共查询到14条相似文献,搜索用时 78 毫秒
1.
基于低空无人机成像光谱仪影像估算棉花叶面积指数 总被引:8,自引:6,他引:8
农作物叶面积指数(leaf area index,LAI)遥感监测具有快速、无损的优势。该文以低空无人机作为遥感平台,使用新型成像光谱仪获取的农田高光谱影像数据对棉花LAI进行反演。利用影像高光谱分辨率的特点,针对传统固定波段植被指数(fixed-bandvegetation index,F_VI)进行改进,通过动态搜索相应植被指数定义所使用波段范围内的反射率极值的方法,计算与各类植被指数对应的极值植被指数(extremum vegetation index,E_VI)。分别以原始全波段光谱反射率、连续投影算法(successive projections algorithm,SPA)提取的有效波段反射率以及各类F_VI和E_VI作为自变量,使用最小二乘和偏最小二乘(partial least squares,PLS)回归等方法构建LAI遥感估算模型。结果显示:1)以植被指数为自变量的模型估算效果(验证R2最高为0.85)优于以光谱反射率作为自变量的模型(验证R2最高为0.59);2)使用E_VI作为自变量能够显著提高LAI的估测精度(验证R2最大提高了0.11);3)使用PLS回归算法结合多个E_VI建立的LAI-E_VIs-PLS模型精度最高。使用LAI-E_VIs-PLS模型对棉花地块高光谱影像进行反演,制作棉花LAI空间分布图,取得良好的估算结果(验证R2=0.88,RMSE=0.29),为农作物LAI遥感监测提供了新的技术手段。 相似文献
2.
为探讨利用低空无人机平台和高光谱影像对冬小麦叶面积指数进行遥感估算,该研究以拔节期冬小麦小区试验为基础,对原始冠层光谱进行一阶导数和连续统去除光谱变换,并在此基础上提取任意两波段组合的差值光谱指数(Difference Spectral Index,DSI)、比值光谱指数(Ratio Spectral Index,RSI)和归一化光谱指数(Normalized Spectral Index,NDSI),以最优窄波段光谱指数进行叶面积指数估算模型的构建。结果表明,最优窄波段指数的构成波段主要位于红边区域,最优窄波段指数与叶面积指数均呈现非线性关系;光谱变换显著提升了光谱变量与叶面积指数的相关性,其中连续统去除光谱所获取的NDSI(738,822)光谱指数与叶面积指数的相关性最佳;窄波段光谱指数和随机森林回归算法的叶面积指数估算模型精度最高,其相对预测偏差为2.01,验证集的决定系数和均方根误差分别为0.77和0.27。基于随机森林回归算法的无人机高光谱叶面积指数估算模型能够准确地实现小区域的叶面积指数遥感填图,为后期作物长势、变量施肥等提供理论依据。 相似文献
3.
基于无人机高光谱遥感的冬小麦叶面积指数反演 总被引:10,自引:12,他引:10
叶面积指数(leaf area index,LAI)是评价作物长势和预测产量的重要依据。光谱特征信息作为高光谱遥感的突出优势在追踪LAI动态变化方面极其重要;然而,围绕光谱特征信息所开展的无人机高光谱遥感反演作物LAI的相关研究鲜有报道。该文利用ASD Field Spec FR Pro 2500光谱辐射仪(ASD Field Spec FR Pro 2500 spectroradiometer,ASD)和Cubert UHD185 Firefly成像光谱仪(Cuber UHD185 Firefly imaging spectrometer,UHD185)在冬小麦试验田进行空地联合试验,基于获取的孕穗期、开花期以及灌浆期地面数据和无人机高光谱遥感数据,估测冬小麦LAI。该文选择同步获取的冬小麦冠层ASD光谱反射率数据作为评价无人机UHD185高光谱数据质量的标准,依次从光谱曲线变化趋势、光谱相关性以及目标地物光谱差异三方面展开分析,结果表明458~830 nm(第3~96波段)的UHD185光谱数据可靠,可使用其探测冬小麦LAI,这为今后无人机UHD185高光谱数据的使用提供了参考。该文研究对比分析了UHD185数据计算的红边参数和光谱指数与冬小麦LAI的相关性,结果表明:12种参数中比值型光谱指数RSI(494,610)与LAI高度正相关,是估测LAI的最佳参数;基于比值型光谱指数的对数形式lg(RSI)构建的线性模型展现出lg(RSI)与lg(LAI)较优的线性关系(决定系数R2=0.737,参与建模的样本个数n=103),且lg(LAI)预测值和lg(LAI)实测值高度拟合性(R2=0.783,均方根误差RMSE=0.127,n=41,P0.001);该研究为利用无人机高光谱遥感数据开展相关研究积累了经验,也为发展无人机高光谱遥感的精准农业应用提供了参考。 相似文献
4.
