首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
This study identified the role of milling and parboiling on arsenic (As) content and its species in large numbers of rice samples. Total As contents were 108 ± 33 μg/kg in polished rice grains (PR), 159 ± 46 μg/kg in unpolished rice grains (UR), 145 ± 42 μg/kg in parboiled polished rice grains (PPR) and 145 ± 44 μg/kg in parboiled unpolished rice grains (PUR). The percentages of inorganic As (iAs) were 66% ± 8% in PR and from 72% to 77% in other grain categories. The polishing process reduced the As content in the rice grains, removing outer part of the UR with high amount of As, whereas the parboiling technique transferred the semimetal content within the grain. Total As and iAs contents were not significantly different in UR, PPR and PUR, homogenizing its distribution inside the grains. The results allowed to understand how different operations affect As fate and its chemical forms in grains.  相似文献   

2.
《Field Crops Research》2006,96(1):48-62
In order to quantify the effects, at different stages during grain filling, of alternating day/night high temperature regimes on sunflower grain yield and quality, heads were exposed to high temperatures during 7 or 6 days starting either 10–12 days after anthesis (daa, HT1), 18 daa (HT2) or 24 daa (HT3). Also, heads were exposed to high temperatures for periods of 2, 4 or 6 days in each of HT1 and HT2. Temperatures covered a range of mean daily grain temperature of 20–40 °C and peak grain temperatures (i.e., those prevailing during the central 5 h of the daylight period) of 26–45 °C. High temperature stress for periods of 4 days or longer produced significant (p < 0.05) reductions in grain yield and grain quality. Early (HT1) exposure to stress reduced yield by 6%/°C above a mean grain temperature threshold of 29 °C; later (HT2 + HT3) exposures reduced yield by 4%/°C above a threshold of 33 °C. These reductions in yield were attributable to reductions in unit grain weight at all positions (periphery, intermediate, central) on the head, and an increase in the proportion of very small (10–30 mg) grains, termed half-full (HF) grains in this paper. In both full and HF grains, stress in either HT1 or HT2 reduced final pericarp weight, associated with fewer number of cell layers and thinner cell walls in the schlerenchyma. High temperatures reduced both the rate and duration of oil deposition in the grain, with the greatest effects being found with early (HT1) exposures. The unsaturation (oleic acid/linoleic acid) ratio of oil from mature grain was altered only when exposure to heat stress overlapped with the cessation of deposition of storage lipids. The effects of duration and intensity of heat stress on relative (to control) grain yield and oil content could be reasonably summarized using a linear response to cumulative hourly heat load calculated with a base temperature of 30 °C. We conclude that: (i) 4 days of alternating day/night temperatures resulting in mean daily grain temperatures of >30 °C can reduce sunflower grain yield and quality; (ii) the magnitude of these effects is strongly dependent on the timing of exposure and their nature on the grain growth processes active at the time of stress; and (iii) an hourly heat load (base = 30 °C) provides a useful integrative estimator of the effects of exposure to heat stress on grain yield and oil content for a given phase of grain filling.  相似文献   

3.
Kenaf (Hibiscus cannabinus L.) is a potential alternative crop being developed for fiber production. Because planting area varies dramatically from year to year, seed supplies may greatly exceed use so that the excess seed must be stored for one to several years. The objectives of this study were to determine the effect of seed storage duration at 10 °C on germination, vigor, emergence, and yield. Replicated trials were established at Starkville, MS in 1999 and 2000 to evaluate field emergence and biomass yield of kenaf seed from five ‘Everglades 41’ (‘E41’) harvest year seed lots stored at 10 °C in ambient relative humidity for up to 4 years. Germination of these same seed lots under standard (20–30 °C) and cool (20 °C) temperatures, and seed vigor was evaluated over time. Field emergence was the same for the different seed storage durations up to 4 years, but was directly affected by drought conditions for each planted year. Biomass yields ranged from 12.39 to 14.57 Mg ha−1 in 1999 and 16.82 to 18.47 Mg ha−1 in 2000, but were not different between storage durations. Seed germination remained greater than 80% regardless of storage duration. Electrolyte leakage, based on conductivity, was 38–50% less with freshly harvested seed than seed stored for 4 years at 10 °C. However, neither the conductivity nor accelerated aging test were reliable predictors of field emergence. Kenaf seed stored up to 4 years at 10 °C retained germination rates acceptable for commercial use. Neither field emergence nor biomass yield was affected by seed storage duration.  相似文献   

