首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Context

Global pollinator decline has motivated much research to understand the underlying mechanisms. Among the multiple pressures threatening pollinators, habitat loss has been suggested as a key-contributing factor. While habitat destruction is often associated with immediate negative impacts, pollinators can also exhibit delayed responses over time.

Objectives

We used a trait-based approach to investigate how past and current land use at both local and landscape levels impact plant and wild bee communities in grasslands through a functional lens.

Methods

We measured flower and bee morphological traits that mediate plant–bee trophic linkage in 66 grasslands. Using an extensive database of 20 years of land-use records, we tested the legacy effects of the landscape-level conversion of grassland to crop on flower and bee trait diversity.

Results

Land-use history was a strong driver of flower and bee trait diversity in grasslands. Particularly, bee trait diversity was lower in landscapes where much of the land was converted from grassland to crop long ago. Bee trait diversity was also strongly driven by plant trait diversity computed with flower traits. However, this relationship was not observed in landscapes with a long history of grassland-to-crop conversion. The effects of land-use history on bee communities were as strong as those of current land use, such as grassland or mass-flowering crop cover in the landscape.

Conclusions

Habitat loss that occurred long ago in agricultural landscapes alters the relationship between plants and bees over time. The retention of permanent grassland sanctuaries within intensive agricultural landscapes can offset bee decline.

  相似文献   

2.

Context

Anthropogenic landscape simplification and natural habitat loss can negatively affect wild bees. Alternatively, anthropogenic land-use change may diversify landscapes, creating complementary habitats that maintain overall resource continuity and diversity.

Objectives

We examined the effects of landscape composition, including land-cover diversity and percent semi-natural habitat, on wild bee abundance and species richness within apples, a pollinator-dependent crop. We also explored whether different habitats within diverse landscapes can provide complementary floral resources for bees across space and time.

Methods

We sampled bees during apple bloom over 2 years within 35 orchards varying in surrounding landscape diversity and percent woodland (the dominant semi-natural habitat) at 1 km radii. To assess habitat complementarity in resource diversity and temporal continuity, we sampled flowers and bees within four unique habitats, including orchards, woodlands, semi-natural grasslands, and annual croplands, over three periods from April–June.

Results

Surrounding landscape diversity positively affected both wild bee abundance and richness within orchards during bloom. Habitats in diverse landscapes had different flower communities with varying phenologies; flowers were most abundant within orchards and woodlands in mid-spring, but then declined over time, while flowers within grasslands marginally increased throughout spring. Furthermore, bee communities were significantly different between the closed-canopy habitats, orchards and woodlands, and the open habitats, grasslands and annual croplands.

Conclusions

Our results suggest that diverse landscapes, such as ones with both open (grassland) and closed (woodland) semi-natural habitats, support spring wild bees by providing flowers throughout the entire foraging period and diverse niches to meet different species’ requirements.
  相似文献   

3.
Semi-natural habitats provide essential resources for pollinators within agricultural landscapes and may help maintain pollination services in agroecosystems. Yet, whether or not pollinators disperse from semi-natural habitat elements into the adjacent agricultural matrix may to a large extent depend on the quality of this matrix and the corresponding pollinator-specific life history traits. To investigate the effects of matrix quality on the distance decay of wild bees and hoverflies, six transects along vegetated field tracks originating at a large semi-natural main habitat and leading into the adjacent agricultural matrix were established in the Wetterau Region, central Hesse, Germany. Species richness of wild bees did not change with distance from the main habitat in landscapes with sufficient grassland cover in the surrounding landscape, but significantly declined when semi-natural grasslands where scarce and isolated in the adjacent agricultural matrix. Abundance of wild bees declined with distance regardless of matrix quality. Species richness of hoverflies did not decline with increasing distance in any landscape. Abundance even increased with distance to the main habitat independently of matrix quality. Thus, our data show that taxa of the pollinator guild may perceive landscapes quite differently. Because of their differing dispersal modes and resource requirements as compared to wild bees, hoverflies may play an important role in maintaining pollination services in agricultural landscapes unsuitable for bee species. Our results highlight the need for considering these taxon-specific differences when predicting the effect of landscape structure on pollinators. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.

