首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complementary forage rotation (CFR) systems based on non‐limiting inputs of fertilizer nitrogen (N) (~600 kg N ha?1) are perceived as uneconomic. An experiment was carried out in Australia to investigate the effects of rates and timing of N fertilizer and sowing date on yield, nutrient‐use efficiency and nutritive value of a triple‐crop (maize, forage rape, field peas) CFR system. Treatments were early‐ and late‐sown maize grown with 0 or 135 kg fertilizer N ha?1 pre‐sowing (N1) and 0, 79 or 158 kg N ha?1 post‐sowing (N2). Forage rape was sown with 0 or 230 kg N ha?1 (N3) and field peas without N. Application of fertilizer N at N1, N2 and N3 increased CFR yield from 28·5 to 48·8 t dry matter (DM) ha?1 and irrigation water‐use efficiency (IWUE) from 3·4 to 6·1 t DM per megalitre. Increase in yield and IWUE of CFR occurs at the expense of nitrogen‐use efficiency (NUE) as applications of N at N1, N2 and N3 decreased NUE of CFR from 524 to 91 kg DM kg?1 N. Nutritive value, particularly metabolizable energy content of all forages, was similar among N treatments, and interactions between treatments were minimal. Results indicate that increase in NUE of CFR may occur at the expense of reduced yield, but increased IWUE need not compromise the yield of this CFR system.  相似文献   

2.
《Field Crops Research》1998,57(1):85-93
Nitrogen requirements to achieve rice grain yields higher than 13 t ha−1 and the associated internal N-utilization efficiency (NUE) have not been documented. The objective of this study was to compare N accumulation and NUE of irrigated rice in tropical and subtropical environments at yield-potential levels in both climates. Field experiments were conducted in 1995 and 1996 at the International Rice Research Institute, Philippines (IRRI, tropical site), and at Taoyuan Township, Yunnan, China (subtropical site). Three to five high-yielding rice cultivars were grown under optimum crop management. Plants were sampled at key growth stages to determine tissue N concentration, plant N accumulation, N harvest index (NHI), N translocation ratio and NUE. Plant N accumulation at maturity was 19 to 30% greater at Yunnan than at IRRI. Most of this difference resulted from greater N accumulation and N uptake rate during the vegetative period at Yunnan than at IRRI. During reproductive and grain-filling periods, N accumulation and N uptake rate were similar or higher at IRRI than at Yunnan. Grain N concentration at maturity was lower and N translocation ratio from straw to grains during grain filling was higher at Yunnan than at IRRI, and these traits contributed to larger NHI and NUE at Yunnan than at IRRI. Cultivars that produced grain yields over 13 t ha−1 at Yunnan required the accumulation of about 250 kg N ha−1 within the crop and had a NUE of 59 to 64 kg grain per kg plant N.  相似文献   

3.
Modern potato cultivars (Solanum tuberosum L.) require high rates of fertilizer nitrogen (N). This practice is costly and can pose a serious threat to surface and groundwater. Previous evaluation of wild potato germplasm demonstrated the existence of species capable of producing high total biomass under low N conditions, with the ability to make maximum use of added N. Therefore, a two-year field experiment was conducted in 1994 and 1995 to investigate the response of selected wild potato accessions and their hybrids with the haploid USW551 (USW) to low and high N environments. The haploid USW and cultivars Russet Burbank, Red Norland, and Russet Norkotah were also included in the study. Uniform propagules and seedlings from the variousSolanum species were transplanted to a Hubbard loamy sand (Udic Haploboroll) at Becker, Minn. and were subjected to two N treatments: 0 and 225 kg N ha-1. At harvest, total dry biomass of wild and hybrid potato germplasm was equal to or higher than that of the cultivars. However, cultivar biomass partitioning was 1% to roots, 15% to shoots, 0% to fruits, and 84% to tubers, whereas wild potato species partitioned 18% to roots plus nontuberized stolons, 52% to shoots, 23% to fruits, and only 7% to tubers. Hybrids were intermediate, allocating 9% of their biomass to roots plus nontuberized stolons, 39% to shoots, 14% to fruits, and 38% to tubers. Nitrogen use efficiencies for many of the species and crosses were comparable to that for Russet Burbank and greater than those for Red Norland and Russet Norkotah. Of the wild species tested,S. chacoense accessions had the highest biomass accumulation and N uptake efficiencies and may be the best source of germplasm for improving NUE in a potato breeding program.  相似文献   

