首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Forests of the Northern Czech mountains decline due to industrial emissions. To examine the state of soil contamination with PAHs we analyzed the concentrations of 20 PAHs in the O and A horizons of 4 lower and 4 upper slope sites under beech (Fagus sylvatica L.) in the Western (WE) and the Eastern Erzgebirge (EE, Kru?né Hory), the Isergebirge (IS, Jizerské Hory), and the Riesengebirge (RI, Krkono?e) at microsites affected and not affected by stem flow. Average PAH sum concentrations in the organic layers ranged between 2000 and 30000 μg kg?1 increasing in the line WE <RI<EE<IS. PAH concentrations were significantly higher at upper than at lower slope sites indicating long-distance transport. Microsites affected by stem flow had significantly higher PAH concentrations but lower percentages of lower molecular PAHs than microsites not affected by stem flow. This was due to the water collecting effect of the beech bark. Lower molecular PAHs preferentially were sorbed to the bark or leached from the organic layers. PAH concentrations increased from Oi to Oa horizons but decreased in the mineral soil. This was the more pronounced the higher the molecular weight was. The slope of the regression line between the enrichment factors (concentration of a single PAH in the Oa divided by that in the Oi horizon) and the octanol-water partition coefficient decreased as the PAH concentration of the soils increased. This indicates that the microbial activity of organic layers may be reduced by soil contamination. Cluster analysis suggested that the sources of the PAH contamination in the WE were different from the other sites.  相似文献   

2.
In a rural community (Stephanskirchen, Southern Germany) near a waste incineration plant 7 soils, sewage sludge, waste incineration residues, the gutter sediment of a family home, and mosses were sampled to determine the total concentrations of Cd, Pb, Zn and 20 PAHs. Representative samples were used to measure NH4NO3- and EDTA-extractable Cd, Pb, and Zn as well as 20 PAHs in particle size separates (clay, silt, fine and coarse sand). Sites near the main road, hill top, and forested sites contain up to 1.24 mg Cd, 888 mg Pb, and 279 mg Zn per kg. The heavy metal concentrations of the sewage sludge, the gutter sediment, and especially the waste incineration residues are extremely high (up to 57 mg Cd, 3300 mg Pb, and 5700 mg Zn per kg). The extractability of Pb and Zn with NH4NO3 is low (< 5%), that with EDTA is high (up to 71.2% of total Cd, 82.5% of total Pb, and 47.2% of total Zn). The sum concentrations of PAHs range between 0.4 and 470 mg kg?1. The silt has the highest PAH concentrations of the particle size separates. High saturation of organic matter with PAHs in the sand indicates high recent PAH deposition. Selected ratios of single PAHs reveal diesel and gasoline exhausts as main sources for PAH. Principal component and cluster analysis show that the pollutant pattern depends on the Corg concentration and on the time passed since deposition. There is no significant influence of the waste incineration emissions on the heavy metal and PAH concentrations.  相似文献   

3.
The research comprised of studying the effect composting sewage sludge with sawdust and vermicomposting with earthworm Eisenia fetida has on the degradation of 16 polycyclic aromatic hydrocarbons (PAHs). Raw rural sewage sludge prior composting was more contaminated with PAHs than urban sewage sludge, in both cases exceeding EU cutoff limits of 6 mg/kg established for land application. Dibenzo[a,h]anthracene (DBahAnt), acenaphtylene (Acy) and indeno[1,2,3-c,d]pyrene (IPyr) were predominant in rural sewage sludge, whilst the urban sewage sludge contained the highest concentrations of benzo[b]fluoranthene (BbFl), benzo[k]fluoranthene (BkFl) and indeno[1,2,3-c,d]pyrene (IPyr). Thirty days of composting with sawdust has caused a significant reduction of 16 PAHs on average from 26.07 to 4.01 mg/kg (84.6%). During vermicomposting, total PAH concentration decreased on average from 15.5 to 2.37 mg/kg (84.7%). Vermicomposting caused full degradation of hydrocarbons containing 2 and 6 rings and significant reduction of PAHs with 3 aromatic rings (94.4%) as well as with 5 aromatic rings (83.2%). The lowest rate of degradation (64.4%) was observed for hydrocarbons with 4 aromatic rings such as fluoranthene, benzo(a)anthracene, chrysene and pyrene. On the other hand, the highest level of degradation was determined for PAHs with 2 rings (100%), 3 rings (88%) and 6 aromatic rings in the molecule (86.9%) after composting with sawdust. Acenaphthene and pyrene were found to be the most resistant to biodegradation during both composting methods.  相似文献   