Context

Understanding the factors contributing to maintaining biodiversity is crucial to mitigate the impact of anthropogenic disturbances. Representing large proportions of green area in highly modified landscapes, residential gardens are often seen as local habitats that can contribute to larger networks of suitable environments at the landscape scale.

Objectives

We investigated the impact of the landscape context on butterfly communities observed in residential gardens, taking into account garden characteristics, land-use types and presence of linear features in the surrounding landscape. We examined how species traits affected butterflies’ response to landscape context and habitat quality.

Methods

We performed a cross-scale study, based on citizen science data documenting butterfly species composition and abundance in 920 gardens across France. We examined the effect of garden quality, the area of different land-use types and the length of linear elements measured at three scales within the surrounding landscape. Species were grouped according to their habitat preference and mobility.

Results

Urbanization negatively affected total species richness and the abundance of butterfly in each group. This was related to declining habitat quality and reduced area of suitable habitat in the surrounding landscape. The magnitude of this effect, however, was negatively correlated with mobility, a trait related to habitat preference. The spatial scale at which landscape context best explained variation in butterfly abundance changed with species’ habitat preference.

Conclusions

This study highlights the importance of preserving high quality habitats in altered landscapes and considering species’ mobility and habitat preference when assessing the impact of landscapes on butterfly communities.
  相似文献   

5.
The influence of urbanisation on diversity and trait composition of birds   总被引:1,自引:0,他引:1  
We analysed the effect of the urban matrix, the urban space surrounding distinct habitat patches, on bird communities. In doing so we assessed the impact of urbanisation beyond the effect of habitat loss. We used a set of 54 wasteland sites of early successional stages that were scattered over the entire urban area of Berlin, Germany. Sites were similar to each other in habitat structure but differed in their surroundings, the urban matrix. Thus, our study design allows to investigate associations between birds and the urban matrix. Our measures for urbanisation are human population density and degree of sealing within 50 to 2,000 m buffer zones surrounding each wasteland site. Along the urbanisation gradients we calculated three measures of bird communities: alpha diversity, beta diversity, and trait profile of the entire bird community regarding food, life-history, and behavioural traits. Alpha diversity did not change significantly along the gradients of urbanisation. However, beta diversity increased along the urbanisation gradients with urbanisation at the local scale (50 m) but decreased at the landscape scale (200 and 2,000 m). Fourth-corner analysis of relationships between urbanisation and species traits showed trait shifts: adult survival rate increased with human population density and densities of birds that are more often reported to show innovative behaviour increased with both human population density and degree of sealing. We conclude that the influence of the urban matrix contributes to the homogenisation of the avifauna by filtering certain species traits and promoting others.  相似文献   

6.
The effects of habitat fragmentation on species richness and composition have been extensively studied. However, little is known about how fragmentation affects functional diversity patterns. Fragmentation can indeed affect functional diversity directly (e.g. by promoting traits associated to long-distance dispersal when fragment isolation increases) or indirectly (e.g. by decreasing species richness, hence trait diversity, when fragment area decreases). Here, we used structural equation modeling to determine whether factors associated to forest fragmentation, namely area, habitat heterogeneity, spatial isolation and age have a direct effect on forest herb functional diversity. Using occurrence data from 243 forest fragments located in northern France and six plant life-history traits, we estimated species richness and calculated functional diversity in each of these 243 forest fragments. We found that species richness was the primary driver of functional diversity in these fragments, with a strong positive and direct relationship between species richness and functional diversity. Interestingly, both fragment isolation and age had a direct negative effect on functional diversity independent of their effects on species richness. Isolation selected life-history traits associated with long-distance dispersal, while age selected for life-history traits typical of forest habitat specialists. Isolated and/or older forest fragments are thus at greater risk of local species and functional extinctions, and hence making these forest fragments particularly vulnerable to future global changes.  相似文献   

7.
Context

Landscape and local habitat traits moderate wild bee communities. However, whether landscape effects differ between local habitat types is largely unknown.

Objectives

We explored the way that wild bee communities in three distinct habitats are shaped by landscape composition and the availability of flowering plants by evaluating divergences in response patterns between habitats.

