首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigated the transmission efficiency of Potato leafroll virus (PLRV) by four potato colonizing aphid species, Myzus persicae, Macrosiphum euphorbiae, Aphis gossypii and Aphis fabae, reported from leaves and yellow water trap. Physalis floridana was used as a test plant for virus transmission. DAS-ELISA was used for virus screening of samples as well as virus detection on the test plant after transmission experiment. A 2-h period was sufficient for the tested aphids to acquire PLRV virions. However, a difference in the transmission potential occurred according to the aphid species. The highest potential was recorded for M. persicae and M. euphorbiae, at 90 and 80%, respectively. For the first time, the study revealed the PLRV transmission efficiency of A. fabae, estimated at 50%. The lowest potential rate of 30% was recorded for A. gossypii. This study highlights the PLRV transmission capacities of four potato colonizing aphids suspected to play a key role in the spread of PLRV in potato seed production sites.  相似文献   

2.
Teff (Eragrostis tef) is a fine stemmed annual grass and gluten free small grain that is of interest as a forage, cover, or a rotation crop. Little is known about the susceptibility of teff to many diseases. Teff could be grown in rotation with potato in the northwestern United States provided teff cultivation is economical and does not increase soil populations for pathogens affecting rotation crops such as Verticillium dahliae. Verticillium dahliae infects a wide range of dicotyledonous plants, making it one of the most important fungal pathogens of crop plants in North America, including potato. The objective of this study was to quantify the susceptibility of teff to eight V. dahliae isolates and compare the susceptibility of teff to eggplant. Teff was confirmed as a host for V. dahliae, as indicated by the presence of microsclerotia in teff stems and roots after artificial inoculation in two years of greenhouse studies. The number of microsclerotia produced in teff did not differ between mint and potato pathotypes of V. dahliae. No V. dahliae isolate produced significantly greater numbers of microsclerotia than any of the seven other isolates tested in a two-year study. Microsclerotia production of V. dahliae in teff was consistently less than in susceptible eggplant cv. Night shadow in both greenhouse experiments (P?<?0.02). It is unlikely that teff infected by V. dahliae will proliferate microsclerotia of mint or potato-aggressive pathotypes, especially when compared to susceptible eggplant cultivars.  相似文献   

3.
Meloidogyne chitwoodi (Columbia root-knot nematode, CRKN) can cause serious damage in potato production systems, decreasing tuber value in the fresh market and processing industries. Genetic resistance to CRKN was first identified from the wild diploid potato species Solanum bulbocastanum accession SB22 and was successfully introgressed into tetraploid potato breeding material. To expand the base of genetic resistance, 40 plant accessions representing nine wild potato species were screened for their resistance to M. chitwoodi. Greenhouse screening identified fifteen clones from S. hougasii, one clone from S. bulbocastanum, and one clone from S. stenophyllidium with moderate to high levels of resistance against three isolates of M. chitwoodi. Geographical mapping showed that the resistance sources identified in this and previous studies primarily originated in the states of Jalisco and Michoacán in west-central Mexico. These new sources of resistance will be introgressed into elite potato populations to facilitate the development of potato cultivars with durable resistance to M. chitwoodi.  相似文献   

4.
5.
The precise level of environmental control in vitro may aid in identifying genetically superior plant germplasm for rooting characteristics (RC) linked to increased foraging for plant nitrogen (N). The objectives of this research were to determine the phenotypic variation in root morphological responses of 49 Solanum chacoense (chc), 30 Solanum tuberosum Group Phureja – Solanum tuberosum Group Stenotomum (phu-stn), and three Solanum tuberosum (tbr) genotypes to 1.0 and 0.5 N rate in vitro for 28 d, and identify genotypes with superior RC. The 0.5 N significantly increased density of root length, surface area, and tips. All RC were significantly greater in chc than in either phu-stn or tbr. Based upon clustering on root length, surface area, and volume, the cluster with the greatest rooting values consisted of eight chc genotypes that may be utilized to initiate a breeding program to improve RC in potato.  相似文献   