棉花叶面积指数(leaf are index, LAI)的快速、准确获取对棉花长势监测、发育期诊断、面积提取以及产量估算等遥感监测具有重要意义。该研究利用2017年和2018年的Sentinel-2多光谱卫星数据及大面积田间试验观测获取的棉花不同发育期LAI实测数据,构建了基于单波段反射率及各类植被指数的棉花不同发育期及全发育期LAI估算模型,并采用留一验证(LOOCV, leave-one-out cross validation)和交叉验证对模型精度进行了检验。结果表明:1)对于单波段反射率,基于中心波长为842 nm波宽为145 nm的B8近红外波段对不同发育期LAI估算精度最优均方根误差(RMSE, root mean square error, RMSE=0.378);2)对于各类植被指数,花蕾期(20170616)和花铃期(20170802)时增强植被指数(EVI, enhanced vegetation index,)表现最佳(RMSE分别为0.352和0.367),开花期(20180623)时校正土壤调节植被指数(MSAVI2, modified soil adjusted vegetation index 2,)估算精度最高(RMSE=0.323);3)单波段反射率和各类植被指数对全发育期LAI的估算均要优于对单个发育期LAI的估算,其中基于IRECI指数的(inverted red-edge chlorophyll index)全发育期LAI估算模型精度最佳,LOOCV检验RMSE=0.425,交叉检验RMSE=0.368;将基于IRECI的全发育期LAI估算模型应用到单个发育期LAI估算并与各单个发育期LAI估算模型精度对比,发现交叉验证RMSE平均值仅比LOOCV验证RMSE平均值高0.07,反映了全发育期LAI估算模型良好的普适性。该研究为农作物LAI估算提供了新的数据选择,完善了Sentinel-2卫星数据在LAI估算中的应用领域。 相似文献
5.
基于无人机遥感影像的大豆叶面积指数反演研究 总被引:16,自引:0,他引:16
作物叶面积指数的遥感反演是农业定量遥感研究热点之一,利用无人机遥感监测系统获取农作物光谱信息精确反演叶面积指数对精准农业生产与管理意义重大。本研究以山东省嘉祥县一带的大豆种植区为试验区,设计以多旋翼无人机为平台同步搭载Canon Power Shot G16数码相机和ADC-Lite多光谱传感器组成的无人机农情监测系统开展试验,分别获取大豆结荚期和鼓粒期的遥感影像。使用比值植被指数(RVI)、归一化植被指数(NDVI)、土壤调整植被指数(SAVI)、差值植被指数(DVI)、三角植被指数(TVI)5种植被指数,结合田间同步实测叶面积指数(leaf area index,LAI)数据,采用经验模型法分别构建了单变量和多变量LAI反演模型,通过决定系数(R2)、均方根误差(RMSE)和估测精度(EA)3个指标筛选出最佳模型。研究表明,有选择性地分时期进行农作物的叶面积指数反演是必要的,鼓粒期作为2个生育期中大豆LAI反演的最佳时期,其NDVI线性回归模型对大豆LAI的解释能力最强,R2=0.829,RMSE=0.301,反演大豆LAI最准确,EA=85.4%,生成的鼓粒期大豆LAI分布图反映了当地当时大豆真实长势情况。因此,以多旋翼无人机为平台同步搭载高清数码相机和多光谱传感器组成的无人机农情监测系统对研究大豆叶面积指数反演是可行性,可作为指导精准农业研究的一种新方法。 相似文献
6.
