共查询到16条相似文献,搜索用时 62 毫秒
1.
为实现柑橘氮素管理的定量化,该研究以5年生‘春见’橘橙为试验材料,设置不同对照施氮处理N0、N1、N2、N3(施氮量分别为0、50、100、200 g/株)和调控施氮处理Nr1、Nr2、Nr3(分别根据N1、N2、N3进行调控),在试验开展的第1年利用高光谱技术,分别建立柑橘果实膨大期和转色期的叶片功能性氮含量无损监测模型;第2年利用叶片功能性氮含量无损监测模型与追氮量公式计算调控施氮处理的实际追氮量,比较分析对照施氮和调控施氮对柑橘果实产量、品质及氮肥利用率的影响。结果表明,利用反向传播神经网络构建的叶片功能性氮含量模型精度较高,决定系数R2为0.78(果实膨大期)和0.77(果实转色期)。调控施氮处理Nr1和Nr3比对照施氮N1和N3分别增产5.49和4.4... 相似文献
2.
相对电导率是反映植物膜系统状况的一个重要的生理生化指标,与树体营养状况密切相关,越冬前的树体营养状态对果树抵御极端低温和顺利越冬是一个重要的影响因素,而果树受冻时细胞液渗出量和降解量也是冻害发生程度的指标。该研究对不同冻害处理下的柑橘叶片进行光谱扫描,采用了逐步回归法分析了叶片光谱反射率和叶片电导率之间的关系,构建了2种光谱反射预测柑橘叶片电导率模型,其决定系数分别为0.8201、0.8013。结果表明,柑橘叶片电导率与反射光谱之间有较强的相关性,且2种模型所得预测值与实测值的相对误差都小于10%,说明模型具有良好的预测结果。该模型可以为采用空间遥感监测果园生长状况和冻害情况提供参考。 相似文献
3.
基于GF-1卫星数据的冬小麦叶片氮含量遥感估算 总被引:1,自引:4,他引:1
以陕西关中地区大田和小区试验下的冬小麦为研究对象,探讨基于国产高分辨率卫星GF-1号多光谱数据的冬小麦叶片氮含量估算方法和空间分布格局。基于GF-1号光谱响应函数对地面实测冬小麦冠层高光谱进行重采样,获取GF-1号卫星可见光-近红外波段的模拟反射率,并构建光谱指数,利用与叶片氮含量在0.01水平下显著相关的8类光谱指数,分别建立叶片氮含量的一元线性、一元二次多项式和指数回归模型。通过光谱指数与叶片氮含量的敏感性分析,以及所建模型的综合对比分析,获取适合冬小麦叶片氮含量估算的最佳模型。结果表明:模拟卫星宽波段光谱反射率和卫星实测光谱反射率间的相关系数高于0.95,具有一致性;改进型的敏感性指数综合考虑了模型的稳定性、敏感性和变量的动态范围,敏感性分析表明比值植被指数对叶片氮含量的变化响应能力最强;综合模拟方程决定系数、模型敏感性分析、精度检验和遥感制图的结果,认为基于比值植被指数建立的叶片氮含量估算模型适用性最强,模拟结果与实际空间分布格局最为接近,为基于GF-1卫星数据的区域性小麦氮素营养监测提供了理论依据和技术支持。 相似文献
4.
针对传统中药鉴定、分子鉴定、生物技术鉴定及光谱检测技术的主观性强、耗时、操作复杂等不足,以及金线莲整个叶片形态区分度小、单一分类器鉴别精度不高的问题,该研究提出了基于机器视觉的叶片子区间多特征提取方法和基于多模型融合的Stacking集成学习算法实现金线莲的品系分类。试验采集6个品系的金线莲叶片图像数据,进行图像预处理后提取叶片子区间内纹理、颜色共114个特征,基于这些特征,构建堆叠式两阶段集成学习框架,以逻辑回归、K最近邻、随机森林和梯度提升决策树(Gradient Boosting Decision Tree,GBDT)作为基分类器,GBDT作为元分类器进行学习。试验结果表明,Stacking集成学习模型的整体识别综合评价指标F值达93.91%,分类正确率达94.49%,分别比逻辑回归、K最近邻、随机森林和GBDT这4个单一分类模型高出4.40、11.87、11.01、12.94个百分点和5.36、11.34、6.93、12.13个百分点。因此,该研究能够有效识别金线莲品系,为形状大小相似、形状特征难以利用的植物叶片识别提供参考。 相似文献
5.