6.
Verticillium wilt is a fungal disease of potato caused by two species of Verticillium, V. dahliae and V. albo atrum. The pathogen infects the vascular tissue of potato plants through roots, interfering with the transport of water and nutrition, and reducing both the yield and quality of tubers. We have evaluated the reaction of 283 potato clones (274 cultivars and nine breeding selections) to inoculation with V. dahliae under greenhouse conditions. A significant linear correlation (r = 0.4, p < 0.0001) was detected between plant maturity and partial resistance to the pathogen, with late maturing clones being generally more resistant. Maturity-adjusted resistance, that takes into consideration both plant maturity and resistance, was calculated from residuals of the linear regression between the two traits. Even after adjusting for maturity, the difference in the resistance of clones was still highly significant, indicating that a substantial part of resistance cannot be explained by the effect of maturity. The highest maturity-adjusted resistance was found in the cv. Navajo, while the most susceptible clone was the cv. Pungo. We hope that the present abundance of data about the resistance and maturity of 283 clones will help potato breeders to develop cultivars with improved resistance to V. dahliae.  相似文献   

7.
Germin like proteins (GLPs) are a large group of related and ubiquitous plant proteins which are considered to be involved in different processes important for plant development and defense. Multiple functional copies of this gene family have been reported in a number of species (wheat, barley, rice, soybean mosses and liverwort), and their role is being evaluated by gene regulation studies and transgenic approaches. To analyze the role of a rice (Oryza sativa) root expressed germin like protein1 OsRGLP1, for its antifungal activity, transgenic potato plants were developed. These transgenic potato plants were molecularly characterized and biologically assessed after inoculation with Fusarium oxysporum f. sp. tuberosi. Functional analysis showed high accumulation of H2O2, increased Superoxide Dismutase (SOD) activity and no oxalate oxidase activity (OxO) in transgenics in comparison to nontransformed control. This increased SOD activity, resistance to heat and sensitivity to H2O2 suggest it is a Fe-like SOD. OsRGLP1 expression in potato plants exhibited enhanced resistance in comparison to nontransformed wild type plants suggesting its role in providing protection against Fusarium oxysporum f. sp. tuberosi through elevated SOD level. Overall, results suggest that OsRGLP1 is a candidate for the engineering of potato plants with increased fungal tolerance however, the greater height and tuber number was observed. This phenotype associated with the resistance needs to be evaluated to determine if this is a positive or negative feature.  相似文献   

8.
Fusarium semitectum is one of the important causal agents of dry rot of potato tubers in the world. In order to determine genetic variability among 41 isolates of F. semitectum, morphological and molecular studies were carried out. All F. semitectum isolates were recovered from infected potato tubers with dry rot symptoms collected from four provinces in Iran. According to macroscopic and microscopic characteristics, 41 isolates of F. semitectum were classified in two morphotypes (morphotypes I and II). All 41 isolates were evaluated for their pathogenicity on healthy potato tubers. Tuber rot symptoms were observed on the 21st day after inoculation of Fusarium isolates on the tubers tested. The measurement was done by comparing the depth and width of lesion expansion among the isolates. Molecular characterization through PCR-IGS-RFLP analysis by six restriction enzymes (AluI, BsuRI, Eco88I, MspI, TaqI and PstI) divided the 41 isolates of F. semitectum into two separated clusters that were in accordance with the morphological characterization.  相似文献   

9.

Background

The rice blast resistance gene Pi54 was cloned from Oryza sativa ssp. indica cv. Tetep, which conferred broad-spectrum resistance against Magnaporthe oryzae. Pi54 allelic variants have been identified in not only domesticates but also wild rice species, but the majority of japonica and some indica cultivars lost the function.

