共查询到20条相似文献,搜索用时 14 毫秒
1.
Physiological evidence for serial processing in somatosensory cortex 总被引:10,自引:0,他引:10
Removal of the representation of a specific body part in the postcentral cortex of the macaque resulted in the somatic deactivation of the corresponding body part in the second somatosensory area. In contrast, removal of the entire second somatosensory area had no grossly detectable effect on the somatic responsivity of neurons in the postcentral cortex. This direct electrophysiological evidence for serial cortical processing in somesthesia is similar to that found earlier for vision and, taken together with recent anatomical evidence, suggests that there is a common cortical plan for the processing of sensory information in the various sensory modalities. 相似文献
2.
Experience can alter synaptic connectivity throughout life, but the degree of plasticity present at each age is regulated by mechanisms that remain largely unknown. Here, we demonstrate that Paired-immunoglobulin-like receptor B (PirB), a major histocompatibility complex class I (MHCI) receptor, is expressed in subsets of neurons throughout the brain. Neuronal PirB protein is associated with synapses and forms complexes with the phosphatases Shp-1 and Shp-2. Soluble PirB fusion protein binds to cortical neurons in an MHCI-dependent manner. In mutant mice lacking functional PirB, cortical ocular-dominance plasticity is more robust at all ages. Thus, an MHCI receptor is expressed in central nervous system neurons and functions to limit the extent of experience-dependent plasticity in the visual cortex throughout life. PirB is also expressed in many other regions of the central nervous system, suggesting that it may function broadly to stabilize neural circuits. 相似文献
3.
Ferster D 《Science (New York, N.Y.)》2004,303(5664):1619-1621
4.
Interhemispheric transfer of plasticity in the cerebral cortex 总被引:6,自引:0,他引:6
Each half of the body surface is represented topographically in the contralateral cerebral hemisphere. Physiological data are presented showing that homotopic regions of primary somatosensory cortex are linked such that plasticity induced in one hemisphere, in the form of receptive field expansion brought about by a small peripheral denervation, is immediately mirrored in the other hemisphere. Neurons which display the plasticity show no responsiveness to stimulation of the ipsilateral body surface. This suggests that the pathways and mechanisms mediating this transfer are specific to the role of maintaining balance, or integration, between corresponding cortical fields. 相似文献
5.
The cerebral cortex of the human brain is a sheet of about 10 billion neurons divided into discrete subdivisions or areas that process particular aspects of sensation, movement, and cognition. Recent evidence has begun to transform our understanding of how cortical areas form, make specific connections with other brain regions, develop unique processing networks, and adapt to changes in inputs. 相似文献
6.
Monocular deprivation during early postnatal development remodels the circuitry of the primary visual cortex so that most neurons respond poorly to stimuli presented to the deprived eye. This rapid physiological change is ultimately accompanied by a matching anatomical loss of input from the deprived eye. This remodeling is thought to be initiated at the thalamocortical synapse. Ocular dominance plasticity after brief (24 hours) monocular deprivation was analyzed by intrinsic signal optical imaging and by targeted extracellular unit recordings. Deprived-eye responsiveness was lost in the extragranular layers, whereas normal binocularity in layer IV was preserved. This finding supports the hypothesis that thalamocortical organization is guided by earlier changes at higher stages. 相似文献
7.
Pizzorusso T Medini P Berardi N Chierzi S Fawcett JW Maffei L 《Science (New York, N.Y.)》2002,298(5596):1248-1251
In young animals, monocular deprivation leads to an ocular dominance shift, whereas in adults after the critical period there is no such shift. Chondroitin sulphate proteoglycans (CSPGs) are components of the extracellular matrix (ECM) inhibitory for axonal sprouting. We tested whether the developmental maturation of the ECM is inhibitory for experience-dependent plasticity in the visual cortex. The organization of CSPGs into perineuronal nets coincided with the end of the critical period and was delayed by dark rearing. After CSPG degradation with chondroitinase-ABC in adult rats, monocular deprivation caused an ocular dominance shift toward the nondeprived eye. The mature ECM is thus inhibitory for experience-dependent plasticity, and degradation of CSPGs reactivates cortical plasticity. 相似文献
8.