4.
The effect of seedpiece spacing on the efficiency of nitrogen (N) use by the potato crop is generally unknown. The objective of this experiment was to determine the effect of seedpiece spacing on tuber yield, yield components and N use efficiency parameters of two potato cultivars. Potato cultivars Atlantic and Shepody were grown at two rates of N fertilization (0 or 100 kg N ha?1) and three seedpiece spacings (20, 30, or 40 cm) in 2000 to 2002. Wider seedpiece spacing increased mean tuber weight and the number of tubers per stem, but decreased total tuber yield. The higher tuber yield at the narrow seedpiece spacing was attributed to higher biomass production in combination with lower tuber specific gravity. Seedpiece spacing had no consistent effect on plant N accumulation, and therefore no consistent effect on N uptake efficiency (plant N accumulation /N supply from the soil plus fertilizer). However, a small increase in soil NO3-N concentration in the hill at topkill at wider seedpiece spacing suggested plant N accumulation was slightly reduced at wider seedpiece spacing, but at a level that could not be detected from a plant-based measure of N accumulation. The reduced dry matter accumulation, but similar plant N accumulation, resulted in lower N use efficiency (plant dry matter accumulation / N supply) at wider seedpiece spacing. Wider seedpiece spacing also resulted in generally lower values of N utilization efficiency (plant dry matter accumulation / plant N accumulation) for the 40-cm compared with the 20- and 30-cm seedpiece spacings. Effects of seedpiece spacing on N use efficiency parameters were generally consistent across cultivars and fertilizer N rates. Wider seedpiece spacing did reduce the efficiency of N use by the potato crop; however, the magnitude of the effect was small under the conditions of this study.  相似文献   

5.
Nitrogen and water are important factors influencing potato production, and crop response to these two factors may vary with cultivars. The yield response of two potato cultivars (Russet Burbank and Shepody) to six rates of N fertilization (0-250 kg N ha-1) with and without supplemental irrigation was studied at four onfarm sites in each of three years, 1995 to 1997, in the upper St-John River Valley of New Brunswick, Canada. On average, irrigation increased total yield from 31.9t ha-1 without irrigation to 38.41 ha-1 with irrigation and marketable yield from 25.61 ha-1 without irrigation to 30.71 ha-1 with irrigation. Potato yields were increased by irrigation at nine out of the 12 sites, and the irrigation response was similar for both cultivars. Nitrogen fertilization significantly increased both total and marketable yields at all sites except one. The yield response to N fertilization was greater with irrigation. The N fertilization rate (Nmax) required to reach maximum total and marketable yield, however, was similar with and without irrigation. A large variation in Nmax was observed among sites. With irrigation Nmax varied between 158 and 233 kgN ha-1 for total yield, and between 151 and 250 kg N ha-1 for marketable yield. There was no interaction between N fertilization and potato cultivar for both total and marketable yields. The two cultivars had similar total yields (35 t ha-1). Shepody, however, had a greater marketable yield (28.9 t ha-1) than Russet Burbank (27.4 t ha-1). Our results indicate that the response to two of the most significant factors of potato production, irrigation and N fertilization, varies greatly with sites and climatic conditions, and that field specific recommendations are required for the optimum management of N and irrigation.  相似文献   

6.
Intercropping has been a globally accepted practice for forage production, however, consideration of multiple performance criteria for intercropping including forage production, feed use efficiency and ruminal greenhouse gas emissions needs to be further investigated. A two-year field study was conducted to evaluate forage dry matter (DM) yield, nutritive value, feeding values and land-use efficiency as well as ruminal carbon dioxide (CO2) and methane (CH4) emissions of intercropped orchardgrass (Dactylis glomerata) and alfalfa (Medicago sativa) sown in five intercropping ratios (100:0, 75:25, 50:50, 25:75, and 0:100, based on seed weight) and three nitrogen (N) fertilizer levels (0, 50, and 100 kg ha−1). Increasing alfalfa proportion and N fertilizer level increased soil nutrients and the two-year total DM yield. Intercropping increased both land and nitrogen use efficiency (NUE) compared with monocultures. Greater NUE was obtained when N fertilizer was applied at 50 kg ha−1, compared with 100 kg ha−1. Increasing the proportion of alfalfa in intercrops increased the crude protein yield and rumen undegraded protein yield. Harvested forage intercrops were incubated with ruminal fluid for 48 h. Degraded DM yield, CO2 and CH4 emissions increased with increasing alfalfa proportion in intercrops. Overall, the 75:25 of orchardgrass-alfalfa intercrops was recommended as the best compromise between high forage productivity, superior feed use efficiency and low ruminal greenhouse gas emissions through complementary effects. The results indicate that the appropriate N fertilization level would be 50 kg ha−1 for acquiring higher nitrogen use efficiency and forage productivity.  相似文献   