4.
PAHs are mainly produced by combustion processes and consist of a number of toxic compounds. While the concentrations of individual PAHs in soil produced by natural processes (e.g., vegetation fires, volcanic exhalations) are estimated to be around 1—10 μg kg−1, recently measured lowest concentrations are frequently 10 times higher. Organic horizons of forest soils and urban soils may even reach individual PAH concentrations of several 100 μg kg−1. The PAH mixture in temperate soils is often dominated by benzofluoranthenes, chrysene, and fluoranthene. The few existing studies on tropical soils indicate that the PAH concentrations are relatively lower than in temperate soils for most compounds except for naphthalene, phenanthrene, and perylene suggesting the presence of unidentified PAH sources. PAHs accumulate in C‐rich topsoils, in the stemfoot area, at aggregate surfaces, and in the fine‐textured particle fractions, particularly the silt fraction. PAHs are mainly associated with soil organic matter (SOM) and soot‐like C. Although the water‐solubility of PAHs is low, they are encountered in the subsoil suggesting that they are transported in association with dissolved organic matter (DOM). The uptake of PAHs by plants is small. Most PAHs detected in plant tissue are from atmospheric deposition. However, earthworms bioaccumulate considerable amounts of PAHs in short periods. The reviewed work illustrates that there is a paucity of data on the global distribution of PAHs, particularly with respect to tropical and southern hemispheric regions. Reliable methods to characterize bioavailable PAH pools in soil still need to be developed.  相似文献   

5.
Soil organic matter can be divided into different organic carbon (C) pools with different turnover rates. The organic pollutants in soils associated with these organic C pools may have different bioavailability and environmental risks during the decomposition of soil organic matter. We studied the distribution patterns of 15 USEPA priority polycyclic aromatic hydrocarbons (PAHs) in different particle‐size separates (clay, fine silt, coarse silt, fine sand and coarse sand) and density fractions (light and heavy fractions) of nine agricultural topsoils (0–20 cm depth) from a contaminated area in the Yangtze River Delta region of east China. There was a decreasing trend in PAH concentration in particle‐size separates with decreasing particle size. However, the different particle‐size separates had similar PAH composition. The concentration of PAHs in the light fraction ranged from 13 037 to 107 299 μg kg?1, far higher than in the heavy fraction, which ranged from 222 to 298 μg kg?1. Although the light fraction accounted for only 0.4–2.3% of the soils, it was associated with 31.5–69.5% of soil PAHs. The organic matter in coarse silt had the strongest capacity for enrichment with PAHs. Combining the distributions of PAHs and the turnover rates of organic matter in different soil fractions, the environmental risks of PAH‐polluted soils may be due mainly to the PAHs associated with sand and the light fraction.  相似文献   

6.
Contents of polycyclic aromatic hydrocarbons (PAH) and their distribution pattern in soils with different contamination levels In order to study the PAH-contamination of soils in North Rhine Westfalia, soil samples were taken at different sites and analysed for six PAH. The sites were selected with regard to different forms of land use such as arable land and pastures in rural areas and gardens in urban areas and with regard to varying immission situations. The results are valued according to reference (RW) and test values (PW) of the Netherlands Guidelines for soil restoration. The reference values of these guidelines characterizing normal contents are regularly and in part distinctly exceeded for fluoranthene and benzo(a)pyrene at some sites (coking plant, alluvial meadow soils, allotment gardens, close to a highway). The check values which imply more exact investigations are only exceeded at the most contaminated site, a coking plant. The PAH patterns at the different sites investigated depend on the number and kind of PAH sources. PAH typical for motor vehicle emission (benzo(b)fluoranthene, benzo(g,h,i)perylene) are dominating in soils close to a highway, whereas at the cokery site fluoranthene can be found in higher concentrations than the other PAH. In alluvial river soils and in soils of allotment gardens the pattern is more uniform because of diffuse sources with decreasing contents in the order fluoranthene > benzo(a)anthracene > benzo(b) fluoranthene > benzo(g,h,i)perylene > benzo(a)pyrene > benzo(k)fluoranthene. As a guide substance for a first risk assessment benzo(a)pyrene is suitable, since its content shows a strong correlation to the sum of five other PAH. In order to characterize the background contamination of soils with PAH new reference values are proposed.  相似文献   

