首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When prototrophic yeast cells are cultured under nutrient-limited conditions that mimic growth in the wild, rather than in the high-glucose solutions used in most laboratory studies, they exhibit a robustly periodic metabolic cycle. Over a cycle of 4 to 5 hours, yeast cells rhythmically alternate between glycolysis and respiration. The cell division cycle is tightly constrained to the reductive phase of this yeast metabolic cycle, with DNA replication taking place only during the glycolytic phase. We show that cell cycle mutants impeded in metabolic cycle-directed restriction of cell division exhibit substantial increases in spontaneous mutation rate. In addition, disruption of the gene encoding a DNA checkpoint kinase that couples the cell division cycle to the circadian cycle abolishes synchrony of the metabolic and cell cycles. Thus, circadian, metabolic, and cell division cycles may be coordinated similarly as an evolutionarily conserved means of preserving genome integrity.  相似文献   

2.
A persisting, free-running, circadian rhythm of cell division in a heterotrophically grown mutant of Euglena gracilis var. bacillaris having impaired photosynthesis is obtained upon placing a culture that has been previously synchronized by a 10,14 light-dark cycle into continuous darkness at 19 degrees C (but not at 25 degrees C). A similar persisting rhythm is initiated in exponentially increasing cultures (growing in darkness at 19 degrees C) by a single "switch-up" in irradiance to continuous bright illumination. The results implicate an endogenous biological clock which "gates" the specific event of cell division in the cell developmental cycle.  相似文献   

3.
Cell division is arrested in many organisms in response to DNA damage. Examinations of the genetic basis for this response in the yeast Saccharomyces cerevisiae indicate that the RAD9 gene product is essential for arrest of cell division induced by DNA damage. Wild-type haploid cells irradiated with x-rays either arrest or delay cell division in the G2 phase of the cell cycle. Irradiated G1 and M phase haploid cells arrest irreversibly in G2 and die, whereas irradiated G2 phase haploid cells delay in G2 for a time proportional to the extent of damage before resuming cell division. In contrast, irradiated rad9 cells in any phase of the cycle do not delay cell division in G2, but continue to divide for several generations and die. However, efficient DNA repair can occur in irradiated rad9 cells if irradiated cells are blocked for several hours in G2 by treatment with a microtubule poison. The RAD9-dependent response detects potentially lethal DNA damage and causes arrest of cells in G2 until such damage is repaired.  相似文献   

4.
A voltage-dependent chloride current has been found in early ascidian embryos that is a minor conductance in the oocyte and in interphase blastomeres but that increases transiently in amplitude by more than tenfold during each cell division. Repeated cycles in the density of this chloride current could be recorded for up to 6 hours (four cycles) in cleavage-arrested embryos, whether they were activated by sperm or calcium ionophore. These data suggest that there is a direct link between the cell cycle clock and the properties of this channel, a link that results in pronounced cyclical changes in the electrical properties of early blastomeres.  相似文献   

5.
Root tip cells of Vicia faba were partially synchronized in nuclear stages by treatment for 24 hours with 700 parts of 5-aminouracil per million. All division was suppressed by the analog treatment, and a peak in division stages ( up to 62.5 percent) was reached 14 hours after removal from the aminouracil. Populations of partially synchronized cells can be useful in experiments designed to study various intracellular reactions or responses at different stages in the nuclear cycle.  相似文献   

6.
Liver regeneration is an orchestrated cellular response that coordinates cell activation, lipid metabolism, and cell division. We found that caveolin-1 gene-disrupted mice (cav1-/- mice) exhibited impaired liver regeneration and low survival after a partial hepatectomy. Hepatocytes showed dramatically reduced lipid droplet accumulation and did not advance through the cell division cycle. Treatment of cav1-/- mice with glucose (which is a predominant energy substrate when compared to lipids) drastically increased survival and reestablished progression of the cell cycle. Thus, caveolin-1 plays a crucial role in the mechanisms that coordinate lipid metabolism with the proliferative response occurring in the liver after cellular injury.  相似文献   