7.
Early potatoes are typically produced using less nitrogen than a full season potato crop as high rates of nitrogen may delay tuber set and lead to excessive vine growth that is difficult to terminate prior to harvest. Bintje and Ciklamen potato cultivars were grown with preplant soil nitrogen levels of 34 to 38, 67, and 101 kg N ha-1 in 2013 and 2014 near Paterson, Washington. Nitrogen rate had little impact on the number of tubers and stems per plant of both cultivars, but increasing nitrogen rate tended to increase leaf area of both cultivars. Vine desiccation of Bintje with diquat was less complete as nitrogen rate increased, while Ciklamen vine kill was reduced by higher nitrogen in 1 of 2 years. Tuber skinning injury, tuber weight loss, and tuber size distribution were not affected by nitrogen rate. Tuber skinning injury and tuber weight loss were reduced in both cultivars by harvesting at 4 weeks after initial vine kill compared to harvesting at 2 weeks after vine kill. Total tuber yield was lower for both Bintje and Ciklamen in 1 of 2 years at the 34 to 38 kg N ha-1 rate. Tuber nitrogen and zinc levels tended to increase with increasing nitrogen rates, while most other nutrients, vitamin C, total phenolics, and antioxidant capacity showed little response. It appears that 67 kg N ha-1 provides adequate nitrogen to produce a good tuber set and yield of small tubers while not producing excessive vine growth that may be more difficult to kill.  相似文献   

8.
Crop yields are often increased through crop rotation. This study examined selected soil chemical and physical properties that may constitute the N and non-N related effects of crop rotation in potato cropping systems. Potato (Solanum tuberosum L. Norwis) was grown continuously and in two-year rotations with annual alfalfa (Medicago sativa L. Nitro), hairy vetch (Vicia villosa Roth), white lupin (Lupinus albus L. Ultra), and oat (Avena sativa Astro). Hairy vetch contributed more residue N than any other crop rotation, ranging from 110 to 119 kg N ha?1. Inorganic N concentrations in potato soils were related to the previous crop’s residue N contents, and were highest following vetch and alfalfa and lowest following oat and potato. The highest mineralizable N concentration was found following vetch (46.6 mg N kg?1). Saturated soil hydraulic conductivity in potato following all rotations ranged from 9.88 to 11.28 cm h?1 compared to 5.71 cm h?1 for continuous potato. Higher soil water contents were maintained in the 30 to 45 cm depth for all rotations compared to continuous potato. Thus several parameters indicate substantial N effects associated with particular crop rotations. Soil hydraulic conductivity and soil water status may also represent significant components of the rotation effect not directly related to N for these cropping systems.  相似文献   

9.
Little is known about the immediate effect of high nitrogen (N), phosphorus (P) and potassium (K) application rates on sown grasslands cut twice per year. We asked how quickly plant species composition, biomass yield, biomass chemical properties and nutrient balance respond to N, P and K application. An experiment using unfertilized control, P, N, NP and NPK treatments was established on seven‐year‐old cut grassland in the Czech Republic in 2007 and monitored over four years. Annual application rates were 300 kg N ha?1, 80 kg P ha?1 and 200 kg K ha?1. The immediate response of plant species composition to N application was recorded and was found to be different to the response over the four years of the study period. Highly productive grasses (Dactylis glomerata, Festuca arundinacea and Phleum pratense) were promoted by N application in 2008 and then retreated together with legumes (Medicago sativa, Trifolium pratense and Trifolium repens) in all N treatments where the expansion of perennial forbs (Urtica dioica and Rumex obtusifolius) and annual weeds (Galinsoga quadriradiata, Impatiens parviflora, Lamium purpureum and Stellaria media) was recorded. At the end of the experiment, Festuca rubra was the dominant grass in the control and P treatment, and species richness was lowest in all treatments with N application. Mean annual dry‐matter yield over all years was 3.5, 3.9, 5.8, 5.6 and 6.8 t ha?1 in the control, P, N, NP and NPK treatments, respectively. Concentrations of N in the biomass ranged from 20.0 to 28.7 g kg?1 in the P and N treatments; concentrations of P ranged from 3.2 to 3.7 g kg?1 in the N and P treatments; and concentrations of K ranged from 24.1 to 34.0 g kg?1 in the NP and NPK treatments. The N:P, N:K and K:P ratios did not correctly indicate the nutrient limitation of biomass production, which was primarily N‐limited, and K‐limitation was only recorded for high production levels in treatments with N applications. On the basis of the nutrient‐balance approach, the balanced annual application rates were estimated as 140 kg N ha?1, 30 kg P ha?1 and 100 kg K ha?1. We concluded that high N, P and K application rates can very quickly and dramatically change species composition, biomass production and its chemical properties in sown cut grasslands. High N application rates can be detrimental for tall forage grasses and can support the spread of weedy species.  相似文献   