6.
玉米全氮含量高光谱遥感估算模型研究 总被引:13,自引:5,他引:13
该文对不同品种玉米测定了其室内光谱反射率及其对应的全氮含量,采用相关性分析以及单变量线性与非线性拟合分析技术,对全氮含量与原始光谱反射率、光谱反射率一阶微分、一些高光谱特征参数(如红边波长、红边位置以及红边面积等)以及由一阶微分光谱所构建的一些比值植被指数和归一化植被指数之间的关系进行了分析,结果表明:全氮含量与原始光谱在716 nm处具有最大相关系数(r=-0.847),呈极显著负相关,并且基于此波长所构建的对数关系估算模型明显优于线性模型;与光谱反射率一阶微分值在759 nm处具有最大相关系数(r=0.944),呈极显著正相关,并且基于此波长所构建的线性和非线性模型的拟合效果接近;对于所选取的3类高光谱特征变量,全氮含量除了与黄边位置(λy)以及由红边面积和黄边面积所构建的比值植被指数和归一化植被指数的相关性较弱之外,与其余变量均呈极显著相关关系,说明由这些变量对玉米全氮含量进行估算具有可行性;对所建立的各类方程进行精度检验,最终筛选确定由759 nm处的光谱反射率一阶微分值所构建的指数模型作为对玉米全N含量的预测模型最为理想。 相似文献
7.
玉米叶片氮含量的高光谱估算及其品种差异 总被引:7,自引:4,他引:7
准确、快速、及时地对玉米氮营养状况做出判断是氮肥合理施用的基础。该研究在水培条件下对3个玉米品种(组合)叶片氮含量(LNC)的高光谱敏感波段、估算模型及其品种差异进行了探讨。结果表明,LNC与不同波段叶片光谱反射率的相关性存在品种差异,但3个品种(组合)都在500~649 nm和691~730 nm表现极显著的负相关关系,并在同一波长获得最高的相关系数,说明可以利用统一的波段来预测不同品种的LNC。依品种建立了LNC与归一化差值光谱指数(NDSI)或比值光谱指数(RSI)的定量关系模型,NDSI(714,554)和RSI(714,554)所建模型的拟合度最好,直线和指数模型拟合度均达到极显著水平,可以用来估算玉米LNC。玉米LNC估算中,以该品种数据所建模型的估算偏差最低,利用综合模型或其他品种模型则加大了估算偏差,高估与低估的最高偏差分别为35.6%和32.7%。在利用高光谱技术进行玉米氮营养状况诊断的研究及应用中,应考虑品种间差异。 相似文献
8.
红壤水分条件对柑橘叶片氨基酸及多胺含量的影响 总被引:2,自引:0,他引:2
本文以第四纪红黏土发育的红壤、2年生宫川温州蜜柑(Citrus unshiu Marc.cv.Miyagawa Wase)盆栽幼树为材料,采用土壤水分探头(FDR)实时监测土壤水分含量,控制土壤含水量为SWC30、SWC45、SWC60,SWC75和SWC90 5个处理(分别代表土壤最大田问持水量的30%、45%、60%、75%和90%),研究土壤水分对柑橘叶片氮含量、氨基酸含量和多胺(PAs)等氮代谢次生产物的影响.结果表明,缺水和水分过多都会降低柑橘叶片对氮素的吸收.游离氨基酸总量(y)随土壤相对含水量SWC(x)的增加而下降(y=-0.028 2x+12.049;R2=0.8524*;n=50);Pro含量(y)在SWC<75%处理的土壤水分条件下,与SWC(x)呈显著负相关(y=-0.015 2x+4.224;R2=0.860 5*;n=50):腐胺(Put)含量在SWC75处理时最低;亚精胺(Spd)含量随土壤水分增加呈抛物线变化,在SWC45处理时含量最高;精胺(Spin)含量在土壤水分SWC60处理时最高;Spd含量(y)与Put含量(x)之间呈显著正相关(y=0.240 4x2-51.337x+2 976.4;R2=0.858 6*;n=50);(Spd+Spm)/Put的比值(y)在SWC<75%的土壤水分条件时,与SWC(x)呈显著线性相关(y=0.011 2x+0.173;R2=0.851 8*;n=50).柑橘受土壤水分胁迫时产生的PAs对生理起调节作用的主要是Spd与Spin,(Spd+Spm)/Put的比值决定了柑橘受土壤水分胁迫影响的程度,初步提出该比值可能是柑橘响应土壤水分胁迫程度的一个潜在的敏感度指标. 相似文献
9.