Results

We here found that Pi54 (Os11g0639100) and its homolog Os11g0640600 (named as #11) were closely located on a 25 kbp region in japonica cv. Sasanishiki compared to a 99 kbp region in japonica cv. Nipponbare. Sasanishiki lost at least six genes containing one other R-gene cluster (Os11g0639600, Os11g0640000, and Os11g0640300). Eight AA-genome species including five wild rice species were classified into either Nipponbare or Sasanishiki type. The BB-genome wild rice species O. punctata was Sasanishiki type. The FF-genome wild rice species O. brachyantha (the basal lineage of Oryza) was neither, because Pi54 was absent and the orientation of the R-gene cluster was reversed in comparison with Nipponbare-type species. The phylogenetic analysis showed that #11gene of O. brachyantha was on the root of both Pi54 and #11 alleles. All Nipponbare-type Pi54 alleles were specifically disrupted by 143 and 37/44?bp insertions compared to Tetep and Sasanishiki type. In addition, Pi54 of japonica cv. Sasanishiki lost nucleotide-binding site and leucine-rich repeat (NBS–LRR) domains owing to additional mutations.

Conclusions

These results suggest that Pi54 might be derived from a tandem duplication of the ancestor #11 gene in progenitor FF-genome species. Two divergent structures of Pi54 locus caused by a mobile unit containing the nearby R-gene cluster could be developed before domestication. This study provides a potential genetic resource of rice breeding for blast resistance in modern cultivars sustainability.
  相似文献   

10.
Studying phenotypic and genomic modifications associated with pathogen adaptation to resistance is a crucial step to better understand and anticipate resistance breakdown. This short review summarizes recent results obtained using experimentally evolved populations of the potato cyst nematode Globodera pallida. In a first step, the variability of resistance durability was explored in four different potato genotypes carrying the resistance quantitative trait loci (QTL) GpaVvrn originating from Solanum vernei but differing by their genetic background. The consequences of the adaptation to resistance in terms of local adaptation, cross-virulence and virulence cost were then investigated. Finally, a genome scan approach was performed in order to identify the genomic regions involved in this adaptation. Results showed that nematode populations were able to adapt to the QTL GpaVvrn, and that the plant genetic background has a strong impact on resistance durability. A trade-off between the adaptations to different resistant potato genotypes was detected, and we also showed that adaptation to the resistance QTL GpaVvrn from S. vernei did not allow adaptation to the colinear locus from S. sparsipilum (GpaVspl). Unexpectedly, the adaptation to resistance led to an increase of virulent individual’s fitness on a susceptible host. Moreover, the genome scan approach allowed the highlighting of candidate genomic regions involved in adaptation to host plant resistance. This review shows that experimental evolution is an interesting tool to anticipate the adaptation of pathogen populations and could be very useful for identifying durable strategies for resistance deployment.  相似文献   

11.
Powdery scab caused by Spongospora subterranea f. sp. subterranea (Sss) causes extensive losses in potato production systems globally. Two pot experiments were established in the greenhouse in summer 2013 and winter 2014 to evaluate the effectiveness of different soil chemicals, fumigant, amendments and biological control agents (BCAs) against Sss in the rhizospheric soil, potato roots and tubers. The study used visual assessment methods to assess the effect of treatments on root galling and zoosporangia production, and qPCR to measure Sss concentration in the soil and in the potato roots and tubers. All six soil treatments, namely metam sodium, fluazinam, ZincMax, calcium cyanamide, Biocult and a combination of Bacillus subtilis and Trichoderma asperellum recorded significantly (P < 0.05) lower numbers of zoosporangia in the roots compared to the untreated control. The same effect was observed on the concentration of Sss DNA in the roots at tuber initiation. A more diverse picture was obtained when root gall scores at tuber initiation and Sss DNA in the rhizospheric soil at tuber initiation and harvesting were compared. Significant differences (P < 0.05) were also noted in disease severity, disease incidence, and tuber yield between metam sodium, fluazinam, ZincMax, calcium cyanamide and the untreated control. Calcium cyanamide gave the highest tuber yield. The study demonstrated the potential of soil treatments such as metam sodium, fluazinam, ZincMax and calcium cyanamide in managing Sss in potatoes by reducing the pathogen both in the rhizospheric soil and the roots of the potato plant.  相似文献   

12.
13.