10.
Potato response to environment, planting date and genotype was studied for different agro-ecological zones in Lesotho. Field experiments were conducted at four different sites with altitudes ranging from 1,655 to 2,250 m above sea level during the 2010/2011 and 2011/2012 summer growing seasons. Treatments consisted of three cultivars that varied in maturity type, two planting dates and four sites differing in altitude and weather patterns. Various plant parts were measured periodically. To understand and quantify the influence of abiotic factors that determine and limit yields, the LINTUL crop growth model was employed which simulated potential yields for the different agro-ecological zones using weather data collected per site during the study period. Observed actual crop yields were compared with model simulations to determine the yield gap. Model simulations helped to improve our understanding of yield limitations to further expand potato production in subtropical highlands, with emphasis on increasing production through increased yields rather than increased area. Substantial variation in yield between planting date, cultivar and site were observed. Average tuber dry matter (DM) yields for the highest yielding season were above 7.5 t DM ha?1 or over 37.5 t ha?1 fresh tuber yield. The lowest yield obtained was 2.39 t DM ha?1 or 12 t ha?1 fresh tuber yield for cultivar Vanderplank in the 2011/2012 growing season at the site with the lowest altitude. Modelled potential tuber yields were 9–14 t DM ha?1 or 45–70 t ha?1 fresh yield. Drought stress frequently resulted in lower radiation use efficiencies and to a lesser degree harvest indices, which reduced tuber yield. The site with the lowest altitude and highest temperatures had the lowest yields, while the site with the highest altitude had the highest yields. Later maturing cultivars yielded more than earlier maturing ones at all sites. It is concluded that the risk of low yields in rain-fed subtropical highlands can be minimised by planting late cultivars at the highest areas possible as early as the risks of late frosts permit.  相似文献   

11.
Crop rotation can be an effective mechanism for reducing disease incidence and contributing nitrogen (N) to succeeding crops. Interactions of plant pathogen suppression and soil nutrient availability may also exist, adding to the cropping system complexity. This study examined the impact of crop rotation, N fertilization, and their interaction on growth, yield, andRhizoctonia solani incidence in potato (Solanum tuberosum L. Norwis). Potato was grown continuously and in two-year rotations with annual alfalfa (Medicago sativa L. Nitro), hairy vetch (Vicia villosa Roth), white lupin (Lupinus albus L. Ultra), and oat (Avena sativa Astro). Fertilizer was banded at potato planting with 0, 45, 90, 135, 180, or 225 kg N ha?1 as (NH4)2SO4. Approximately 58% of continuous potato possessed stem lesions caused byR. solani, but only 12 to 22% of potato stems from other rotations possessed lesions. Tuber dry weight was affected by crop rotation in 1989, a dry year, but not in 1990. Apparent N fertilizer replacement values for hairy vetch, Nitro alfalfa, white lupin, and oat were 65, 43, 26, and 11 kg N ha?1, respectively. All crop rotations studied appeared to enhance potato production by reducing stem infection byR. solani. Vetch and alfalfa provide additional benefits through their N contributions.  相似文献   