7.
Effects of organic pollutants (PAH; PCB) and heavy metals in sewage fields on biomass production and heavy metal transfer of rye Rye was cultivated in pots on original sewage field soils and an artifically polluted soil. The weakly polluted sewage field soil (reference soil R) was contaminated with 2.2′,5.5′-tetrachlorbiphenyl, Benzo-a-pyren, cadmium or copper as well as with combinations of these organic pollutants and heavy metals. These treatments were compared with an extremely contaminated sewage field soil (GroBbeeren GB). Rye cultivated on the artifically polluted soil (R) showed typical symptoms of damage which were similar to effects on the extremely contaminated sewage field soil (GB). Damage from single substance copper was sometimes greater than those observed on soil GB. This may indicate interactions or synergistic effects.  相似文献   

8.
Chemical extractions were tested to estimate the fraction of 15 polycyclic aromatic hydrocarbons (PAHs) in polluted soils degradable through bioremediation. Of 30 soil samples, differing in PAH concentrations, from 10 long‐term polluted sites, four were used in screening tests conducted with 14 different extractants. PAH extractability increased in the order salt solutions < surfactant solutions < organic solvents and organic solvent–water mixtures. Closest correlations (r = 0.73–0.91) and ratios of c. 1:1 of the extracted to the degradable PAH concentrations were found with aqueous solutions of two surfactants (Genapol UDD 88, Synperonic LF/RA 30). The PAH extractability by surfactant solutions increased with surfactant concentration (0–50 mg ml?1) and with decreasing degree of PAH condensation (6–2 rings). Kinetic behaviour of PAH solubilization by surfactants resembled the kinetics of PAH degradation (r = 0.84–0.99). With repeated extractions, a finite fraction of PAHs was extracted, which is thought to be the mobile and mobilizable PAH fraction, the latter being controlled by back‐diffusion from intra‐ and inter‐particle sites. Experiments with all 30 soil samples and a priori testing with an additional 10 soil samples confirmed that single extractions with surfactant solutions (5 mg ml?1; soil:solution ratio 1:20) were suitable for estimating the degradable fraction of PAHs in soil. With separate linear regression equations for PAHs grouped according to their degree of condensation, the extracted concentrations described the degradable concentrations with correlation coefficients (r) ranging from 0.62 to 0.80 (P < 0.001). PAH extractions with the surfactant solutions can be used to assess the prospects of bioremediation of PAH‐polluted sites.  相似文献   

9.
北京东南郊再生水灌区土壤PAHs污染特征   总被引:1,自引:0,他引:1  
采用Eijkelkamp土壤采样器对北京东南郊再生水灌区进行了3个钻孔剖面采样,同时采集了灌溉用水及地下水样品,并采用气相色谱-质谱联用仪对16种多环芳烃(PAHs)进行定量分析。结果表明,表层土壤中有14种PAHs检出,浓度在0.4-53.1 μg·kg-1之间,∑PAHs平均含量为206.7 μg·kg-1,达到了土壤污染临界值;表层以下PAHs的检出种类和含量显著减少,以中、低环的萘、菲、芴、荧蒽、芘为主,∑PAHs仅占表层的3.8%-12.0%,从剖面PAHs含量变化可以判断,低环PAHs较易迁移,迁移性强弱顺序为萘、芴〉菲〉芘、荧蒽;污灌区表土中PAHs组成与大气降尘接近,但与再生灌区有明显差异,这种差异主要由于灌溉用水不同所造成;再生水灌区表土以下土壤剖面检出的PAHs与再生水中的PAHs一致,说明再生水灌溉是导致土壤剖面PAHs污染的主要原因,同时地下水中检出的PAHs种类也与土壤剖面基本一致,但含量较高,可能是早期污水灌溉所造成。  相似文献   