Background

Fungal endophytes are the living symbionts which cause no apparent damage to the host tissue. The distribution pattern of these endophytes within a host plant is mediated by environmental factors. This study was carried out to explore the fungal endophyte community and their distribution pattern in Asparagus racemosus and Hemidesmus indicus growing in the study area.

Results

Foliar endophytes were isolated for 2 years from A. racemosus and H. indicus at four different seasons (June–August, September–November, December–February, March–May). A total of 5400 (675/season/year) leaf segments harbored 38 fungal species belonging to 17 genera, 12 miscellaneous mycelia sterile from 968 isolates and 13 had yeast like growth. In A. racemosus, Acremonium strictum and Phomopsis sp.1, were dominant with overall relative colonization densities (RCD) of 7.11% and 5.44% respectively, followed by Colletotrichum sp.3 and Colletotrichum sp.1 of 4.89% and 4.83% respectively. In H. indicus the dominant species was A. strictum having higher overall RCD of 5.06%, followed by Fusarium moniliforme and Colletotrichum sp.2 with RCD of 3.83% and 3%, respectively. Further the overall colonization and isolation rates were higher during the wet periods (September–November) in both A. racemosus (92.22% and 95.11%) and H. indicus (82% and 77.11%).

Conclusion

Study samples treated with 0.2% HgCl2 and 75% EtOH for 30 s and 1 min, respectively, confirmed most favorable method of isolation of the endophytes. Owing to high mean isolation and colonization rates, September–November season proved to be the optimal season for endophyte isolation in both the study plants. Assessing the bioactive potential of these endophytes, may lead to the isolation of novel natural products and metabolites.
  相似文献   

14.
Phthorimaea operculella (Zeller) is one of the most common insect pests of cultivated potato in tropical and subtropical regions. In this research, a potential strategy to improve the insecticidal activity of plant essential oils for the effective management of P. operculella was studied. The insecticidal and residual effects of nanofiber oil (NFO) and pure essential oil (PEO) of Cinnamomum zeylanicum were assessed on PTM under laboratory conditions. The nanofibers were made by the electrospinning method using polyvinyl alcohol (PVA) polymer. The morphological characteristics of the nanofibers were evaluated by scanning electron microscopy and Fourier transform infrared spectroscopy. The chemical constituents of cinnamon essential oil (EO) were detected by GC/MS. Fumigant toxicity of NFO and PEO were evaluated on different growth stages (egg, male and female adults) of P. operculella. SEM and FTIR analyses confirmed the presence of EO on the nanofiber structure. The yield of the EO from C. zelanicum on the nanofibers was 1.86%. GC/MS analysis showed that cinnamaldehyde was the primary constituent (69.88%) of cinnamon EO. LC50 values of C. zelanicum EO and NFO were 4.92 and 1.76 μl/l air for eggs, 0.444 and 0.212 μl/l air for female adults, and 0.424 and 0.192 μl/l air for male adults, respectively. Fumigant bioassays revealed that NFO was more toxic than C. zeylanicum oil against at all stages of P. operculella. The residual effect of PEO and NFO was evaluated against the egg stage of the P. operculella. NFO lost insecticidal effectiveness 47 days after application, while the efficacy of PEO decreased 15 days after application. Our results suggest that NFO of C. zeylanicum can be used as an effective new tool for the management of P. operculella.  相似文献   