7.
During cell division, each daughter cell inherits one copy of every chromosome. Accurate transmission of chromosomes requires that the sister DNA molecules created during DNA replication are disentangled and then pulled to opposite poles of the cell before division. Defects in chromosome segregation produce cells that are aneuploid (containing an abnormal number of chromosomes)-a situation that can have dire consequences. Aneuploidy is a leading cause of spontaneous miscarriages in humans and is also a hallmark of many human cancer cells. Recent work with yeast, Xenopus, and other model systems has provided new information about the proteins that control chromosome segregation during cell division and how the activities of these proteins are coordinated with the cell cycle.  相似文献   

8.
本文应用光学显微镜和石蜡制片法,对糜子的受精过程与胚的发育进行研究,结论如下:开花2h 后后,精核进入卵细胞;开花4h 后,精核的染色质逐渐分散,并出现核仁,受精卵内有一大而明显的雌性核仁和一较小的雄性核仁,此时合子形成,开花10h 后,合子进行1次分裂,糜子合子静止期长达4h 左右。2细胞原胚时,胚乳处于6个游离核时期。糜子的胚胎发育为紫菀型。合子无极性,第1次分裂为横分裂。胚发育经过原胚、椭圆形胚再经胚分化期和成熟期发育为成熟胚。受精前,两极核紧贴,不合并,位于卵细胞的合点端。受粉2h 后,精子进入一个极核,精核与极核融合过程同精核与卵核的融合过程相同;开花4h 后,形成初生胚乳核;开花5h 后初生胚乳核进行第1次分裂;胚乳发育为核型,游离核分裂为有丝分裂,球形胚期胚乳开始细胞化。  相似文献   

9.
Cytokinins are plant hormones that regulate plant cell division. The D-type cyclin CycD3 was found to be elevated in a mutant of Arabidopsis with a high level of cytokinin and to be rapidly induced by cytokinin application in both cell cultures and whole plants. Constitutive expression of CycD3 in transgenic plants allowed induction and maintenance of cell division in the absence of exogenous cytokinin. Results suggest that cytokinin activates Arabidopsis cell division through induction of CycD3 at the G1-S cell cycle phase transition.  相似文献   

10.
Cells remove proteins by two processes: degradation and dilution due to cell growth. The balance between these basic processes is poorly understood. We addressed this by developing an accurate and noninvasive method for measuring protein half-lives, called "bleach-chase," that is applicable to fluorescently tagged proteins. Assaying 100 proteins in living human cancer cells showed half-lives that ranged between 45 minutes and 22.5 hours. A variety of stresses that stop cell division showed the same general effect: Long-lived proteins became longer-lived, whereas short-lived proteins remained largely unaffected. This effect is due to the relative strengths of degradation and dilution and suggests a mechanism for differential killing of rapidly growing cells by growth-arresting drugs. This approach opens a way to understand proteome half-life dynamics in living cells.  相似文献   

11.
12.
陆地棉花粉管通道形成时期的研究   总被引:5,自引:0,他引:5  
用石蜡切片法观察陆地棉的花粉管生长、受精和受精卵分裂过程及花粉管通道形成时期。结果表明:①授粉后15 h花粉管通过珠孔进入胚囊;②授粉后18~21 h,精子和卵细胞开始融合,24 h后形成一个核仁的受精卵;③授粉后48 h,始见胚分裂;授粉后72 h,早期胚形成;④应用花粉管通道法对棉花导入外源DNA的适宜时期为授粉后18~48 h。  相似文献   

13.
【目的】分析细菌内源过氧化氢在细胞分裂周期中的时空变化,探讨细菌增殖中过氧化氢的生理功能。【方法】采用组织化学法通过透射电子显微镜技术观察水稻白叶枯病菌内源过氧化氢的积累位置。【结果】不同菌株内源过氧化氢水平不同,在细菌的整个细胞分裂周期中观察到过氧化氢在细胞壁上的积累水平维持稳定,在多个菌株的细胞分裂过程中,除细胞壁之外,还在2个新的位点(类间体结构和核区)出现过氧化氢的大量积累,表现出数量和空间定位的显著变化。【结论】在多个水稻白叶枯病菌菌株中发现胞内额外的大量过氧化氢积累和定位与细胞分裂的进程密切相关,这种过氧化氢的时空变化很可能是细菌分裂时的普遍现象。推测过氧化氢应在细菌增殖中具有重要作用。  相似文献   