4.
5.
Hard red spring wheat (Triticum aestivum cv Butte86) was grown under controlled environmental conditions and grain produced under 24/17 °C, 37/17 °C or 37/28 °C day/night regimens with or without post-anthesis N supplied as NPK. Flour proteins were analyzed and quantified by differential fractionation and RP-HPLC, and endosperm proteins were assessed by two-dimensional gel electrophoresis (2-DE). High temperature or NPK during grain fill increased protein percentage and altered the proportions of S-rich and S-poor proteins. Addition of NPK increased protein accumulation per grain under the 24/17 °C but not the 37/28 °C regimen. However, flour protein composition was similar for grain produced with NPK at 24/17 °C or 37/28 °C. 2-DE of gluten proteins during grain development revealed that NPK or high temperature increased the accumulation rate for S-poor proteins more than for S-rich proteins. Flour S content did not indicate S-deficiency, however, and addition of post-anthesis S had no effect on protein composition. Although, high-protein flour from grain produced under the 37/28 °C regimen with or without NPK had loaf volumes comparable to flour produced at 24/17 °C with NPK, mixing tolerance was decreased by the high temperature regimen.  相似文献   

6.
The environmental temperature occurring during the grain filling stage is an important factoraffecting starch synthesis and accumulation in rice. We investigated starch accumulation, amylaseactivity and starch granule size distribution in two low-amylose japonica rice varieties, Nanjing 9108 andFujing 1606, grown in the field at different filling temperatures by manipulating sowing date. The two ricevarieties exhibited similar performances between two sowing dates. Total starch, amylose andamylopectin contents were lower at the early-filling stage of T1 treatment (Early-sowing) compared withthose at the same stage in T2 treatment (Late-sowing). In contrast, at the late-filling stage, when fieldtemperatures were generally decreasing, total starch and amylopectin contents in T1 were highercompared to those in T2. The ideal temperature for strong activity of ADP-glucose pyrophosphorylaseand soluble starch synthase was about 22℃. A higher temperature from the heading to maturity stagesin T1 increased the activities of starch branching enzyme and suppressed the activities of granule boundstarch synthetase and starch debranching enzyme. We found that rice produced larger-sized starchgranules under the T1 treatment. These results suggested that due to the early-sowing date, the hightemperature (30℃) occurring at the early-filling stage hindered starch synthesis and accumulation,however, the lower temperatures (22 ℃) at the late-filling stage allowed starch synthesis and accumulationto return to normal levels.  相似文献   

7.
Windrowed pyrethrum stems were air dried under a range of storage conditions to examine whether the current commercial practice of drying crop material is conducive to pyrethrins’ degradation. Crop material was stored for up to 12 days in a commercial windrow, a shed receiving indirect light or a dark, 5 °C cool-room. Analysis of pyrethrins extracted from flowers of all treatments demonstrated that pyrethrins were not degrading in windrowed crops, plant material stored in the shed or in the 5 °C cool-room. The small differences obtained in pyrethrins content among the treatments can be explained by the natural variation in pyrethrins content of pyrethrum crops. The observation that the achenes were unchanged during this drying period supported the pyrethrins analysis. These results demonstrate that pyrethrins in planta do not degrade as rapidly as extracted pyrethrins.  相似文献   

