback viscosity and gelatinization enthalpy were caused. HT decreased AC% and milled rice rate, but increased chalky rice rate, the number of LSG and the large air space and pits on the surface of the starch granules. As a result, a higher relative crystallinity, surface order, swelling power, setback viscosity and gelatinization enthalpy were caused. Similar results were observed under the treatment of WS + HT, indicating that there is a mild antagonistic effect on rice starch when the HT and WS occur simultaneously.  相似文献   

3.
4.
High temperature (HT) is the major environmental factor affecting grain starch properties of cooking rice cultivars. However, little information has been available on the effect of environmental temperature on the starch granule size distribution of rice grains. In this paper, five indica rice genotypes, including the wild type (9311) and its four mutants differing in amylose content (AC), were used to investigate the effect of environmental temperature on the starch granule size distribution, as well as its relation to AC and gelatinization properties of rice starch. Two temperature treatments (HT and NT) at filling stage were imposed to rice plants under the controlled temperature chambers. The result showed that HT increased the average diameter of starch granules and enhanced the proportion of large starch granules (LSG, D > 2.6 μm) by number, volume and surface area, respectively. However, influence of HT on GT and starch granule size distribution was relatively independent of their alteration in AC level for different rice genotypes. Therefore, HT-induced increase in the average diameter of starch granules and LSG percentage was strongly responsible for the higher starch gelatinization temperature and inferior cooked palatability of HT-ripening rice grains, which be not inherently associated with their varying AC level.  相似文献   

5.
Endosperm texture is an important factor governing the end-product quality of cereals. The texture of wheat (Triticum aestivum L.) endosperm is controlled by puroindoline a and b genes which are both absent in rice (Oryza sativa L.). It has been reported that the endosperm texture of rice can be modified by puroindoline genes. The mechanism, however, by which puroindolines affect the ultrastructure of rice endosperm cells remains to be investigated. In this study, we observed the ultrastructure of endosperm cells and the morphology of isolated starch granules of the transgenic rice expressing the puroindoline b gene. SEM and TEM observations indicated that compound starch granules were embedded within the matrix material in non-transgenic rice, Nipponbare, whereas they were surrounded by spaces in the transgenic rice. The morphology and size of each starch granule were not different between non-transgenic and the transgenic rice. However, the transgenic rice flour showed smaller particle size, higher starch damage, and lower viscosity during gelatinization than that of non-transgenic rice. These results confirm that puroindoline b reduces the grain hardness in rice. Moreover, the results also suggest that puroindoline b functions at the surface of compound starch granules, and not on polygonal starch granules in rice endosperm.  相似文献   

6.
Ungerminated brown rice (UGBR) and pre-germinated brown rice (PGBR) obtained from different pre-germination durations were studied to investigate the changes in total starch contents of flour, amylopectin molecular structures, crystallinity, and thermal properties of starches as affected by pre-germination. Each paddy of three rice cultivars with different amylose contents (RD6, waxy; KDML105, low amylose; and RD31, high amylose) was soaked in water at 30°C for 12 h and incubated over different periods until the three stages of embryonic growth length (EGL) were achieved. The total starch contents of three-stage PGBR flour from all rice cultivars decreased when pre-germination durations were increased. The three-stage PGBR starches from the three rice cultivars had lower weight-average molecular weight (Mw) and number-average molecular weight (Mn) than UGBR starches. All starches from the three rice cultivars displayed an A-type X-ray diffraction pattern (XRD). Isolated UGBR starch from RD6 had the highest (31.33%) relative crystallinity (RC), while RD31 showed the lowest RC (26.79%). The slight increases in the RC of three-stage PGBR starches from three rice cultivars were found after pre-germination. Isolated PGBR starches from the three rice cultivars had higher gelatinization temperatures and enthalpy, but lower retrogradation enthalpy and %retrogradation than UGBR starches.  相似文献   