Maya Vetencourt JF Sale A Viegi A Baroncelli L De Pasquale R O'Leary OF Castrén E Maffei L 《Science (New York, N.Y.)》2008,320(5874):385-388
We investigated whether fluoxetine, a widely prescribed medication for treatment of depression, restores neuronal plasticity in the adult visual system of the rat. We found that chronic administration of fluoxetine reinstates ocular dominance plasticity in adulthood and promotes the recovery of visual functions in adult amblyopic animals, as tested electrophysiologically and behaviorally. These effects were accompanied by reduced intracortical inhibition and increased expression of brain-derived neurotrophic factor in the visual cortex. Cortical administration of diazepam prevented the effects induced by fluoxetine, indicating that the reduction of intracortical inhibition promotes visual cortical plasticity in the adult. Our results suggest a potential clinical application for fluoxetine in amblyopia as well as new mechanisms for the therapeutic effects of antidepressants and for the pathophysiology of mood disorders. 相似文献
9.
Electrical sources in human somatosensory cortex: identification by combined magnetic and potential recordings 总被引:7,自引:0,他引:7
Magnetic fields and electrical potentials produced by neuronal activity have different properties that can be used for the identification of electrical sources in the human brain. Fields and potentials occurring 20 to 30 milliseconds after median nerve stimulation in human subjects were compared in order to investigate the sources of evoked potential components that have been attributed by different investigators to the thalamus or thalamocortical afferents, to separate radial sources in somatosensory cortex and motor cortex, or to a tangential source in somatosensory cortex. The magnetic and potential wave forms were highly similar in morphology, and their spatial distributions were centered over sensorimotor cortex, were dipolar in shape, and differed in orientation by approximately 90 degrees; distances between the minimum and maximum of the magnetic distributions were about 60 percent of those of the potential distributions. These results cannot be accounted for by thalamic sources or radial cortical sources alone, but are consistent with a tangential source in somatosensory cortex, with an additional smaller contribution from radial sources. 相似文献
10.
Responses of human somatosensory cortex to stimuli below threshold for conscious sensation 总被引:5,自引:0,他引:5
Averaged evoked responses of somatosensory cortex, recorded subdurally, appeared with stimuli (skin, ventral posterolateral nucleus, cortex) which were subthreshold for sensation. Such responses were deficient in late components. Subthreshold stimuli could elicit sensation with suitable repetition. The primary evoked response was not sufficient for sensation. These facts bear on the problems of neurophysiological correlates of conscious and unconscious experience, and of "subliminal perception." 相似文献
11.
In the tactile funneling illusion, the simultaneous presentation of brief stimuli at multiple points on the skin produces a single focal sensation at the center of the stimulus pattern even when no physical stimulus occurs at that site. Consistent with the funneling percept, we show with optical imaging in area 3b of the primary somatosensory cortex (SI) that simultaneous stimulation of two fingertips produces a single focal cortical activation between the single fingertip activation regions. Thus, in contrast to traditional views of the body map, topographic representation in the SI reflects the perceived rather than the physical location of peripheral stimulation. 相似文献
12.
McGee AW Yang Y Fischer QS Daw NW Strittmatter SM 《Science (New York, N.Y.)》2005,309(5744):2222-2226
Monocular deprivation normally alters ocular dominance in the visual cortex only during a postnatal critical period (20 to 32 days postnatal in mice). We find that mutations in the Nogo-66 receptor (NgR) affect cessation of ocular dominance plasticity. In NgR-/- mice, plasticity during the critical period is normal, but it continues abnormally such that ocular dominance at 45 or 120 days postnatal is subject to the same plasticity as at juvenile ages. Thus, physiological NgR signaling from myelin-derived Nogo, MAG, and OMgp consolidates the neural circuitry established during experience-dependent plasticity. After pathological trauma, similar NgR signaling limits functional recovery and axonal regeneration. 相似文献
13.
Experience-dependent brain plasticity typically declines after an early critical period during which circuits are established. Loss of plasticity with closure of the critical period limits improvement of function in adulthood, but the mechanisms that change the brain's plasticity remain poorly understood. Here, we identified an increase in expression of Lynx1 protein in mice that prevented plasticity in the primary visual cortex late in life. Removal of this molecular brake enhanced nicotinic acetylcholine receptor signaling. Lynx1 expression thus maintains stability of mature cortical networks in the presence of cholinergic innervation. The results suggest that modulating the balance between excitatory and inhibitory circuits reactivates visual plasticity and may present a therapeutic target. 相似文献
14.