8.
The color (L*, a*, b* parameters), the total phenols content and the global chemical composition (moisture, protein, fat, carbohydrates and ash) of four fresh varieties of olive leaves (Chemlali, Chemchali, Zarrazi and Chetoui) were determined. Fresh olive leaves are characterized by a green color (greenness parameter, a*, varying from ?5.01 ± 0.26 to ?9.14 ± 1.21), an intermediate moisture content (0.85 to 1.00 g/g dry matter, i.e. 46 to 50 g/100 g fresh matter) and a variable amount of total phenols according to the olive leaf variety (from ≈2.32 to ≈1.40 g caffeic acid/100 g dry matter).Fresh leaves were submitted to blanching and/or infrared drying at 40, 50, 60 and 70 °C in order to be stabilized by reducing their moisture contents. The impact of IR drying temperature on some quality attributes (color, total phenols and moisture rate removal) was evaluated. Nevertheless, the effect of prior blanching treatment on the quality attributes of dried leaves is less significant and it depends on the olive leaf variety. The infrared drying induces a considerable moisture removal from the fresh leaves (more than 85%) and short drying durations (varying from ≈162 at 40 °C to 15 min at 70 °C). IR drying temperature showed a significant effect of on total phenols content and the color of the leaves whatever the leaf variety. In fact, total phenols content of dried olive leaves increased if compared to fresh ones. For example, total phenols of Chemlali leaves increased from 1.38 ± 0.02 (fresh leaves) to 2.13 ± 0.29 (dried at 40 °C) and to 5.14 ± 0.60 g caffeic acid/100 g dry matter (dried at 70 °C). IR drying allows preserving the greenness color of fresh leaves and enhancing their luminosity. It could be suggested for preserving olives leaves before their use in food or cosmetic applications.  相似文献   

9.
Breeding program strategies to develop novel short grain white rice varieties such as japonica (short grain) that introgress biotic stress resistance and high grain quality have been developed using indica rice (Pin Kaset + 4 and Riceberry) for applications in japonica rice (Koshihikari) improvement. Four breeding lines showing promising agronomic performance with short grain and low amylose content (< 20%) were obtained. In addition, sensory testing of these breeding lines showed high scores that similar to Koshihikari. Two promising lines, KP48-1-5 and KP48-1-9, which possessed a combination of four genes resistance to different biotic stresses (Bph3 + TPS + Xa21 + Pi-ta) and four genes for grain quality (GS3 + SSIIa + wxb + badh2), were developed using marker-assisted selection (MAS) with the pedigree method. The current study clearly illustrated the successful use of MAS in combining resistance to multiple biotic stresses while maintaining a high yield potential and preferred grain quality. Moreover, the results indicated that this breeding program, which includes crossing temperate japonica with indica, can create novel short grain rice varieties adapted to a tropical environment, like the japonica type.  相似文献   

10.
《Field Crops Research》2006,95(2-3):115-125
Groundnut (Arachis hypogaea L.) is one of the chief foreign exchange earning crops for Vietnam. However, owing to lack of appropriate management practices, the production and the area under cultivation of groundnut have remained low. Mulches increase the soil temperature, retard the loss of soil moisture, and check the weed growth, which are the key factors contributing to the production of groundnut. On-farm trials were conducted in northern Vietnam to study the impact of mulch treatments and explore economically feasible and eco-friendly mulching options. The effect of three mulching materials (polythene, rice straw and chemical) on weed infestation, soil temperature, soil moisture and pod yield were studied. Polythene and straw mulch were effective in suppressing the weed infestation. Different mulching materials showed different effects on soil temperature. Polythene mulch increased the soil temperature by about 6 °C at 5 cm depth and by 4 °C at 10 cm depth. Mulches prevent soil water evaporation retaining soil moisture. Groundnut plants in polythene and straw mulched plots were generally tall, vigorous and reached early flowering. Use of straw as mulch provides an attractive and an environment friendly option in Vietnam, as it is one of the largest rice growing countries with the least use of rice straw. Besides, it recycles plant nutrients effectively.  相似文献   