10.
东北典型石油污灌区土壤中矿物油的时空分布特征   总被引:1,自引:0,他引:1  
污水灌溉在解决缺水问题和补充土壤营养的同时,也带来了不容忽视的土壤污染问题。作为我国最大的石油污灌区,沈抚灌区由于长期污灌导致矿物油积累严重,土壤中矿物油浓度最高可达6 861.1 mg/kg,整个灌区矿物油污染具有以下特征:灌区表层土壤(0~20 cm)矿物油含量高于亚表层土壤(20~30 cm);不同土地利用方式污染程度存在差异,水田土壤高于旱地土壤;污灌年限越长,矿物油积累越严重,污灌41~50年的土壤中矿物油含量超过3 000 mg/kg;整个灌区矿物油含量呈现沿污水流向逐渐降低的趋势,高浓度区主要集中在离排放口较近的李石寨地区。  相似文献   

11.
Background, Aim and Scope   Polycyclic aromatic hydrocarbons (PAHs) are formed as a result of incomplete combustion and are among the most frequently occurring contaminants in soils and sediments. PAHs are of great environmental concern due to their ubiquitous nature and toxicological properties. Consequently, extensive research has been conducted into the development of methods to remediate soils contaminated with PAHs. Fenton's reagent or ozone is the most commonly studied chemical oxidation methods. However, the majority of remediation studies use soils that have been artificially contaminated with either one or a limited number of PAH compounds in the laboratory. Hence, it is essential to extend such studies to soils contaminated with multiple PAHs under field conditions. Objectives   The objective of this study is to investigate the capacity of Fenton's reagent and ozone to degrade PAHs in soils. The soils have been collected from a number of different industrial sites and, therefore, will have been exposed to different PAH compounds in varying concentrations over a range of time periods. The capacity of Fenton's reagent and ozone to degrade PAHs in industrially contaminated soils is compared to results obtained in studies using soils artificially contaminated with PAHs in the laboratory. Materials and Methods: Nine soil samples, contaminated with PAHs, were collected from five different industrial sites in Sweden. For the Fenton's reagent procedure, the pH of the soil slurry samples was adjusted to pH 3 and they were kept at a constant temperature of 70oC whilst H2O2 was added. For the ozone procedure, soil samples were mixed with 50% water and 50% ethanol and kept at a constant temperature of 45 oC. Ozone was then continually introduced to each soil sample over a period of four hours. Following the Fenton's reagent and ozone oxidation procedures, the samples were filtered to isolate the solid phase, which was then extracted using pressurized liquid extraction (PLE). The sample extracts were cleaned up using open columns and then analysed by gas chromatography-mass spectrometry (GC-MS). Results: The relative abundance of the detected PAHs varied between soils, associated with different industries. For example, low molecular weight (LMW) PAHs were more abundant in soil samples collected from wood impregnation sites and high overall PAH degradation efficiencies were observed in soils originating from these sites. In the contaminated soils studied, PAHs were more effectively degraded using Fenton's reagent (PAH degradation efficiency of 40-86%) as opposed to ozone (PAH degradation efficiency of 10-70%). LMW PAHs were more efficiently degraded, using ozone as the oxidizing agent, whereas the use of Fenton's reagent resulted in a more even degradation pattern for PAHs with two through six fused aromatic rings. Discussion: The degradation efficiency for both methods was largely dependent on the initial PAH concentration in the soil sample, with higher degradation observed in highly polluted soils. LMW PAHs are more susceptible to degradation than high molecular weight (HMW) PAHs. As a result of this the relative abundance of large (often carcinogenic) PAHs increased after chemical oxidation treatment, particularly after ozone treatment. Repeated Fenton's reagent treatment did not result in any further degradation of soil PAHs, indicating that residual soil PAHs are strongly sorbed. The effectiveness of the two oxidation treatment approaches differed between industrial sites, thus highlighting the importance of further research into the influence of soil properties on the sorption capacity of PAHs. Conclusions: This study demonstrates that the degree to which chemical oxidation techniques can degrade soil bound PAHs chemical degradation is highly dependent on both the concentration of PAHs in the soils and the compounds present, i.e. the various PAH profiles. Therefore, similarities in the PAH degradation efficiencies in the nine soil samples studied were observed with the two chemical oxidation methods used. However, the degradation performance of Fenton's reagent and ozone differed between the two methods. Overall, Fenton's reagent achieved the highest total PAH degradation due to stronger oxidation conditions. LMW PAHs showed higher susceptibility to oxidation, whereas high molecular weight (HMW) PAHs appear to be strongly sorbed to the soils and therefore less chemically available for oxidation. This study highlights the importance of including soils collected from a range of contaminated sites in remediation studies. Such soil samples will contain PAH contaminants of varying concentrations, chemical and physical properties, and have been aged under field conditions. In addition to the chemical and physical properties of the soils, these factors will all influence the chemical availability of PAHs to oxidation. Recommendations and Perspectives: We recommend including aged contaminated soils in chemical degradation studies. In future chemical remediation work, we intend to investigate the potential influence of the chemical and physical properties of PAHs and soil parameters potential influence on the chemical oxidation efficiency in aged contaminated soils. Due to the vast number of contaminated sites there is a great need of efficient remediation methods throughout the world. This study shows the difficulties which may be experienced when applying remediation methods to a variation of contaminated sites.  相似文献   