Methods

In a large-scale monitoring project across 20 research areas, wild bee data were collected on three habitats: near-natural grassland, established flower plantings and residual habitats (e.g. field margins). Additionally, landscape composition was mapped around the research areas.

Results

Our monitoring produced a dataset of 27,650 bees belonging to 324 species. Bee communities on all three habitats reacted similarly to local flower availability. Intensively managed grassland in the surrounding landscape had an overall negative effect on the studied habitats. Other landscape variables produced diverging response patterns that were particularly pronounced during early and late season. Bee communities in near-natural grassland showed a strong positive response to ruderal areas. Flower plantings and residual habitats such as field margins showed a pronounced positive response to extensively managed grassland and woodland edges. Response patterns regarding bee abundance were consistent with those found for species richness.

Conclusion

We advise the consideration of local habitat type and seasonality when assessing the effect of landscape context on bee communities. A reduction in the intensity of grassland management enhances bee diversity in a broad range of habitats. Moreover, wild bee communities are promoted by habitat types such as ruderal areas or woodland edges.

  相似文献   

8.

Context

The landscape heterogeneity hypothesis states that increased heterogeneity in agricultural landscapes will promote biodiversity. However, this hypothesis does not detail which components of landscape heterogeneity (compositional or configurational) most affect biodiversity and how these compare to the effects of surrounding agricultural land-use.

Objectives

Our objectives were to: (1) assess the influence of the components of structural landscape heterogeneity on taxonomic diversity; and (2) compare the effects of landscape heterogeneity to those of different types of agricultural land-use in the same landscape across different taxonomic groups.

Methods

We identified a priori independent gradients of compositional and configurational landscape heterogeneity within an agricultural mosaic of north-eastern Swaziland. We tested how bird, dung beetle, ant and meso-carnivore richness and diversity responded to compositional and configurational heterogeneity and agricultural land-use across five different spatial scales.

Results

Compositional heterogeneity best explained species richness in each taxonomic group. Bird and ant richness were both positively correlated with compositional heterogeneity, whilst dung beetle richness was negatively correlated. Commercial agriculture positively influenced bird species richness and ant diversity, but had a negative influence on dung beetle richness. There was no effect of either component of heterogeneity on the combined taxonomic diversity or richness at any spatial scale.

Conclusions

Our results suggest that increasing landscape compositional heterogeneity and limiting the negative effects of intensive commercial agriculture will foster diversity across a greater number of taxonomic groups in agricultural mosaics. This will require the implementation of different strategies across landscapes to balance the contrasting influences of compositional heterogeneity and land-use. Strategies that couple large patches of core habitat across broader scales with landscape structural heterogeneity at finer scales could best benefit biodiversity.
  相似文献   

9.

Context

In modern agricultural landscapes, fragmentation of partial habitats is a significant filter for multi-habitat users, reducing local taxonomic and functional diversity. There is compelling evidence that small species are more susceptible than large species. The impact of habitat fragmentation on intraspecific body-size distribution, however, is yet unexplored.

Objectives

We tested habitat fragmentation, a major driver of pollinator loss, for its impact on intraspecific body-size distributions of solitary wild-bee species. Subsequently, we tested individual body size for its impact on pollination services.

Methods

We sampled 1272 individuals of the four most common Andrena wild bee species in 22 newly established flowering fields (0.21–0.41 ha) in Hessen, Central Germany, over two consecutive years. Study sites were located in a ca. 80 ha landscape context of increasing habitat fragmentation. We analysed the pollen loads of the most abundant species.

Results

Body size within local populations of the two medium-sized bees increased with fragmentation, suggesting intraspecific selection for higher dispersal capacity. Pollen analysis carried out for the most common species revealed that larger individuals visited a significantly smaller plant spectrum. Habitat fragmentation may thus alter pollination services without necessarily affecting species richness or composition.