10.
冬小麦叶片氮含量与叶片光合作用和营养状况密切相关,直接影响植株生长发育,而茎秆中的氮含量与茎秆中纤维素、半纤维素和木质素的比例和含量密切相关,直接影响茎秆质量及植株的抗倒伏能力。然而,有关对冬小麦茎秆氮含量估算研究较为有限,限制了从氮含量角度判断茎秆质量及对倒伏的预测能力。为精准估算冬小麦不同器官(叶片、茎秆)氮含量,该研究通过2年田间试验,获取冬小麦4个关键生育期(拔节期、抽穗期、开花期、灌浆期)和3种施氮水平条件下(N1、N2和N3)的冠层光谱反射率、叶片、茎秆氮含量及叶片SPAD (soil and plant analyzer development, SPAD)值。分析了不同生育期和施氮水平条件下高光谱植被指数对叶片和茎秆氮含量的敏感性,并结合5种常用的机器学习算法:随机森林回归(random forest regression,RFR)、支持向量回归(support vector regression,SVR)、偏最小二乘回归(partial least squares regression,PLSR)、高斯过程回归(gaussian process regression,GPR)、深度神经网络回归(deep neural networks,DNN)构建冬小麦叶片和茎秆氮含量估算模型。结果表明:高光谱植被指数对叶片和茎秆氮含量的敏感性受到生育期和施氮水平的影响。在灌浆期,最佳植被指数双峰冠层植被指数 DCNI(double-peak canopy nitrogen index)对叶片氮含量的敏感性最高,R2为0.866。对茎秆氮含量,在抽穗期的敏感性最高,最佳植被指数归一化叶绿素比值指数 NPQI(normalized phaeophytinization index)与氮含量相关系数R2=0.677。施氮水平的提升增加了光谱植被指数对茎秆氮含量的敏感性。结合SPAD值的机器学习算法提升了氮含量的估算精度,对叶片氮含量,在不同生育期和施氮水平条件下估算精度提升了1%~7%,其中在全生育期的归一化均方根误差NRMSE从0.254提升到0.214,抽穗期的NRMSE提升最大,从0.201提升到0.128。对茎秆氮含量,全生育期的NRMSE从0.443提升到0.400,抽穗期的NRMSE提升最大,从0.323提升到0.268。在全生育期,结合SPAD值的DNN模型对叶片(R2=0.782、NRMSE=0.214)和茎秆(R2=0.802、NRMSE=0.400)氮含量的估算精度最佳。研究说明,SPAD值与光谱植被指数结合有利于提升冬小麦不同生育期和施氮水平条件下叶片和茎秆氮含量的估算精度。 相似文献
11.
12.
同时反演氮、磷元素含量相对于单一元素反演可以更加全面地表达水稻的营养状况,为快速、准确获取水稻叶片氮、磷含量和精准变量施肥提供依据。该研究基于不同氮肥处理的田间小区试验,获取水稻叶片氮、磷含量数据,采用竞争性自适应重加权采样法(Competitive Adapative Reweighted Sampling,CARS)筛选氮素与磷素共同特征波长,以特征波长反射率为输入,以化学方法测得叶片氮、磷元素含量为输出,分别使用反向传播神经网络、极限学习机(Extreme Learning Machine,ELM)、龙格-库塔算法优化极限学习机(RUNge Kutta optimizer-Extreme Learning Machine,RUN-ELM)构建水稻叶片氮、磷含量反演模型并分析。结果表明:采用CARS方法有效去除了高光谱中大量无用、冗余信息,得到5个氮、磷元素共同特征波长,去除具有共线性的特征波长,最后筛选出的特征波长分别是451、488、780、813 nm。使用筛选后的特征波长反射率构建RUN-ELM水稻叶片氮、磷含量反演模型效果最好,氮素训练集的决定系数R2为0.690,均方根误差为0.669 mg/g,磷素训练集的决定系数R2为0.620,均方根误差为0.027 mg/g。通过对比,RUN-ELM在预测能力、模型稳定性上优于反向传播神经网络以及ELM模型。综上研究,基于CARS-RUN-ELM的水稻叶片氮、磷含量反演模型可以快速、准确获取水稻叶片氮、磷含量,可为水稻精准施肥提供参考。 相似文献
13.