12.
We determined heavy metal, polycyclic aromatic hydrocarbon (PAH), and polychlorinated biphenyl (PCB) concentrations in 18 topsoils of Uberlândia (420,000 inhabitants, Brazil) and in 3 rural topsoils. Concentrations of Al (11—124 g kg—1) and Fe (13—109 g kg—1) are large because of desilification. Concentrations of Cd (0.1—0.5 mg kg—1), Cr (13—72), Cu (6—154), Mn (28—974), Ni (4—29), Pb (3—26), Zn (4—107), the sum of 20 PAHs (=Σ20PAHs:7—390 μg kg—1), and the sum of 14 PCBs (=Σ14PCBs:0.05—1.25) are comparable to or below background concentrations in temperate soils except for Cu at two sites. More than 67% of the metals are strongly bound in Fe oxides and silicates; metals are more bioavailable in the urban than in the rural soils. The most abundant PAHs in the urban soils, on average, are naphthalene (19.0 ± 13.4% of Σ20PAHs) and the benzo(b+j+k)fluoranthenes (11.4 ± 6.7%); the most abundant PCBs are nos. 138 (23.3 ± 11.0% of Σ14PCBs) and 153 (14.3 ± 6.4%). The rural soils contain larger percentages of low molecular PAHs and up to tetra‒chlorinated PCBs than the urban soils. The different pollutant concentrations and patterns in the studied tropical compared with many temperate soils indicate different sources and fate.  相似文献   

13.
For years, biochar has been successfully used for the remediation of polycyclic aromatic hydrocarbons(PAHs) in contaminated soils, not only for improving their removal from soil but also for reducing their uptake by crops. However, the underlying mechanism of biochar application reducing PAH uptake and accumulation in winter wheat remains unclear. Pot trials were conducted on a PAH-contaminated soil amended with bamboo biochar, coconut shell biochar,and maize straw biochar(MSB) for an entire gro...  相似文献   

14.

Purpose

A comprehensive study was conducted to investigate the presence of polycyclic aromatic hydrocarbons (PAHs) in Dongjiang River Basin (DRB) soils and to evaluate their sources and ecological and health risk. In addition, factors affecting the distribution and fate of PAHs in the soils such as emission density, soil organic matter, degradation, etc. were studied.

Materials and methods

Surface soil (0–20 cm) samples from 30 sampling sites in the rural areas of DRB were collected and analyzed for 17 polycyclic aromatic hydrocarbons (16 EPA priority PAHs and perylene). Positive matrix factorization model was used to investigate the source apportionment of these PAHs, and an incremental lifetime cancer risk (ILCR) was used to estimate the integrated lifetime risks of exposure to soil-borne PAHs through direct ingestion, dermal contact, and inhalation collectively.

Results and discussion

The total PAH concentrations in the rural soils in DRB range from 23.5 to 231 μg/kg with a mean concentration of 116 μg/kg. The predominant PAHs in the rural soils were naphthalene, fluoranthene, phenanthrene, and benzo(b)fluoranthene. Cluster analysis was performed to classify the soil PAHs into three clusters, which could be indicative of the soil PAHs with different origins and different properties. Source apportionment results showed that coal, biomass, oil, commercial creosotes, and vehicle contributed 24 %, 24 %, 17 %, 17 %, and 18 % of the total soil PAH burden, respectively. The ILCR results indicated that exposure to these soil-borne PAHs through direct ingestion, dermal contact, and inhalation collectively produces some risk.