Conclusions

Systematic body-size variation at the population level thus explains the considerable variability between simple community measures and ecosystem functioning. Filtering processes at the individual level require increased understanding for targeting pollination services under current and future land-use change.
  相似文献   

10.
Habitat loss and fragmentation of natural and semi-natural habitats are considered as major threats to plant species richness. Recently several studies have pinpointed the need to analyse past landscape patterns to understand effects of fragmentation, as the response to landscape change may be slow in many organisms, plants in particular. We compared species richness in continuously grazed and abandoned grasslands in different commonplace rural landscapes in Sweden, and analysed effects of isolation and area in three time-steps (100 and 50 years ago and today). Old cadastral maps and aerial photographs were used to analyse past and present landscape patterns in 25 sites. Two plant diversity measures were investigated; total species richness and species density. During the last 100 years grassland area and connectivity have been reduced by about 90%. Present-day habitat area was positively related to total species richness in both habitats. There was also a relationship to habitat area 50 years ago for continuously grazed grasslands. Only present management was related to species density: continuously grazed grasslands had the highest species density. There were no relationships between grassland connectivity, present or past, and any diversity measure. We conclude that landscape history is not directly important for present-day plant diversity patterns in ordinary landscapes, although past grassland management is a prerequisite for the grassland habitats that can be found there today. It is important that studies are conducted, not only in very diverse landscapes, but also in managed landscapes in order to assess the effects of fragmentation on species.  相似文献   

11.
Although many empirical and theoretical studies have elucidated the effects of habitat fragmentation on the third trophic level, little attention has been paid to the impacts of this driver on more generalist groups of non-hymenopteran parasitoids. Here, we used the highly-diverse group of tachinid flies as an alternative model to test the effects of landscape fragmentation on insect parasitoids. Our aims were: (i) to evaluate the relative importance of habitat area and connectivity losses and their potential interaction on tachinid diversity, (ii) to test whether the effects of habitat fragmentation changes seasonally, and (iii) to further assess the effect of habitat diversity on tachinid diversity and whether different parasitoid-host associations modify the species richness response to fragmentation. In 2012 a pan-trap sampling was conducted in 18 semi-natural grasslands embedded in intensive agricultural landscapes along statistically orthogonal gradients of habitat area, connectivity and habitat diversity. We found an interaction between habitat area and connectivity indicating that tachinid abundance and species richness were more negatively affected by habitat loss in landscapes with low rather than with relatively large habitat connectivity. Although tachinid communities exhibited large within-year species turnover, we found that the effects of landscape fragmentation did not change seasonally. We found that habitat diversity and host association did not affect tachinid species diversity. Our results have important implications for biodiversity conservation as any attempts to mitigate the negative effects of habitat loss need to take the general level of habitat connectivity in the landscape into account.  相似文献   

12.
Wagner  Helene H.  Wildi  Otto  Ewald  Klaus C. 《Landscape Ecology》2000,15(3):219-227
In this paper, we quantify the effects of habitat variability and habitat heterogeneity based on the partitioning of landscape species diversity into additive components and link them to patch-specific diversity. The approach is illustrated with a case study from central Switzerland, where we recorded the presence of vascular plant species in a stratified random sample of 1'280 quadrats of 1 m2 within a total area of 0.23 km2. We derived components of within- and between-community diversity at four scale levels (quadrat, patch, habitat type, and landscape) for three diversity measures (species richness, Shannon index, and Simpson diversity). The model implies that what we measure as within-community diversity at a higher scale level is the combined effect of heterogeneity at various lower levels. The results suggest that the proportions of the individual diversity components depend on the habitat type and on the chosen diversity aspect. One habitat type may be more diverse than another at patch level, but less diverse at the level of habitat type. Landscape composition apparently is a key factor for explaining landscape species richness, but affects evenness only little. Before we can test the effect of landscape structure on landscape species richness, several problems will have to be solved. These include the incorporation of neighbourhood effects, the unbiased estimation of species richness components, and the quantification of the contribution of a landscape element to landscape species richness.  相似文献   