12.
The effect of chloropicrin fumigation on the soil populations of Spongospora subterranea and the development of powdery scab, formation of root galls and tuber yield was investigated in seven field trials conducted in Minnesota and North Dakota. Sixteen potato cultivars, with different levels of susceptibility to disease on roots and tubers, were planted in plots treated with chloropicrin at rates ranging from zero to 201.8 kg a.i. ha?1. The amount of S. subterranea DNA in soil was determined using qPCR. Bioassays were conducted to further assess the effect of chloropicrin fumigation on root colonization by S. subterranea in two potato cultivars with contrasting disease susceptibility. In the field, chloropicrin applied at rates between 70.1 to 201.8 kg a.i. ha?1 significantly decreased S. subterranea initial inoculum in soil but increased the amount of disease observed on roots and tubers of susceptible cultivars. The effect of increasing disease was confirmed in controlled conditions experiments. Although the amount of S. subterranea DNA in roots of bioassay plants increased with increasing chloropicrin rates, it remained similar among potato cultivars. Chloropicrin fumigation significantly increased tuber yield which in cultivars such as Shepody and Umatilla Russet were associated with the amount root galls (r = 0.30; P < 0.03). Results of these studies contradict earlier reports on the use of chloropicrin fumigation for the control of powdery scab. Factors other than inoculum level, such as environmental conditions that affect inoculum efficiency and host susceptibility, may be significant contributors to the development of powdery scab and root gall formation.  相似文献   

13.
Nitrogen studies in Lolium perenne grown for seed I. Level of application   总被引:2,自引:0,他引:2  
In field trials in 1971–73, perennial ryegrass cv. S23 and S24 were given up to 200 kg ha?1 nitrogen (N) and dry weight, seed yields and seed yield components measured. Optimum levels of applied N ranged from 80 kg ha?1, where livestock had grazed the crop in the establishment year or where residual N levels were about 70 kg ha?1, to 120 kg ha?1 where residual N was low. Application of more than 120 kg ha?1 did not increase yields further because of increased lodging and increased production of vegetative tillers. Seed set was 37–55% in S24 and 25–29% in S23 and was decreased by lodging.  相似文献   

14.
Information is required on nitrogen (N) fertility and seedpiece management for new cultivars and advanced breeding lines. Interactions amongst N fertilizer rate, genotype, and seedpiece spacing are complex, and can affect tuber yield, quality, and storability as well as N fertilizer efficiency. A field study was carried out in 2001 and 2002 at MSU Montcalm Research Farm in central Michigan. Tuber yields and post-harvest quality characteristics were evaluated for five potato genotypes (MSG227-2, MSE192-8Rus, Jacqueline Lee, Liberator, and Snowden) in response to a factorial combination of three N levels (200 kg N ha-1, 300 kg N ha-1-, and 400 kg N ha-1) and two seedpiece spacings, narrow (0.20 m or 0.25 m) and wide (0.33 m or 0.38 m). Narrow seedpiece spacing consistently produced the highest U.S. No. 1 yields in all genotypes tested (37 and 34 t ha-1, narrow vs wide spacing, respectively). There was a tradeoff between seedpiece spacing and N level in 2001 as tuber yields were enhanced by higher N levels at wide seedpiece spacing, but not at narrow spacing. In 2002, tuber yield was not enhanced, but petiole nitrate-N and tuber-N increased as N fertilization increased. Genotype was the major factor that influenced tuber quality characteristics at harvest and for stored tubers (e.g., specific gravity, internal defects, bruising, chip color rating, sucrose, and glucose). Spacing had minimal effects, whereas higher levels of N slightly reduced specific gravity both years, reduced internal defects in 2001 and enhanced sucrose at harvest in 2002. The cultivars tested demonstrated excellent storage characteristics for different N fertility levels and seedpiece spacing combinations. Overall, the recommended N fertilizer level for moderately long-duration potato cultivars in Michigan (200 kg N ha-1) and a narrow seedpiece spacing optimized yield and tuber quality performance while conserving N fertilizer.  相似文献   