11.
《Field Crops Research》2006,98(1):52-59
This study explored whether the average grain weight of wheat tends to be reduced when grain number is increased due to either competition or, to a consistent increase in the relative proportion of grains of smaller weight potential. Three field experiments considering environmental, genetic and environmental × genetic effects on yield and its main components were analysed during the 2003/2004 growing season in two different locations within the Mediterranean area of Catalonia, Spain. The relationship between grain weight and number of grains per unit land area was analysed for both the average of all grains (AGW) and for grains in specific positions of the main-shoot spikes: proximal (CPg) and distal (CDg) grains of central spikelets, and proximal grains of the near apical (APg) and near basal (BPg) spikelets. The proportional contribution of grains per spike for the different grain positions and the relative contribution of spikes per m2 made by the main shoot or tillers were also examined.In the three experiments, AGW was reduced when grain number was increased due to genetic and/or environmental factors. However, the slopes of the straight-lines that represented the negative relationship between grain number and grain weight were lower (less negative) and less significant for CPg (b = −0.20, P > 0.20), CDg (b = 0.06, P > 0.20) and BPg (b = −0.21, P > 0.20) than for AGW (b = −0.40, P < 0.05). The proportional contribution of distal grains and tiller spikes (both with relatively light grains) were directly related to grain number increases. Therefore, as grain number increased there was a higher proportion of grains of low potential weight. Thus, the average grain weight was concomitantly reduced when grain number increased by increasing the proportion of “small grains” in the canopy independently of any competitive relationship between growing grains.  相似文献   

12.
A response surface method was employed to study the effect of α-amylase concentration, hydrolysis temperature and time on the production of high protein glutinous rice flour (HPGRF). The suspension of glutinous rice flour (15%) that contained 6.52% protein was gelatinized and subsequently hydrolyzed by thermostable α-amylase. The hydrolysis yielded 0.144–0.222 g/g HPGRF with 29.4%–45.4% protein content. Hydrolysis time exerted a significant effect, while enzyme concentration and hydrolysis temperature showed insignificant effect on the protein content and production yield of HPGRF. The result of response surface method showed that the optimum condition for the production of HPGRF that contained at least 36% protein was treating gelatinized 15% glutinous rice flour suspension with 0.90 Kilo Novo α-amylase Unit (KNU)/g α-amylase at 80 °C for 99 min. By carrying out the predicted hydrolysis condition, HPGRF with 35.9% protein and 61.8% carbohydrates was resulted. The process yielded 0.172 g/g HPGRF. HPGRF contained higher amount of essential amino acids compared to glutinous rice flour. HPGRF had higher solubility and lower swelling power, and also showed no pasting peak compared with glutinous rice flour.  相似文献   

13.
High grain-Cd-accumulating rice variety Yongyou 9 was planted in Cd-contaminated farmland in Taizhou City, Zhejiang Province, China to study the effects of 5-aminolevulinic acid (ALA) and 24-epibrassinolide (EBR) on Cd accumulation in brown rice. Results showed that the exogenous ALA and EBR had no significant effects on agronomic traits, soil pH and total Cd content in soil, but had some effects on the available Cd content in soil, and significantly influenced the Cd accumulation in the different parts of rice. Results also showed that 100 mg/L exogenous ALA significantly reduced the Cd accumulation in brown rice to blow the food safety standard (0.2 mg/kg), and also significantly reduced the Cd contents in the roots and culm of rice. However, 200 mg/L exogenous ALA treatment increased the Cd content in brown rice remarkably. In addition, 0.15 mg/L EBR treatment increased Cd accumulation in roots, culm, leaves and brown rice notably, whereas 0.30 mg/L exogenous EBR treatment reduced the Cd accumulation in brown rice properly, but it was not significant. Therefore, proper concentration of ALA can effectively reduce the Cd accumulation in brown rice, which can be used as an effective technical method for the safe production of rice in Cd polluted farmland.  相似文献   