14.
Lygerou Z  Nurse P 《Science (New York, N.Y.)》2000,290(5500):2271-2273
A cell ensures that its genome is replicated only once during its division cycle through a process called licensing. In an enlightening Perspective, Lygerou and Nurse explain how binding of the Geminin protein to Cdt1 blocks the binding of licensing factors to chromatin, inhibiting the onset of S phase (Wohlschlegel et al.).  相似文献   

15.
The human retinoblastoma gene (RB1) encodes a protein (Rb) of 105 kilodaltons that can be phosphorylated. Analysis of Rb metabolism has shown that the protein has a half-life of more than 10 hours and is synthesized at all phases of the cell cycle. Newly synthesized Rb is not extensively phosphorylated (it is "underphosphorylated") in cells in the G0 and G1 phases but is phosphorylated at multiple sites at the G1/S boundary and in S phase. HL-60 cells that were induced to terminally differentiate by various chemicals lost their ability to phosphorylate newly synthesized Rb at multiple sites when cell growth was arrested. These findings suggest that underphosphorylated Rb may restrict cell proliferation.  相似文献   

16.
In some simple protozoans and unicellular algae, the cell cycle clock is strongly influenced by the circadian clock, such that mitotic cell division takes place only at certain times of the day. Now, as Schibler reports in his Perspective, new work on regenerating liver cells in mice (Matsuo et al.) reveals that the cell cycle clock of mammalian cells is also under the yoke of the master circadian oscillator.  相似文献   

17.
Checkpoints: controls that ensure the order of cell cycle events   总被引:282,自引:0,他引:282  
The events of the cell cycle of most organisms are ordered into dependent pathways in which the initiation of late events is dependent on the completion of early events. In eukaryotes, for example, mitosis is dependent on the completion of DNA synthesis. Some dependencies can be relieved by mutation (mitosis may then occur before completion of DNA synthesis), suggesting that the dependency is due to a control mechanism and not an intrinsic feature of the events themselves. Control mechanisms enforcing dependency in the cell cycle are here called checkpoints. Elimination of checkpoints may result in cell death, infidelity in the distribution of chromosomes or other organelles, or increased susceptibility to environmental perturbations such as DNA damaging agents. It appears that some checkpoints are eliminated during the early embryonic development of some organisms; this fact may pose special problems for the fidelity of embryonic cell division.  相似文献   

18.
The ciliate Euplotes octocarinatus and some close relatives of it are triggered by predator-released substances to undergo morphogenetic changes that inhibit their engulfment. The changes occur within a few hours and do not require cell division. They are perpetuated during reproduction so long as the concentration of the morphogen is maintained. The ability of Euplotes to respond to predator-produced signals by a defensive change in cell architecture probably provides an effective mechanism for damping population oscillations ofboth prey and predators andfosters coexistence. The signal-induced cell transformation merits study for its own sake because of its developmental implications.  相似文献   

19.
The links between the cell cycle machinery and the cytoskeletal proteins controlling cytokinesis are poorly understood. The small guanine nucleotide triphosphate (GTP)-binding protein RhoA stimulates type II myosin contractility and formin-dependent assembly of the cytokinetic actin contractile ring. We found that budding yeast Polo-like kinase Cdc5 controls the targeting and activation of Rho1 (RhoA) at the division site via Rho1 guanine nucleotide exchange factors. This role of Cdc5 (Polo-like kinase) in regulating Rho1 is likely to be relevant to cytokinesis and asymmetric cell division in other organisms.  相似文献   

20.
Cells use both deterministic and stochastic mechanisms to generate cell-to-cell heterogeneity, which enables the population to better withstand environmental stress. Here we show that, within a clonal population of mycobacteria, there is deterministic heterogeneity in elongation rate that arises because mycobacteria grow in an unusual, unipolar fashion. Division of the asymmetrically growing mother cell gives rise to daughter cells that differ in elongation rate and size. Because the mycobacterial cell division cycle is governed by time, not cell size, rapidly elongating cells do not divide more frequently than slowly elongating cells. The physiologically distinct subpopulations of cells that arise through asymmetric growth and division are differentially susceptible to clinically important classes of antibiotics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号