13.
Habitat fragmentation strongly affects insect species diversity and community composition, but few studies have examined landscape effects on long term development of insect communities. As mobile consumers, insects should be sensitive to both local plant community and landscape context. We tested this prediction using sweep-net transects to sample insect communities for 8 years at an experimentally fragmented old-field site in northeastern Kansas, USA. The site included habitat patches undergoing secondary succession, surrounded by a low turf matrix. During the first 5 years, plant richness and cover were measured in patches. Insect species richness, total density, and trophic diversity increased over time on all transects. Cover of woody plants and perennial forbs increased each year, adding structural complexity to successional patches and potentially contributing to increased insect diversity. Within years, insect richness was significantly greater on transects through large successional patches (5000 m2) than on transects through fragmented arrays of 6 medium-sized (total area 1728 m2) or 15 small (480 m2) patches. However, plant cover did not differ among patch types and was uncorrelated with insect richness within years. Insect richness was strongly correlated with insect density, but trophic and α diversities did not differ among patch types, indicating that patch insect communities were subsets of a common species pool. We argue that differences in insect richness resulted from landscape effects on the size of these subsets, not patch succession rates. Greater insect richness on large patches can be explained as a community-level consequence of population responses to resource concentration.  相似文献   

14.
With  Kimberly A.  Payne  Alison R. 《Landscape Ecology》2021,36(9):2505-2517
Landscape Ecology - The habitat amount hypothesis (HAH) posits that local species richness is driven more by the amount of habitat in the surrounding landscape than by local patch size or habitat...  相似文献   

15.
Land-bridge islands formed by dam construction are considered to be “experimental” systems for studying the effects of habitat loss and fragmentation, offering many distinct advantages over terrestrial fragments. The Thousand Island Lake in Southeast China is one such land-bridge system with more than 1000 islands. Based on a field survey of vascular plant richness on 154 land-bridge islands during 2007–2008, we examined the effects of island and landscape attributes on plant species richness and patterns of species nestedness. We also examined the different responses of plant functional groups (classified according to growth form and shade tolerance) to fragmentation. We found that island area explained the greatest amount of variation in plant species richness. Island area and shape index positively affected species diversity and the degree of nestedness exhibited by plant communities while the perimeter to area ratio of the islands had a negative effect. Shade-tolerant plants were the most sensitive species group to habitat fragmentation. Isolation negatively affected the degree of nestedness in herb and shade-intolerant plants including species with various dispersal abilities in the fragmented landscape. Based on these results, we concluded that the effects of habitat loss and fragmentation on overall species richness depended mostly on the degree of habitat loss, but patterns of nestedness were generated from different ecological mechanisms due to species-specific responses to different characteristics of habitat patches.  相似文献   

16.
The factors responsible for widespread declines of grassland birds in the United States are not well understood. This study, conducted in the short-grass prairie of eastern Wyoming, was designed to investigate the relationship between variation in habitat amount, landscape heterogeneity, prey resources, and spatial variation in grassland bird species richness. We estimated bird richness over a 5-year period (1994–1998) from 29 Breeding Bird Survey locations. Estimated bird richness was modeled as a function of landscape structure surrounding survey routes using satellite-based imagery (1996) and grasshopper density and richness, a potentially important prey of grassland birds. Model specification progressed from simple to complex explanations for spatial variation in bird richness. An information-theoretic approach was used to rank and select candidate models. Our best model included measurements of habitat amount, habitat arrangement, landscape matrix, and prey diversity. Grassland bird richness was positively associated with grassland habitat; was negatively associated with habitat dispersion; positively associated with edge habitats; negatively associated with landscape matrix attributes that may restrict movement of grassland bird; and positively related to grasshopper richness. Collectively, 62% of the spatial variation in grassland bird richness was accounted for by the model (adj-R2 = 0.514). These results suggest that the distribution of grassland bird species is influenced by a complex mixture of factors that include habitat area affects, landscape pattern and composition, and the availability of prey.  相似文献   

17.
The aim of this paper is to examine the role of urban public parks in maintaining connectivity and butterfly assemblages. Using a regression framework, we first test the relative importance of park size and isolation in predicting abundance and species richness of butterfly assemblages across a set of 24 public parks within a large metropolitan area, Marseille (South-East France). Then, we focus on landscape features that affect diversity patterns of the recorded butterfly communities. In this second part, the urban landscape surrounding each park is described (within a 1 × 1 km window) according to two major components: vegetated areas (habitat patches) and impervious or built areas (matrix patches). Specifically, we aim to test whether the incorporation of this built component (matrix) in the landscape analysis provides new insights into the understanding of ecological connectivity in the urban environment. We found a significant effect of both matrix configuration (shape complexity of the built patches) and distance from regional species pool (park isolation) on diversity of butterflies that overrides park size in their contribution to variation in species richness. This result suggests that many previous studies of interactions between biodiversity and urban landscape have overlooked the influence of the built elements.  相似文献   