利用无人机多光谱估算小麦叶面积指数和叶绿素含量 总被引:2,自引:4,他引:2
利用无人机遥感的方式进行农作物长势监测是目前精准农业、智慧农业发展的重要方向,为了探究无人机多光谱反演小麦叶面积指数(Leaf Area Index,LAI)和叶绿素含量的模型估算潜力,该研究在3个飞行高度(30、60、120 m)采集多光谱影像,通过使用全波段差值光谱指数(Difference Spectral Index,DSI)、比值光谱指数(Ratio Spectral Index,RSI)、归一化光谱指数(Normalized Spectral Index,NDSI)和经验植被指数与地面实测数据进行相关性分析,获得不同高度下的光谱指数与LAI和叶绿素含量的关系模型及其决定系数,以决定系数为依据分别构建多元逐步回归、偏最小二乘回归和人工神经网络等模型,分析不同飞行高度无人机多光谱反演小麦冠层LAI和叶绿素含量SPAD(Soil and Plant Analyzer Development)值的精度。结果表明:1)30 m高度下,绿-红比值光谱指数与小麦LAI的相关性最高,相关系数为0.84;60 m高度下,红-蓝比值光谱指数与小麦叶绿素含量的相关性最高,相关系数为0.68;2)在60 m高度下,经验植被指数与小麦LAI和叶绿素含量的相关性较好, 最大相关系数分别为0.77和0.5。3)利用偏最小二乘回归反演小麦LAI的精度最高,决定系数为0.732,均方根误差为0.055;利用人工神经网络模型反演小麦叶绿素含量的精度最高,决定系数为0.804,均方根误差0.135。该研究成果为基于无人机平台的高通量作物监测提供理论依据,并为筛选无人机多光谱波段实现作物长势参数快速估测提供应用参考。 相似文献
7.
基于棉花红边参数的叶绿素密度及叶面积指数的估算 总被引:2,自引:2,他引:2
利用野外非成像高光谱仪,测试棉花两个品种4种配置种植方式两年关键生育时期的冠层反射光谱数据,应用光谱微分技术,获取棉花微分光谱680~750 nm波段的红边参数:红边面积(SDr)、红边斜率(Dr)以及红边位置(λr)变量;将棉花红边面积、红边斜率分别与其冠层叶绿素密度(CH.D)、叶面积指数(LAI)进行相关分析,它们的相关性均达到1%极显著水平,其中红边面积与叶绿素密度的相关性最好(RCH.D=0.8787**,n=137);并且红边面积较红边斜率对叶绿素密度、叶面积指数的预测精度更高。以棉花新陆早13号和19号为建模样本,通过红边面积与叶绿素密度的线性相关模型,分别反演新陆早13号、19号冠层叶片的叶绿素密度,结果表明对这两个棉花品种的叶绿素密度估算精度分别达87.4%和83.3%,说明高光谱红边参数是估算棉花叶绿素密度和叶面积指数的一种简单、快捷、非破坏性的有效方法。 相似文献
8.
9.
不同生育时期冬小麦叶面积指数高光谱遥感监测模型 总被引:5,自引:2,他引:5
高光谱遥感能快速无损获取植被冠层信息,是实现作物长势实时监测的重要技术。为研究不同氮磷水平下冬小麦不同生育时期叶面积指数高光谱遥感监测模型,提高叶面积指数高光谱监测精度,该研究连续5 a定位测定黄土高原旱地不同氮磷水平和不同冬小麦品种各生育时期冠层光谱反射率与叶面积指数,通过相关分析、回归分析等统计方法,构建不同生育时期冬小麦叶面积指数监测模型。结果表明:不同氮磷水平下,冬小麦叶面积指数随施肥量增加呈递增趋势,随生育时期改变呈抛物线趋势变化;随着氮磷供应量的增加,冠层光谱反射率在可见光波段显著降低2%~5%(P0.05),在近红外波段显著增加4%~10%(P0.05);不同生育时期叶面积指数与优化土壤调整植被指数、增强型植被指数Ⅱ、新型植被指数、修正归一化差异植被指数、修正简单比值植被指数均达极显著相关(P0.01);拔节期、孕穗期、抽穗期、灌浆期和成熟期叶面积指数分别与优化土壤调整植被指数、增强型植被指数Ⅱ、增强型植被指数Ⅱ、修正归一化差异植被指数和修正简单比值植被指数拟合效果较好,决定系数分别为0.952、0.979、0.989、0.960和0.993;以不同年份独立数据验证模型表明,所建预测模型均有较好的验证结果,相对误差分别为13.0%、13.5%、12.8%、12.6%和14.0%,均方根误差分别为:0.313、0.336、0.316、0.316、0.324。因此,优化土壤调整植被指数、增强型植被指数Ⅱ、增强型植被指数Ⅱ、修正归一化差异植被指数和修正简单比值植被指数能有效评价拔节期、孕穗期、抽穗期、灌浆期和成熟期冬小麦叶面积指数。同时,叶面积指数分段监测模型较统一监测模型精度有所改善。该结果为实现不同肥力水平下冬小麦不同生育时期长势精确监测提供理论依据和技术支撑。 相似文献
10.