基于高光谱的冬小麦氮素营养指数估测 总被引:7,自引:7,他引:7
为了准确定量诊断氮素状况,为施肥和产量、品质的估测提供参考,该文通过设置不同氮素水平和品种类型的冬小麦田间试验,分析孕穗至灌浆初期不同光谱参数在小麦氮素营养状况监测上的差异,筛选叶片氮素含量和冠层氮素密度反演效果较好的参数,建立其与氮营养指数(NNI,nitrogen nutrition index)的经验模型。研究表明,线性内插法红边位置(REPLI)、修正红边单比指数(mSR705)、比值指数(RI-1dB)、简单比值色素指数(SRPI)、红边指数(VOG)等光谱参数与氮素营养指标具有良好的相关性(r0.85),且不受生育期影响,可用来反演评价冠层氮素营养状况;研究对筛选的光谱参数与各氮素指标进行回归建模,并用独立试验数据对所建模型进行验证,结果显示,REPLI在氮营养指数估测方面表现较好(r=0.93),估测模型精度较高(决定系数R2=0.86,均方根误差RMSE=0.08)。NNI在氮素营养状况诊断方面有一定的优势,通过高光谱反演氮营养指数进行氮素营养状态的定性定量诊断有一定的可行性。 相似文献
14.
基于热点植被指数的冬小麦叶面积指数估算 总被引:1,自引:1,他引:1
针对传统植被指数方法中利用单一方向的光谱特性估测LAI容易出现饱和现象和冠层结构信息不足的缺陷,以二向反射特性的归一化植被指数(NHVI)为基础,将表征叶片空间分布模式的热暗点指数(HDS)引入土壤调整型植被指数(SAVI),增强型植被指数(EVI)中,构建具有二向反射特性的土壤调整型热点植被指数(SAHVI)和增强型热点植被指数(EHVI)。同时使用红光,近红外,蓝光和绿光波段计算HDS,选择对LAI敏感性较高的HDS参与构建新型植被指数,并利用试验测量的小麦冠层二向反射率数据和叶面积指数,研究新型植被指数与LAI的线性关系。结果表明:基于蓝光和红光波段计算的HDS参与构建的EHVI、SAHVI与LAI的线性相关程度要优于EVI、SAVI,且较NHVI有进一步提高,能有效缓解LAI估算中植被指数饱和现象。 相似文献
15.
基于高光谱的柑橘叶片氮素含量多元回归分析 总被引:2,自引:6,他引:2
快捷、准确、无损地检测柑橘叶片氮(N)素含量,对柑橘树N肥施用的精准动态管理有重大现实意义。以117株园栽罗岗橙为试验研究对象,在不同生长期用ASD公司的FieldSpec3采集柑橘树健康叶片的高光谱反射值,以高光谱反射数据或其变换形式作为柑橘树样本多元矢量描述;用凯氏定氮法同期检测出柑橘树叶的真实N素含量值;在用PCA对高维光谱矢量降维的基础上,利用支持矢量回归算法(SVR)建立高光谱多元表达和N素含量间的映射关系,以实现任意柑橘树N素含量的预测分析。试验结果表明,测试集上预测值和真实值间的平方决定系数R2为0.9730,平均相对误差为0.9033%,均方误差MSE为0.090343,证明了该方法的有效性,为利用高光谱技术进行柑橘树N素含量的无损检测提供了参考。 相似文献
16.
利用NDVI资料估算中国北方草原区牧草产量 总被引:2,自引:2,他引:2
该文利用NOAA/AVHRR归一化植被指数(NDVI)资料和牧草地面观测资料,分5种草地类型建立了牧草产量遥感模型,所有模型的相关系数均大于0.7,说明这些模型可以较好地估算中国北方草原区牧草产量。由于牧草产量地面观测资料来自于北方主要草原省,数据具有较好的代表性,利用牧草产量遥感估算模型能够将过去小区域牧草产量估算扩展到整个北方草原。通过对模型结果的空间分析表明,中国北方高产草原位于内蒙古东部、甘肃祁连山区、新疆天山和阿尔泰山地区、青藏高原东部,同时也表明遥感模型对草地资源清查也是一种很好的手段。通过对模型结果的时间分析表明,牧草产量遥感模型可以表现出牧草产量随气象条件变化的波动性,这个性质表明牧草产量遥感模型可以用于气象灾害造成的损失评估。 相似文献