18.
Knowledge of variation in vascular plant species richness and species composition in modern agricultural landscapes is important for appropriate biodiversity management. From species lists for 2201 land-type patches in 16 1-km2 plots five data sets differing in sampling-unit size from patch to plot were prepared. Variation in each data set was partitioned into seven sources: patch geometry, patch type, geographic location, plot affiliation, habitat diversity, ecological factors, and land-use intensity. Patch species richness was highly predictable (75% of variance explained) by patch area, within-patch heterogeneity and patch type. Plot species richness was, however, not predictable by any explanatory variable, most likely because all studied landscapes contained all main patch types – ploughed land, woodland, grassland and other open land – and hence had a large core of common species. Patch species composition was explained by variation along major environmental complex gradients but appeared nested to lower degrees in modern than in traditional agricultural landscapes because species-poor parts of the landscape do not contain well-defined subsets of the species pool of species-rich parts. Variation in species composition was scale dependent because the relative importance of specific complex gradients changed with increasing sampling-unit size, and because the amount of randomness in data sets decreased with increasing sampling-unit size. Our results indicate that broad landscape structural changes will have consequences for landscape-scale species richness that are hard or impossible to predict by simple surrogate variables.  相似文献   

19.
Contemporary landscape ecology continues to explore the causes and consequences of landscape heterogeneity across a range of scales, and demands for the scientific underpinnings of landscape planning and management still remains high. The spatial distribution of resources can be a key element in determining habitat quality, and that in turn is directly related to the level of heterogeneity in the system. In this sense, forest habitat mosaics may be more affected by lack of heterogeneity than by structural fragmentation. Nonetheless, increasing spatial heterogeneity at a given spatial scale can also decrease habitat patch size, with potential negative consequences for specialist species. Such dual effect may lead to hump-backed shape relationships between species diversity and heterogeneity, leading to three related assumptions: (i) at low levels of heterogeneity, an increase in heterogeneity favours local and regional species richness, (ii) there is an optimum heterogeneity level at which a maximum number of species is reached, (iii) further increase in spatial heterogeneity has a negative effect on local and regional species richness, due to increasing adverse effects of habitat fragmentation. In this study, we investigated the existence of a hump-shaped relationship between local plant species richness and increasing forest landscape heterogeneity on a complex mosaic in the French Alps. Forest landscape heterogeneity was quantified with five independent criteria. We found significant quadratic relationships between local forest species richness and two heterogeneity criteria indicators, showing a slight decrease of forest species richness at very high heterogeneity levels. Species richness–landscape heterogeneity relationships varied according to the heterogeneity metrics involved and the type of species richness considered. Our results support the assumption that intermediate levels of heterogeneity may support more species than very high levels of heterogeneity, although we were not able to conclude for a systematic negative effect of very high levels of heterogeneity on local plant species richness.  相似文献   

20.

Context

The local intensity of farming practices is considered as an important driver of biodiversity in agricultural landscapes and its effect on biodiversity has been shown to interact with landscape complexity. But the influence of landscape-wide intensity of farming practices on biodiversity and its combined effect with landscape complexity have been little explored.

Objective

In this study, we tested the interactive effect of the landscape-wide intensity of farming practices and landscape complexity on the local species richness and abundance of farmland wild bee communities.

Methods

We captured wild bees in 96 crop fields and explored the effect of landscape-wide intensity of various farming practices along a gradient of landscape complexity (proportion of semi-natural habitats).

Results

We found that species richness and abundance of wild bees were more positively influenced by landscape complexity in highly insecticide-sprayed landscapes than in less intensively managed landscapes. In contrast, we found that the positive effect of landscape complexity on bee species richness only occurred in landscapes with low nitrogen inputs.

Conclusions

Our study demonstrates the interactive effects of landscape-wide farming intensity and landscape complexity in shaping the diversity of farmland wild bee communities. We conclude that the management of farming intensity at the landscape-scale could mitigate the effects of habitat loss on wild bee decline and would help to maintain pollination services in agricultural landscapes.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号