7.
The present work was designed to obtain information on the effect of germination time on the selected physicochemical properties of brown rice flour and starch prepared from three different rice cultivars. Changes in total starch, amylose and amylopectin contents of flour, amylopectin/amylose ratio and molecular weight of starch, gelatinization, pasting, rheological, and morphological properties of flour and starch during 5 days of germination were investigated. Significant changes of pasting and rheological properties of brown rice flour were found during germination, but only small changes of these properties could be found in isolated starch. Scanning electron micrographs of flour showed that the continuous matrix structure of flour was highly destroyed after germination and scanning electron micrographs of isolated starch showed that after three days of germination, pits and holes were discovered on the surface of some starch granules. Germination had little effect on the average molecular weight of starch, but the polydispersity value in germinated brown rice (2–5 days germination) was higher than that in non-germinated brown rice. The changes observed in physicochemical properties of brown rice flour and starch after germination provided a crucial basis for understanding flour and starch modification mechanisms with potential applications for an industrial scale.  相似文献   

8.
High temperature stress during ripening increases the frequency of chalky grains, resulting in a lower market value for rice (Oryza sativa L.). Changes in starch properties and the accumulation pattern of storage proteins are proposed to be related to the occurrence of chalky grains. This study investigated changes in the accumulation of key storage compounds in the grains of Japanese highly palatable rice cultivars, subjected to high temperature stress when grown in a growth chamber and the field. The 13 kDa prolamin content was significantly reduced in a highly heat-sensitive cultivar, Tsukushiroman, whereas the 13 kDa prolamin content was not affected in a heat-tolerant cultivar, Genkitsukushi, even in a high temperature chamber condition (31/26 °C day/night), when compared with the control chamber condition (26/21 °C day/night) for both genotypes. In addition, grains grown in field conditions revealed that severely chalky grains had less 13 kDa prolamin than perfect grains in all five genotypes. Changes in amylose content and the distribution of amylopectin chain lengths did not explain the difference in grain appearance both for chamber and field experiments. These results strongly suggest that physiological processes linked with the synthesis of 13 kDa prolamin are associated with grain appearance in Japanese highly palatable under high temperature stress.  相似文献   

9.
富含抗性淀粉水稻突变体的淀粉特性   总被引:16,自引:0,他引:16  
 从杂交水稻优异恢复系R7954诱变筛选了1个富含抗性淀粉的突变体RS111。该突变体热米饭中抗性淀粉的含量高达7.0%,是其野生型的2.4倍。突变体的淀粉颗粒形态、DSC和多晶衍射的曲线和参数与野生型明显不同,表现为淀粉颗粒大小较为一致,圆形和卵形淀粉颗粒所占比率较高,溶晶起始温度(TO)、最高温度(TP)、回落温度(TC)、焓变(ΔHGEL)及结晶度更低。突变体的表观直链淀粉、粗脂肪和粗纤维的含量显著提高。  相似文献   

10.
以携带相同Wxb基因的籼稻品种黄华占和扬稻6号为试验材料,系统分析了这2个优质籼稻品种的理化特性和淀粉精细结构.结果表明,黄华占稻米蛋白质含量显著低于扬稻6号,而表观直链淀粉含量高于扬稻6号,其他理化品质如胶稠度、总淀粉含量和碱消值两者无显著差异;黄华占稻米具有较高的糊化温度和热焓值.黄华占和扬稻6号稻米淀粉粘滞曲线较...  相似文献   

11.
为了明确不同生态点对不同小麦品种籽粒淀粉含量及理化特性的影响,对四川省27个小麦品种(系)在四个生态点(温江、西昌、崇州、仁寿)3年的籽粒淀粉总含量、直链/支链淀粉比例(直/支比)以及小麦淀粉糊化温度等参数进行了分析。结果表明,同一个生态点的小麦淀粉品质指标在不同年份间没有显著差异;同一性状在不同生态点间存在一定的差异,仁寿地区的小麦淀粉直/支比和直链淀粉含量显著高于其他三个生态点,总淀粉含量显著高于崇州点;仁寿和崇州地区的小麦淀粉糊化初始温度显著高于其他两个生态点,且仁寿地区的小麦淀粉糊化峰值温度和结束温度均显著高于温江地区。淀粉组成对淀粉的糊化特性有一定影响,且总淀粉含量、直链淀粉含量、直/支比与淀粉的糊化特性之间均存在显著正相关关系。不同气象因子对小麦淀粉不同品质指标影响程度不同,其中,降雨量、温度和光照时间对大多数淀粉品质指标有显著影响。  相似文献   