为了快速、无损地监测花生冠层LAI,获取其长势信息,于2014年通过大田试验选用5个品种花生作为供试品种,使用ASD FieldSpec HandHeld便携式野外光谱仪采集花生不同生育时期的冠层高光谱数据,同时使用SUNSCAN冠层分析系统实测花生冠层叶面积指数(LAI),并应用光谱微分技术和统计分析技术,分别分析4种光谱形式和6种植被指数与LAI的相关关系,建立估算模型。结果表明:高光谱反射率及其光谱变换形式中最优波段与LAI的相关性均极显著,其中一阶微分光谱ρ'在793nm波段处构建的估测方程对花生冠层LAI的估算效果最好(r=-0.5391,P<0.01,RE=0.2497),其模拟值与实测值的拟合度达极显著水平(R=0.4435,P<0.01);一阶微分光谱ρ'在734nm波段处LAI的实测值与模拟值的拟合效果最好(R=0.5485,P<0.01)。6种植被指数所选的最优组合波段与LAI均通过了0.01水平的显著性检验 (r≥0.5731,P<0.01),其中归一化植被指数NDVI[760,976]对花生冠层LAI的估算效果最好(r=-0.6421,P<0.01,RE=0.2167),模拟值与实测值的拟合度达极显著水平(R=0.6731,P<0.01),且优于ρ'对LAI的估算效果;LAI实测值与模拟值拟合效果最好的为DVI[760,976] (R=0.6893,P<0.01)。研究结果表明一阶导数光谱和植被指数对花生冠层LAI的估算精度均较高,植被指数的估算精度尤高,研究同时进一步证实了导数光谱和植被指数能较好地消除土壤、大气等环境背景信息的影响。 相似文献
11.
为探讨无人机多源影像特征融合估测作物叶面积指数的能力,该研究以冬小麦为研究对象,利用多旋翼无人机搭载高清数码相机和UHD185成像光谱仪获取研究区冬小麦关键生育期(扬花期、灌浆期)的可见光和高光谱影像。综合考虑可见光、高光谱影像特征与冬小麦叶面积指数的相关性及影像特征重要性进行特征筛选,然后,以可见光植被指数、纹理特征、可见光植被指数+纹理特征、高光谱波段、高光谱植被指数及高光谱波段+植被指数分别作为输入变量构建多元线性回归、支持向量回归和随机森林回归的叶面积指数估测模型(单传感器数据源);以优选的两种影像特征结合支持向量回归、随机森林回归构建叶面积指数估测模型(两种传感器数据源),比较分析单源与多源影像特征监测冬小麦叶面积指数的性能。进一步地,考虑到小区土壤空间异质性会影响冬小麦叶面积指数估测结果,该研究探讨了不同影像采样面积下基于单源遥感数据构建的小麦叶面积指数估测模型精度。研究结果表明:在扬花期和灌浆期,使用两种影像优选特征构建的随机森林回归估测模型精度最佳,验证集决定系数分别为0.733和0.929,均方根误差为0.193和0.118。可见光影像采样面积分别为30%和50%,高光谱影像采样面积为65%时,基于单源影像特征构建的随机森林回归估测模型在扬花期和灌浆期效果最好。综上,该研究结果可为无人机遥感监测作物生理参数提供有价值的依据和参考。 相似文献
12.