Conclusions

PAHs in the soils of the DRB will produce long-term influences on rivers and oceans via soil erosion and river transport. Therefore, PAHs in rural soils of DRB have potential impacts on the water supply and human health risk.  相似文献   

15.
Influence of iron content in sewage sludges on parameters of phosphate availability in arable soils The use of iron salts for the P elimination in sewage plants is widely used. But it is not clear whether the P availability in arable soils is negatively influenced by iron compounds or not. The aim of the investigations was, therefore, to study the influence of two sewage sludges with a high and a low Fe content respectively on P sorption and phosphate concentration (Pi) in the soil solution after application of CaHPO4 or sewage sludge to 5 loamy and 4 sandy soils (pot experiments and 1 silty loam (field experiment)). Soils were analyzed 1, 6, and 13 months after P application. Sludge Gö contained 12 kg P and 65 kg Fe (t DM)—1 (P : Fe = 1 : 5.4) and sludge Sh 25 kg P and 39 kg Fe (t DM)—1 (P : Fe = 1 : 1.5). The basic P application was 60 kg P ha—1 (= 30 mg P (kg soil)—1 in the pot experiment, as sludge or as CaHPO4). P uptake by maize was determined in a separate pot experiment with a loamy soil and the same P application rate. The P sorption capacity remained similar in all soils after application of sludge Sh (P : Fe = 1:1.5) compared with soils without sludge, however, after application of sludge Gö the P sorption increased by 16% (0—59%). After application of sludge Sh the mean Pi concentration increased in loamy soils by 34% and in sandy soils by 15%. On the other hand the Pi concentration decreased after applying sludge Gö by 13% and 36% as compared to the controls of the respective soils. In the field experiment the Pi concentration of plots with a high P level (50 mg lactate soluble P (kg soil)—1) was also significantly decreased after application of 10 t sludge Gö (126 kg P ha—1) in comparison with triple phosphate. One month after the application of increasing amounts of sludge Gö (5, 10, 15 t DM ha—1) both the concentration of oxalate‐soluble Fe in the soil and the P sorption were increased. The elevated relationship between these two parameters was highly significant (r2 = 0.6 — 0.97). Plant uptake of P was less after application of sludge Gö than after application of sludge Sh and much less than P uptake from CaHPO4. Sewage sludges with a P : Fe ratio of 1 : 5 should not be recommended for agricultural use, as the P availability is significantly reduced. Iron salts should not be used for conditioning of sludges.  相似文献   

16.
The addition of various nitrogen sources, such as liquid hog manure and mineral medium, to pine wood accelerated the composting process in Dewar vessels, which was obvious from the increased decomposition temperature and the more intensive oxygen consumption and carbon dioxide production. During composting in Dewar vessels of artificially PAH-contaminated pine wood soaked with liquid manure, the PAH degradation was influenced by the inoculum used. The fastest PAH degradation was achieved by compost addition, but the most intensive carbon dioxide evolution was measured with hydrocarbon-polluted soil as an additive. After 61 days, the PAH content of the wood was reduced from each 1000 mg/kg to 26 mg/kg of phenanthrene and 83 mg/kg of pyrene. The relation between the microbial wood decay and PAH degradation shows that the detoxification at least of artificially PAH-polluted wood demands only a partial wood decay.

A pilot scale percolator was applied to composting of artificially contaminated pine wood and really polluted waste wood. After 27 days of remediation, the portion of residual PAHs was higher in the case of the really polluted material. The slower degradation in the real waste wood may be explained by the lower bioavailability of pollutants in comparison with the artificially contaminated wood. In really polluted wood, the degradation rate of PAHs depended on their degree of condensation (the higher the number of aromatic rings the smaller the degradation rate was).  相似文献   

17.
韩晋仙  马建华  魏林衡 《土壤》2006,38(3):292-297
以开封市化肥河污灌区为例,研究了污水灌溉对潮土中重金属(Cd、Pb、Cr、Cu、Zn、Ni和 As)含量及分布的影响。结果表明,污水灌溉已经导致了该区潮土较明显的重金属累积,其中Cd和As平均含量分别达1.70 mg/kg和26.28 mg/kg,远远超出了土壤环境二级标准值。进入潮土的重金属主要累积在潮土的耕作层,随着土壤深度的增加,重金属含量逐渐减少;相对其他重金属而言,As更易于在潮土表层滞留。污灌区潮土 Cu、As与Cd含量与距污染源距离呈线性相关。相关分析表明,污灌区土壤Cu、Zn、Pb、Ni和As含量与土壤理化性质及其他重金属含量有关,而土壤Cd和Cr含量则与其他重金属含量及土壤性质的相关性不明显。  相似文献   

18.
Purpose

Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in Havana were quantified and analyzed in relation to possible emission sources to assess metropolitan soil contaminations in a highly dynamic, urban environment. The results of this study will serve Cuban legislators as a basis to develop environmental quality standards for organic pollutants in soils.