12.
优质食用稻米品质的理化指标与食味的相关性研究   总被引:86,自引:2,他引:86  
 对全国各地选送的78个优质米样品进行了食用稻米品质的理化指标与食味的相关性研究。其中理化指标包括:粒长、长宽比、垩白率、垩白度、透明度、糊化温度、胶稠度、直链淀粉、蛋白质等9项指标。结果表明:(1)籼稻的粒长因子、垩白因子对食味有极显著正线性效应,粒形因子对食味有极显著负线性效应,对食味的重要性顺序为:粒长因子>粒形因子>垩白因子;(2)粳稻的透明度(级)与食味呈显著负相关系。并对农业部部颁“NY122-86”优质食用稻米标准中,籼、粳稻的直链淀粉含量、胶稠度、糊化温度的Ⅰ、Ⅱ级米的划分标准作了讨论。  相似文献   

13.
Rheological, thermal and structural changes in high pressure (HP) treated Basmati rice flour dispersions were studied as function of pressure level (350–650 MPa), slurry concentration (with 1:5, 1:3 and 1:2 flour-to-water ratios) and holding time (7.5–15 min). Rice flour dispersions exhibited a gradual liquid–solid gel transformation as they gelatinized and/or denatured and behaved as viscoelastic fluid following HP treatment. Mechanical strength (G′) of pressurized gel increased with applied pressure and rice concentration. Differential scanning calorimeter (DSC) thermograms of rice slurry measured after pressure treatment indicated a reduction in peak enthalpy in proportion with the extent of gelatinization and/or denaturation of starch and proteins. Pressure-treated rice samples had a progressively lower gelatinization temperature. A 15 min pressure treatment at 550 MPa was found sufficient to complete gelatinization of protein free isolated rice starch while the slurry required 650 MPa. The presence of proteins might have been responsible for the slower starch gelatinization in the rice slurry during pressure treatment. The sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Fourier-transform infrared (FTIR) spectroscopy results indicated some minor changes in protein subunits and secondary structure of rice protein. This study has provided complementary information on pressure-induced changes in physical (thermal stability, overall structure) and molecular level (secondary structure) of rice protein.  相似文献   

14.
Inhibition of plant growth by Trinexapac-ethyl, TE, a gibberellin-biosynthesis inhibitor, can produce a shorter stemmed plant, requiring less nutrients and water to grow, while maintaining grain yield. Although TE and other plant growth regulators are commonly used in grain crops, their effects on starch biosynthesis in the grains have not been systematically examined. The changes in the structural and functional properties of starch in grains harvested from TE-treated sorghum (Sorghum bicolor (L.) Moench) were examined, and the results compared with those from the untreated controls. TE treatment had little or no effects on the molecular structures of starch, starch granule morphology, and starch and amylose contents, but increased the protein content of the grains significantly. Consistent with the lack of change in the molecular structure, there were no significant effects on the thermal properties of the starch. The pasting properties of TE-treated sorghum flours, however, showed lower peak viscosity, trough, and final viscosity, which were attributed to their higher protein contents. The TE treatment thus does not have an appreciable effect on the biosynthesis of starch during grain development in sorghum.  相似文献   

15.
The investigation explores the possibility of utilizing legume flour (pigeon pea:10–30%) and brown rice flour (35–45%) for production of pasta using twin screw extruder. RSM was used to analyse the effect of feed moisture (28–36%), barrel temperature (70–110 °C) and legume:brown rice ratio on quality responses (in vitro starch and protein digestibility, degree of starch gelatinization, cooking quality, pasting properties, color and textural properties) of pasta. Extrusion processing significantly enhanced in vitro starch and protein digestibility of prepared pasta. The in vitro starch and protein digestibility of pasta ranged between 15.00 and 26.77 g/100 g and 50.34–84.82 g/100 g respectively. Addition of brown rice flour and pigeon pea flour exhibited dominating positive effect on cooking quality of the pasta. Degree of gelatinization of prepared pasta was found in range of 52.13–90.10 per cent. Color characteristics viz. luminosity, redness and yellowness of pasta enhanced with feed moisture. Pasting properties revealed lower peak and final viscosity at higher processing conditions. Firmness of cooked pasta elevated with an increase in the barrel temperature. Acceptability score of health based pasta on the basis of sensory attributes was 8 as inferred from 9 point hedonic scale.  相似文献   