14.
A large number of spelt wheat genotypes (ranging from 373 to 772) were evaluated for grain concentrations of protein and mineral nutrients under 6 different environments. There was a substantial genotypic variation for the concentration of mineral nutrients in grain and also for the total amount of nutrients per grain (e.g., content). Zinc (Zn) showed the largest genotypic variation both in concentration (ranging from 19 to 145 mg kg−1) and content (ranging from 0.4 to 4.1 μg per grain). The environment effect was the most important source of variation for grain protein concentration (GPC) and for many mineral nutrients, explaining between 37 and 69% of the total sums of squares. Genotype by environment (G × E) interaction accounted for between 17 and 58% of the total variation across the minerals. GPC and sulfur correlated very significantly with iron (Fe) and Zn. Various spelt genotypes have been identified containing very high grain concentrations of Zn (up to 70 mg kg−1), Fe (up to 60 mg kg−1) and protein (up to 30%) and showing high stability across various environments. The results indicated that spelt is a highly promising source of genetic diversity for grain protein and mineral nutrients, particularly for Zn and Fe.  相似文献   

15.
Integrated use of organic and inorganic fertilizers can improve crop productivity and sustain soil health and fertility. The present research was conducted to study the effects of application of green manures [sesbania (Sesbania aculeate Poiret) and crotalaria (Crotalaria juncea L.)] and farmyard manure on productivity of rice (Oryza sativa L.) and its residual effects on subsequent groundnut (Arachis hypogaea L.) crop. Rice and groundnut crops were grown in sequence during rainy and post-rainy seasons with and without green manure in combination with different fertilizer and spacing treatments under irrigated conditions. The results showed that application of green manures sesbania and crotalaria at 10 t ha−1 to rice compared to no green manure application significantly increased grain yield of rice by 1.6 and 1.1 t ha−1, and pod yields of groundnut crop succeeding rice by 0.25 and 0.16 t ha−1, respectively. There was no significant difference between the application of crotalaria or farmyard manure at 10 t ha−1 on grain yields of rice, but pod yields of subsequent groundnut crop were greater with application of green manure. There was no significant effect of different spacing 20×15,15×15,15×10 cm2 (333 000; 444 000; 666 000 plant ha−1, respectively) on grain yield of rice. Pod yields of groundnut were significantly greater with closer spacing 15×15 cm2 (444 000 plants ha−1) as compared to spacing of 30×10 cm2 (333 000 plants ha−1). Maximum grain of rice was obtained by application of 120:26:37 kg NPK ha−1 in combination with green manures, whereas maximum pod yield of groundnut was obtained by residual effect of green manure applied to rice and application of 30:26:33 kg NPK ha−1 in combination with gypsum applied to groundnut crop.  相似文献   

16.
To explore how rice(Oryza sativa L.) can be safely produced in Cd-polluted soil, OsLCT1 and OsNramp5 mutant lines were generated by CRISPR/Cas9-mediated mutagenesis. One of OsLCT1 mutant(lct1×1) and two of OsNramp5 mutants(nramp5×7 and nramp5×9) were evaluated for grain Cd accumulation and agronomic performances. In paddy field soil containing approximately 0.9 mg/kg Cd, lct1×1 grains contained approximately 40%(0.17 mg/kg) of the Cd concentration of the wild type parental line, less than the China National Food Safety Standard(0.20 mg/kg). Both OsNramp5 mutants showed low grain Cd accumulation(< 0.06 mg/kg) in the paddy(approximately 0.9 mg/kg Cd) or in pots in soil spiked with 2 mg/kg Cd. However, only nramp5×7 showed normal growth and yield, whereas the growth of nramp5×9 was severely impaired. The study showed that lct1×1 could be used to produce rice grains safe for human consumption in lightly contaminated paddy soils and nramp5×7 used in soils contaminated by much higher levels of Cd.  相似文献   