The functional and anatomical rearrangements of cortical sensory maps accompanying changes in experience are not well understood. We examined in vivo and in vitro how the sensory map and underlying synaptic connectivity of the developing rat barrel cortex are altered when the sensory input to the cortex is partially deprived. In the nondeprived cortex, both the sensory responses and synaptic connectivity between columns were strengthened through an increase in the synaptic connection probability between L2/3 pyramids in adjacent columns. This was accompanied by a selective growth of L2/3pyramid axonal arbors between spared columns. In contrast, deprived and nondeprived cortical columns became weakly connected in their L2/3 pyramid connections. 相似文献
15.
Blockade of "NMDA" receptors disrupts experience-dependent plasticity of kitten striate cortex 总被引:28,自引:0,他引:28
Intracortical infusion of the "N-methyl-D-aspartate" (NMDA) receptor blocker D,L-2-amino-5-phosphonovaleric acid (APV) renders kitten striate cortex resistant to the effects of monocular deprivation. In addition, 1 week of continuous APV treatment (50 nanomoles per hour) produces a striking loss of orientation selectivity in area 17. These data support the hypothesis that crucial variables for the expression of activity-dependent synaptic modifications are a critical level of postsynaptic activation and calcium entry through ion channels linked to NMDA receptors. 相似文献
16.
QI Zhaoming LI Hui WU Qiong SUN Yanan LIU Chunyan HU Guohua CHEN Qingshan 《东北农业大学学报(英文版)》2009,16(2):12-16
Soybean is a major crop in the world, and it is a main source of plant proteins and oil. A lot of soybean genetic maps and physical maps have been constructed, but there are no integrated map between soybean physical map and genetic map. In this study, soybean genome sequence data, released by JGI (US Department of Energy's Joint Genome Institute), had been downloaded. With the software Blast 2.2.16, a total of 161 super sequences were mapped on the soybean public genetic map to construct an integrated map. The length of these super sequences accounted for 73.08% of all the genome sequence. This integrated map could be used for gene cloning, gene mining, and comparative genome of legume. 相似文献
17.
18.
研究了将地图空间信息度量方法应用到地学信息图谱及在空间信息度量方法中引入指数信息熵的方法,实例应用证明,运用地图空间信息度量方法与地图信息图谱分析相结合研究信息量是可行的,而且将指数信息熵应用于地图空间信息度量可避免无定义值和零值的出现。 相似文献
19.
Chemically cross-linked polymers are inherently limited by stresses that are introduced by post-gelation volume changes during polymerization. It is also difficult to change a cross-linked polymer's shape without a corresponding loss of material properties or substantial stress development. We demonstrate a cross-linked polymer that, upon exposure to light, exhibits stress and/or strain relaxation without any concomitant change in material properties. This result is achieved by introducing radicals via photocleavage of residual photoinitiator in the polymer matrix, which then diffuse via addition-fragmentation chain transfer of midchain functional groups. These processes lead to photoinduced plasticity, actuation, and equilibrium shape changes without residual stress. Such polymeric materials are critical to the development of microdevices, biomaterials, and polymeric coatings. 相似文献
20.
Actin-based plasticity in dendritic spines 总被引:1,自引:0,他引:1
Matus A 《Science (New York, N.Y.)》2000,290(5492):754-758
The central nervous system functions primarily to convert patterns of activity in sensory receptors into patterns of muscle activity that constitute appropriate behavior. At the anatomical level this requires two complementary processes: a set of genetically encoded rules for building the basic network of connections, and a mechanism for subsequently fine tuning these connections on the basis of experience. Identifying the locus and mechanism of these structural changes has long been among neurobiology's major objectives. Evidence has accumulated implicating a particular class of contacts, excitatory synapses made onto dendritic spines, as the sites where connective plasticity occurs. New developments in light microscopy allow changes in spine morphology to be directly visualized in living neurons and suggest that a common mechanism, based on dynamic actin filaments, is involved in both the formation of dendritic spines during development and their structural plasticity at mature synapses. 相似文献