16.
Four varieties of rice, differing in salinity tolerance and grown in saline soil (electrical conductivity 5–6 dS/m) at Sadhoke, Punjab, Pakistan, had lighter grain and higher Na content than control samples. Grains of three out of the four rices grown on saline soils had higher brown rice protein (higher nutritional value), less translucent grain, lower starch and amylose content, and lower K than their control samples, but these differences were not related to salinity tolerance. Alkali spreading value and gel consistency were not affected by culture in saline soil. Cooked rice Instron hardness increased in saline culture in two higher-protein samples of the four rices. Amylograph peak viscosity was suppressed by saline culture.  相似文献   

17.
Growth of red flour beetleTribolium castaneum (Herbst) larvae with brown or milled rice as the carbohydrate source was faster on diets containing milled rice than on those with brown rice. Larval growth was negatively correlated with amylose content of both brown and milled rice. Among high-amylose (>25%) milled rices, heavier larvae were obtained with rices of low gelatinization temperature (alkali-spreading values 6–7) than with those with higher gelatinization temperature (alkali-spreading values < 6). The differences in larval growth reflected relative digestibility of raw rice starch granules.  相似文献   

18.
Germinated brown rice (GBR) recently has received renewed attention due to its enhanced nutritional value. Pasting properties and in vitro starch digestibility of GBR were examined before and after hydrothermal treatments. Steeping in water (30 °C, 24 h) raised the moisture content and germination percentage of brown rice. Pasting viscosity was substantially decreased but gelatinization temperatures and enthalpy were decreased only marginally by germination (30 °C, 48 h). However, annealing (50 °C, 24 h) and heat-moisture treatment (100 °C, 1 h at 30% moisture) after germination resulted in increased pasting viscosity and gelatinization temperatures. The hydrothermal treatments, however, induced browning reactions to darken the flour of GBR. The digestibility of starch in brown rice was increased by germination. The contents of rapidly digestible starch (RDS), slowly digestible starch (SDS) and resistant starch (RS) in the cooked brown rice were 47.3%, 40.8%, and 11.9%, respectively, but changed to 57.7%, 39.1%, and 3.2%, respectively upon germination. The hydrothermal treatments, however, decreased the digestibility of starch in GBR. The heat-moisture treatment decreased the RDS content in GBR near to that of native brown rice. The digestibility and physical properties of brown rice can be controlled by germination and hydrothermal treatments.  相似文献   

19.
Genetically-diverse wheat samples from the Australian Winter Cereals Collection propagated in two environments were sequenced to identify puroindoline genotypes then the relationships between flour yield, genotype, starch granule size distribution and starch-bound puroindoline protein content were investigated. The Pina-D1a, Pinb-D1b genotype resulted in a higher average flour yield than either the Pina-D1b, Pinb-D1a or the Pina-D1a, Pinb-D1a but the ranges of flour yields for the three genotypes showed considerable overlap. For both hard wheat genotypes (Pina-D1a, Pinb-D1b or Pina-D1b, Pinb-D1a), a higher proportion of type A to type C starch granules was associated with higher flour yield and this relationship accounted for between 31% and 33% of the variation in flour yield. This result is consistent with previously reported findings for soft wheat. For the Pina-D1a, Pinb-D1b genotype, increased flour yield was also associated with a decrease in starch granule-bound puroindoline protein, which accounted for 31–35% of the variation in flour yield across the two environments. The combined effect of starch granule type and associated puroindoline content accounted for 68% of the variation in flour yield within the Pina-D1a, Pinb-D1b genotype.  相似文献   

20.
早籼稻垩白形成中胚乳淀粉粒发育的电镜观察   总被引:20,自引:4,他引:16  
沈波 《中国水稻科学》2000,14(4):225-228
对不同垩白度早籼品种中优早3号(少垩白)和泸红早1号(多垩白)的不同温度处理下的胚乳淀粉粒进行了扫描电镜观察,结果显示胚乳腹部淀粉粒形成的发育过程明显受温度条件的影响。在灌浆初始,高温促使淀粉粒发育进程提前,淀粉粒形状呈圆球形,边缘光滑,从而造成成熟时淀粉粒间的空隙明显,结构疏松,垩白率高。这在少垩白品种中优早3号中表现得尤为显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号