17.
18.
Saturated mono-estolide methyl esters and enriched saturated mono-estolide 2-EH esters were synthesized from oleic and different saturated fatty acids under three different synthetic routes. Estolide numbers (EN), the average number of fatty acid units added to a base fatty acid, varied with synthetic conditions. The attempts at obtaining saturated mono-estolide 2-EH esters, EN = 1, via distillation proved to be challenging, which lead to estolide samples with EN > 1 and the pour point values followed the same trend as the high EN estolides. The other synthetic routes provided saturated mono-estolide methyl esters with EN = 1. The resulting pour point values showed a linear relationship between the saturated capping chain length and pour point. As the saturated capping chain length increased the pour points also increased (higher temperatures): C-2 capped ?30 °C, C-10 capped ?12 °C, and C-18 capped 3 °C.The saturated mono-estolide methyl ester viscosities also showed an increase in viscosity at 40 and 100 °C as the saturated chain lengths increased. The viscosities for the C-4 saturated mono-estolide methyl ester was 9.5 cSt at 40 °C and 2.6 cSt at 100 °C, while medium chain length derivations (C-10 saturated mono-estolide methyl ester) were 19.7 cSt at 40 °C and 4.2 cSt at 100 °C, and at the longer chain length derivations (C-18 mono-estolide methyl esters) were 27.6 cSt at 40 °C and 10.7 cSt at 100 °C. In general, a new series of saturated oleic mono-estolide methyl esters were synthesized and physical properties were collected. The physical property data indicated that both chain length and EN affect low temperature properties.  相似文献   

19.
Epoxiconazole is a triazole compound. However, the effects of epoxiconazole on crop productivity and quality were rarely reported. In this study, we investigated the effects of epoxiconazole application on yield formation, grain quality attributes, and 2-acetyl-1-pyrroline (2-AP) content in fragrant rice. A three-year field experiment was carried out with a fragrant rice variety, Meixiangzhan 2. At the heading stage, 0, 0.02, 0.04, 0.08, 0.16 and 0.32 g/L epoxiconazole solutions were foliar applied to fragrant rice plants, respectively. The results showed that epoxiconazole application significantly increased grain yield, seed-setting rate and 1000-grain weight. Chlorophyll content and net photosynthetic rate of fragrant rice during the grain-filling stage significantly increased due to epoxiconazole application. Foliar application of epoxiconazole at 0.08 g/L increased grain protein content and decreased both chalky rice rate and chalkiness area ratio of fragrant rice. Epoxiconazole also substantially increased grain 2-AP content by inducing the regulation in contents of related synthetic precursors, including proline, pyrroline-5- carboxylic acid, Δ1-pyrroline and methylglyoxal. Overall, foliar application of epoxiconazole could be used for the improvement in grain yield, grain quality and 2-AP content in fragrant rice production when applied concentration at 0.08–0.32 g/L. Our findings provided the new roles of epoxiconazole in crop production.  相似文献   

20.
Controlled environments were used to define the manner in which temperature, water and fertilizer affect the timing of key transition points during grain development and to investigate the effects of combined environmental factors in a US spring wheat (Triticum aestivum (L.)). When plants were subjected to very high temperature regimens (37/17  or 37/28 °C day/night) during grain development, the times to maximum kernel water content, maximum dry weight and harvest maturity were shorter than in plants maintained under a 24/17 °C day/night regimen. Starch accumulated at similar rates, but the onset and cessation of starch accumulation occurred earlier. Apoptosis in endosperm tissue also occurred earlier under high temperatures and coincided with physiological maturity. The addition of drought to the 37/17 °C regimen further shortened the time to maximum water content and dry weight and reduced the duration of starch accumulation, but did not influence the timing of protein accumulation or kernel desiccation. Post-anthesis fertilizer had little effect on time to maximum water content, dry weight, apoptosis, or harvest maturity under any of the temperature regimens and did not influence the timing of starch accumulation. However, both the rate and duration of protein accumulation were reduced when post-anthesis fertilizer was omitted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号