油菜红边特征及其叶面积指数的高光谱估算模型 总被引:16,自引:6,他引:16
在2003~2004年油菜生长季,选用6个油菜品种,设置3个氮素水平的小区试验。在不同发育期同步测定油菜冠层的光谱反射率及对应叶片的叶面积指数。利用油菜冠层的光谱反射率数据提取红边参数,分析其变化规律,油菜叶面积指数与红边参数的相关性,估算结果表明:油菜冠层红边一阶导数光谱具有“双峰” 现象,红边位置λred位于690~720 nm之间,在油菜生长旺盛期间出现“红边平台”,前期有“红移”,后期有“蓝移”现象;叶面积指数与冠层光谱红边参数λred、Dλred、Sred之间在开花前存在显著相关,但开花后相关性不显著;利用开花前的红边参数可以估算油菜的叶面积指数,开花后的红边参数不能用于估算油菜的叶面积指数;最后建立了不同时期和开花前油菜叶面积指数的估算模型。 相似文献
13.
冬小麦叶片氮含量与叶片光合作用和营养状况密切相关,直接影响植株生长发育,而茎秆中的氮含量与茎秆中纤维素、半纤维素和木质素的比例和含量密切相关,直接影响茎秆质量及植株的抗倒伏能力。然而,有关对冬小麦茎秆氮含量估算研究较为有限,限制了从氮含量角度判断茎秆质量及对倒伏的预测能力。为精准估算冬小麦不同器官(叶片、茎秆)氮含量,该研究通过2年田间试验,获取冬小麦4个关键生育期(拔节期、抽穗期、开花期、灌浆期)和3种施氮水平条件下(N1、N2和N3)的冠层光谱反射率、叶片、茎秆氮含量及叶片SPAD (soil and plant analyzer development, SPAD)值。分析了不同生育期和施氮水平条件下高光谱植被指数对叶片和茎秆氮含量的敏感性,并结合5种常用的机器学习算法:随机森林回归(random forest regression,RFR)、支持向量回归(support vector regression,SVR)、偏最小二乘回归(partial least squares regression,PLSR)、高斯过程回归(gaussian process regression,GPR)、深度神经网络回归(deep neural networks,DNN)构建冬小麦叶片和茎秆氮含量估算模型。结果表明:高光谱植被指数对叶片和茎秆氮含量的敏感性受到生育期和施氮水平的影响。在灌浆期,最佳植被指数双峰冠层植被指数 DCNI(double-peak canopy nitrogen index)对叶片氮含量的敏感性最高,R2为0.866。对茎秆氮含量,在抽穗期的敏感性最高,最佳植被指数归一化叶绿素比值指数 NPQI(normalized phaeophytinization index)与氮含量相关系数R2=0.677。施氮水平的提升增加了光谱植被指数对茎秆氮含量的敏感性。结合SPAD值的机器学习算法提升了氮含量的估算精度,对叶片氮含量,在不同生育期和施氮水平条件下估算精度提升了1%~7%,其中在全生育期的归一化均方根误差NRMSE从0.254提升到0.214,抽穗期的NRMSE提升最大,从0.201提升到0.128。对茎秆氮含量,全生育期的NRMSE从0.443提升到0.400,抽穗期的NRMSE提升最大,从0.323提升到0.268。在全生育期,结合SPAD值的DNN模型对叶片(R2=0.782、NRMSE=0.214)和茎秆(R2=0.802、NRMSE=0.400)氮含量的估算精度最佳。研究说明,SPAD值与光谱植被指数结合有利于提升冬小麦不同生育期和施氮水平条件下叶片和茎秆氮含量的估算精度。 相似文献
14.
及时准确获取甘蔗叶面积指数对于甘蔗长势监测和产量预测具有重要意义。尝试通过构建组合核函数,利用支持向量回归方法建立甘蔗LAI估算模型,并利用新型国产卫星数据环境星CCD图像和准同步的地面观测数据,分别采用指数关系模型、对数关系模型、支持向量回归模型3种方法,以广西甘蔗主产县为例,开展了环境星遥感图像在甘蔗叶面积指数反演试验。结果表明,3种方法都可以对甘蔗LAI进行有效预测,且能获得较好的预测效果,验证了环境星CCD图像在甘蔗LAI反演中的实用性,其中支持向量回归模型反演精度最高:5月份决定性系数R2分别比 相似文献