Materials and methods

Possible emission sources as, e.g., the vicinity to roads or industrial plants and the influence of the land use were related to the organic contaminants concentrations. Therefore, 28 topsoils in the Havana urban and semi-urban area were sampled at agricultural (n?=?12), organoponic (urban gardens in the capital, n?=?8), public park (n?=?7), and remediation (on-site bioremediation of an oil refinery, n?=?1) sites. Their PAH and PCB concentrations were measured with gas chromatography mass spectroscopy and the total organic carbon (TOC) and black carbon (BC) concentrations with the chemo-thermal oxidation.

Results and discussion

The sum of the 16 PAH concentrations ranged from 0.04 mg/kg in agricultural and organoponic soils to up to 72 mg/kg in a public park at about 1.5 km distance from an oil refinery. The lowest sum of the seven PCB congener concentrations was also measured in organoponic soils (0.002 mg/kg) and the highest in an arable patch of land between the rail roads and a main road (0.1 mg/kg). Both, PAH as well as PCB soil concentrations in Havana were almost up to two orders of magnitudes higher compared to a soil monitoring in the neighboring province of Mayabeque, but overall in the typical range of urban soils reported by other studies. The pollutants showed no relationship between TOC and BC except for PAHs with BC. For PAHs, combustion was the main source.

Conclusions

A comparison of the pollutant concentrations with regulatory guidance values (RGV) of other countries revealed PCB concentrations in Havana soils far below these RGV. In contrast, some concentrations of benzo[a]pyrene, the most carcinogenic PAH, in agricultural and park soils in Havana exceeded some RGV. Thus, some public parks pose a risk according to the Canadian quality guidelines when people have direct contact with these soils but not if they were consuming products thereof.

  相似文献   

19.
Many deciduous fruit tree orchard sites throughout the world are contaminated with lead (Pb) and arsenic (As) from past use of lead arsenate insecticides. The vertical distribution of Pb and As was examined in six contaminated orchard soils in the State of Washington, USA. Most of the Pb and As was restricted to the upper 40 cm of soil, with Pb concentration maxima ranging from 2.15 to 10.69 mmol/kg, and As concentration maxima ranging from 0.77 to 4.85 mmol/kg. In all cases, there were lower Pb and As concentrations at the soil surface than deeper in the profile. Arsenic was depleted relative to Pb in the topsoils and was enriched relative to Pb in the subsoils, suggesting that there has been preferential movement of As. Absolute soil enrichment with Pb occurred to depths between 15 and 50 cm. Absolute soil enrichment with As occurred to depths between 45 and > 120 cm. At 120 cm, Pb concentrations were < 0.05 mmol/kg, and As concentrations ranged from 0.07 to 0.63 mmol/kg. The deeper movement of Pb and As in the study soils relative to that reported for lead arsenate-contaminated soils elsewhere is attributed to high loading rates of lead arsenate, coarse soil texture, low organic matter content, and use of irrigation. The results indicate that Pb and As concentrations in lead arsenate-contaminated soils are high enough to be of potential environmental concern. The amount of As redistribution appears to be substantial enough to preclude some methods of remediation and to create potential risk of contamination of underlying shallow groundwater.  相似文献   

20.
Leaching of plant nutrients from vineyard soils Leaching of plant nutrients particularly of nitrate from vineyard, arable, and forest soils of the Middle-Mosel have been investigated over a two-year period. Nitrate concentration in the leachate of vineyards amounted to an average of 326 mg NO3/l and was about 10 to 20 times higher than the nitrate concentration in the leachate of arable and forest soils. According to the hydro-dynamic model assumptions on groundwater flow in the slates of the Rhenish Massif, the data obtained for the groundwater recharge (158-180 mm/year as gained in spring) and leaching of nitrate (144 kg N/ha/year) must be considered as minimum values. Hydrodynamic model assumptions suggest nitrate leaching rates of about 200 kg N/ha. Main reasons for the high leaching of nutrients are heavy fertilizer application and high mineralization rates in the vineyard soils favoured by relatively high soil temperatures and a high soil permeability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号