15.
Nitrogen (N) fertilization plays a central role for improving yield in wheat and high N use efficiency (NUE) is desired to protect ground and surface waters. Several studies showed that sulfur (S) fertilization may increase NUE, but no attempts have been made to explain whether this increase is due to greater recovery efficiency (RE), an enhanced internal efficiency (IE) or by an improvement of both efficiencies. The aim of this study was to analyze the effects of different N and S fertilizer rates, and their interaction on N uptake, its partition at maturity, NUE and its main components. Field experiments were carried out during two consecutive growing seasons in the Argentinean Pampas using a single bread-wheat genotype grown under different combinations of N and S fertilizer rates. Additional experiments were performed in farmer fields using N and S fertilization evaluating different genotypes in order to analyze the components of NUE in other environmental conditions. Plant N uptake increased linearly in response to N addition until rates of ca. 80 kg N ha−1. Sulfur addition showed no effect at the lowest N fertilizer rate, but N uptake was increased when S was applied at the highest N rate, revealing a synergism between both nutrients. At the lowest S rate RE was 42%, and increased to 70% when S fertilizer was added. No changes in IE in response to S fertilization were observed. These results were also observed in farmer field experiments, in genotypes that showed different IE. This study showed that S addition increased NUE mainly by increasing the N recovery from the soil. Thus, the concurrent management of N and S is important for reducing the potential pollution of residual soil nitrate by increasing N recovery from the soil while sustaining high nitrogen use efficiency.  相似文献   

16.
As hill shape significantly influences water infiltration into potato hills, modification of hill shape may be an opportunity for improving fertilizer nitrogen use efficiency on sandy soils. The interactive effect of different hill shapes and rate of nitrogen (N) fertilizer application on N use efficiency was assessed in a 3-year potato (Solanum tuberosum L. cv, Russet Burbank) field experiment on Plainfield loamy sand soil at Hancock, Wisconsin, USA. A split-plot design was used with hill shape (shaped-plateau, pointed, or standard) as the main plots and in-season N rates (0, 135, 202, 269 kg?N ha?1) as the split plots with four replications in randomized complete blocks. In 1 of 3 years, potato yield and quality were increased and less N was needed to optimize yield and quality where the hills were shaped. In the other 2 years, the more blocky hills (shaped-plateau and standard) showed consistent tendencies (p?=?0.02 to 0.19) toward better crop performance; however, time of hill formation was influencing these results with root pruning likely the influencing factor. Results of this study show more blocky hills with only one hilling operation at emergence can significantly improve potato yield and quality and N use efficiency on these sandy soils.  相似文献   

17.
Optimizing nitrogen (N) fertilizer management in irrigated potato (Solanum tuberosum L.) on coarse-textured soils is challenging. The “4R” nutrient stewardship framework of using N fertilizer at the right rate, right source, right placement and right time provides approaches to improve fertilizer use efficiency while maintaining or improving yield. This 3-years replicated field plot study evaluated effects from a series of N fertilization strategies including 10 combinations of sources, placement and timing, as well as fertigation, on irrigated processing potato (cv. Russet Burbank) grown for a total of five site-years in the Province of Manitoba, Canada. Treatments were designed to provide early to late availability of N to the potato crop. Nitrogen was applied to 80% of Provincial N recommendation to increase the likelihood of observing improved fertilizer use efficiency and effects of treatments on yields. Measurements were tuber yield, size distribution, specific gravity, hollow-heart rate, fertilizer apparent N recovery (ANR) and agronomic nitrogen use efficiency (NUE). Results showed differences in yield, quality, ANR and NUE between fertilizer treatments were generally very small or absent. Average tuber marketable yields for fertilizer treatments were significantly greater than those for the unfertilized control (P?<?0.001). Split application of urea at planting and hilling, and urea at planting with fertigation occasionally increased tuber marketable yields on sites of coarse textured soils (P?<?0.05). Use of polymer-coated urea (ESN) or stabilized urea with inhibitors (SuperU) did not affect yield, quality or N use of potato. Site-year difference (P?<?0.001) were apparent for all measures highlighting the importance of soil and climatic conditions on agronomic and environmental effects of N management practices. The results indicate current grower practice of split urea application at planting and hilling and urea at planting following by in-season fertigation are sound. Results indicate growers could shift to the more convenient practice of ESN at planting without reducing yields. Absence of treatment effects suggests N was generally not a limiting factor for the current study, indicating that the current recommendation for potato production in Manitoba over-estimate site-specific crop N needs.  相似文献   