15.
Late blight, caused by the oomycete Phytophthora infestans (Mont.) de Bary, is a devastating disease in potato and tomato and causes yield and quality losses worldwide. The disease first emerged in central America and has since spread in North America including the United States and Canada. Several new genotypes of P. infestans have recently emerged, including US-22, US-23 and US-24. Due to significant economic and environmental impacts, there has been an increasing interest in the rapid identification of P. infestans genotypes. In addition to providing details regarding the various phenotypic characteristics such as fungicide resistance, host preference, and pathogenicity associated with various P. infestans genotypes, information related to pathogen movement and potential recombination may also be determined from the genetic analyses. Restriction fragment length polymorphism (RFLP) analysis with the RG57 loci is one of the most reliable procedures used to genotype P. infestans. However, the RFLP procedure requires propagation and isolation of the pathogen and relatively large amounts of DNA. Isolation of the late blight pathogen is sometimes impossible due to the poor condition of the infected tissues or the presence of fungicide residues. In this study, we describe a procedure to identify P. infestans at the molecular level in planta using terminal restriction fragment length polymorphism (T-RFLP) of the RG57 loci. This T-RFLP assay is sufficiently sensitive to detect and differentiate P. infestans genotypes directly in planta without propagation and isolation of the pathogen, to facilitate the timely implementation of best management practices.  相似文献   

16.
17.
To develop an in vitro assay method for bacterial wilt resistance in potato, resistant and susceptible standard genotypes were grown in vitro, and different conditions of inoculation with Ralstonia solanacearum phylotype I/biovar 4 were examined. The optimal condition was the inoculation of 6–8 leaf stage plants with a bacterial concentration of 102 CFU ml?1 and an incubation temperature of 28 °C. Evaluation of stem wilting was more reliable than that of leaf wilting. Using this method, nine genotypes with different resistance levels in the field were evaluated. Lower disease indices were obtained for genotypes with high resistance levels in the field, suggesting that this assay is useful for evaluating bacterial wilt resistance in a controlled environment.  相似文献   

18.

Background

Host-plant resistance is the most desirable and economic way to overcome BPH damage to rice. As single-gene resistance is easily lost due to the evolution of new BPH biotypes, it is urgent to explore and identify new BPH resistance genes.

Results

In this study, using F2:3 populations and near-isogenic lines (NILs) derived from crosses between two BPH-resistant Sri Lankan rice cultivars (KOLAYAL and POLIYAL) and a BPH-susceptible cultivar 9311, a new resistance gene Bph33 was fine mapped to a 60-kb region ranging 0.91–0.97 Mb on the short arm of chromosome 4 (4S), which was at least 4 Mb distant from those genes/QTLs (Bph12, Bph15, Bph3, Bph20, QBph4 and QBph4.2) reported before. Seven genes were predicted in this region. Based on sequence and expression analyses, a Leucine Rich Repeat (LRR) family gene (LOC_Os04g02520) was identified as the most possible candidate of Bph33. The gene exhibited continuous and stable resistance from seedling stage to tillering stage, showing both antixenosis and antibiosis effects on BPH.

Conclusion

The results of this study will facilitate map-based cloning and marker-assisted selection of the gene.
  相似文献   

19.
20.

Background

Rice plays an extremely important role in food safety because it feeds more than half of the world’s population. Rice grain yield depends on biomass and the harvest index. An important strategy to break through the rice grain yield ceiling is to increase the biological yield. Therefore, genes associated with organ size are important targets for rice breeding.

Results

We characterized a rice mutant gns4 (grain number and size on chromosome 4) with reduced organ size, fewer grains per panicle, and smaller grains compared with those of WT. Map-based cloning indicated that the GNS4 gene, encoding a cytochrome P450 protein, is a novel allele of DWARF11 (D11). A single nucleotide polymorphism (deletion) in the promoter region of GNS4 reduced its expression level in the mutant, leading to reduced grain number and smaller grains. Morphological and cellular analyses suggested that GNS4 positively regulates grain size by promoting cell elongation. Overexpression of GNS4 significantly increased organ size, 1000-grain weight, and panicle size, and subsequently enhanced grain yields in both the Nipponbare and Wuyunjing7 (a high-yielding cultivar) backgrounds. These results suggest that GNS4 is key target gene with possible applications in rice yield breeding.

Conclusion

GNS4 was identified as a positive regulator of grain number and grain size in rice. Increasing the expression level of this gene in a high-yielding rice variety enhanced grain yield. GNS4 can be targeted in breeding programs to increase yields.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号