18.
Research has shown that while fumigation and use of ammonium N can both reduce the severity of verticillium wilt (Verticillium dahliae Kleb.) of potatoes (Solanum tuberosum L.), the use of the two practices together raises concerns over feeding the crop only ammonium N under reduced nitrification conditions. To assess the validity of this concern, we conducted two 3-year field split-plot experiments with both using metam sodium fumigant (none, fall or spring applied) as the main plot. For the first experiment, N source (134 kg N ha?1 as ammonium sulfate, urea, or ammonium nitrate) was the split, whereas for the second trial in-season N rate (0, 67, 134, or 202 kg N ha?1 all as ammonium sulfate) was the split. For both trials, in 2 of the 3 years, fumigation significantly increased tuber yield by an average of 9.9 Mg ha?1 and decreased late-season verticillium severity ratings from 77 to 45%. In some years, fumigation also increased the proportion of U.S. No. 1 tubers and tubers >170 g. No differences in crop yield or quality were observed between the various N sources applied. This was true even on spring-fumigated areas with the highest rate of ammonium N applied. These experiments confirm that the choice between in-season potato N fertilizer should be based on factors such as potential for benefits or N losses, cost, and convenience of use rather than concern over an interaction between fumigation and ammonical N. While both fumigation and N rate reduced verticillium severity ratings in some years, the lack of interaction suggests these factors are functioning independently.  相似文献   

19.
The use of cattle manure (CM) for fertilization presents challenges for optimizing nitrogen (N) use. Our work aimed to assess N efficiencies, in a 6‐year experiment with three biennial rotations of four crops: oat–sorghum (first year) and ryegrass–maize (second year) in a rainfed humid Mediterranean area of Spain. Fertilization treatments included the following: control (no N), 250 kg mineral N ha?1 year?1 (250MN), three CM rates (supplying 170, 250 and 500 kg N ha?1 year?1) and four treatments where the two lowest CM rates were complemented with either 80 or 160 kg mineral N ha?1 year?1. Treatments were distributed randomly in each of three blocks. Maximum dry‐matter yield (~44–49 t ha?1 rotation?1) was achieved in the third rotation, and only the control and the 170CM yielded significantly less. Within the limitations of the EU Nitrate Directive, the N steady state supply of 170CM always requires a complement of mineral N (80 kg N ha?1) to maximize N agronomic efficiency. The maximum N‐fertilizer replacement value (250CM vs. 250MN) was 0·67, without significant differences between the two treatments in other N‐related efficiency indexes, which indicates that plants took advantage of residual‐N effects. Nitrogen losses by leaching in the 250CM treatment were around 5–7% of the N applied. This reinforces the sustainability of manure recycling in long cropping seasons.  相似文献   

20.
Russet Burbank and Shepody potatoes were grown with the following four nitrogen treatments: 1) 90 kg ha?1 at planting; 2) 180 kg ha?1 at planting; 3) 90 kg ha?1 at planting followed by an additional 90 kg ha?1 side-dressed after tuber initiation; or 4) 90 kg ha?1 at planting followed by an additional 45 kg ha?1 sidedressing. When compared to the 90 kg ha?1 at-planting treatment, petiole NO3-N concentrations increased rapidly after sidedressing and were relatively constant through mid-season. Sidedressed N significantly increased total yields relative to the 90 kg N ha?1 at-planting treatment by an average of 5.0 t ha?1 in three of nine experiments. Three of the experiments, where yields did not significantly increase, were on sites which were not expected to respond to supplemental N based on petiole NO3-N testing. A red clover green manure crop was the previous crop for two of these experimental sites. Petiole NO3-N testing criteria were only partially effective in detecting sites where response to sidedressed N occurred. When compared to a single application of 180 kg N ha?1 at planting, split application of 90 kg N ha?1 at planting followed by a 90 kg N ha?1 sidedressing significantly reduced total yields in one of nine experiments and did not affect yields in the remaining eight experiments. Tuber uniformity was improved in three of nine experiments by the split-N treatment. Specific gravity was not significantly affected. Use of 45 kg N ha?1 at side-dressing resulted in similar yield as the 90 kg N ha?1 sidedressing, although yield of large-sized tubers was often decreased with the lower N rate. Use of reduced at-planting N rates followed by sidedressed N does not appear to increase yields of non-irrigated Russet Burbank and Shepody potatoes when compared to the at-planting N rates that are currently recommended. This management approach can maintain yields at levels comparable to at-planting N programs and does provide an opportunity to reduce N application rates on sites where soil N reserves and soil amendments may make a substantial N contribution to the potato crop. Side-dressed N application can frequently improve yields and tuber size when potatoes have been underfertilized at planting; however, some inconsistency in response can be expected in regions that rely on unpredictable natural rainfall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号