首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 968 毫秒
1.
试验研究了不同灌水量(2 850、3 900和4 950 m3/hm2)与施氮量(0、180、270和360 N kg/hm2)条件下南疆膜下滴灌棉花蕾期、花铃期与盛铃期功能叶水分利用效率(WUE).结果表明,在蕾期、花铃期水分与氮素对棉花叶片水分利用效率WUE无显著影响;在盛铃期,WUE显著地受到水分的影响,施氮、施氮与水分的交互作用对WUE无显著影响.在盛铃期时,灌水量为4 950 m3/hm2时的WUE显著高于灌水量为3 900和2 850 m3/hm2,后两者之间的WUE无显著差异.南疆膜下滴灌棉花水分利用效率的大小与棉田冠层环境因子密切相关,其中,温度是最主要的影响因子.WUE与叶片温度、空气温度、空气饱和差、胞间CO2与空气CO2浓度比呈现出极显著的负相关关系、WUE与光合有效辐射PAR呈显著负相关关系,WUE与空气相对湿度、空气CO2浓度呈现出极显著的正相关关系.  相似文献   

2.
针对南疆膜下滴灌条件下不同施氮量对棉花氮肥利用效率及产量的影响.在棉花的不同生育时期,分别取样后按不同器官分样烘干后称重粉碎,测定棉花植株对氮素吸收利用量.结果表明:随施氮量的增加,棉花皮棉产量呈现先增加后减少的趋势.当施氮量处于317~395kg·hm-2,棉花对氮素累积量随施氮量的增加而显著增加,棉花i NUE、N...  相似文献   

3.
【目的】针对西北半干旱区温室蔬菜灌水施氮不合理等问题,通过不同灌水施氮水平处理,探讨作物根系生长与分布、产量和水氮高效利用与水氮供应的关系,揭示根系生长分布对灌水施氮模式的响应机制,为提高蔬菜作物产量和水氮利用效率提供科学依据。【方法】采用不同施氮灌水处理的田间试验,以“金童”小南瓜为供试作物,设置3个总灌水量水平:常规灌水(高水W3、1 500 m3•hm-2)、常规灌水减27%(中水W2、1 100 m3•hm-2)、常规灌水减54%(低水W1、700 m3•hm-2)和3个施氮量水平:常规施氮(高氮N3,350 kg•hm-2)、常规施氮减28.5%(中氮N2,250 kg•hm-2)、常规施氮减57%(低氮N1,150 kg•hm-2),试验采用完全随机区组设计,共9个处理,研究膜下滴灌不同水氮供应对温室小南瓜根系生长分布、产量和水氮利用效率的影响。【结果】小南瓜90%根系主要集中在0-40 cm土层,且随土层深度的增加,根系密度呈指数下降;当灌水量相同时,低水(W1)和中水(W2)处理根系长度、产量、水分利用效率(WUE)均随施氮量的增加先增加后减少,而高水(W3)处理根系长度随施氮量的增加而增加,不同施氮量处理小南瓜产量差异不显著;与高氮(N3)处理相比,低氮(N1)和中氮(N2)处理小南瓜根系长度、产量随灌水量增加而增加,当灌水量超过1 100 m3•hm-2时,小南瓜根系长度和产量均有所下降;随着灌水量增多,水分利用效率亦显著下降,低水中氮(W1N2)处理水分利用效率最高,为35.59 kg•m-3;灌水量较高(W2和W3)时,氮素利用率(NUE)均随施氮量增加而显著降低,灌水量较低(W1)时,低氮和中氮处理氮素利用率显著高于高氮处理;灌水和施氮对小南瓜总根长作用表现为:氮素作用>水分作用>水氮交互作用;细根(直径小于2 mm根系)根长随灌水量和施氮量增加呈抛物线型变化;小南瓜产量与细根根长和根表面积之间均有显著的线性关系。【结论】灌水和施氮过高或过低均可以导致小南瓜产量、水氮利用效率以及根系各项特征参数显著降低,中水中氮(W2N2)处理小南瓜产量和根系各项特征参数均达到最大值;不同水氮处理主要通过对细根根长的影响进而影响小南瓜的产量。综合考虑产量、水氮利用效率以及根系生长分布,灌水量为1 100 m3•hm-2、施氮量为250 kg•hm-2为小南瓜较优的灌水施氮组合。  相似文献   

4.
交替隔沟灌溉棉花群体生理指标的水氮耦合效应   总被引:3,自引:0,他引:3  
【目的】研究交替隔沟灌溉棉花群体生理指标、生物量、产量的水氮耦合效应。【方法】本试验采用交替隔沟灌溉方式进行大田小区试验,施氮量和灌水量采用二次通用旋转组合设计,分析棉花群体生理指标在不同水、氮组合下(灌水量:37.48—218.52 mm;施氮量:56.2—134.2 kg?hm-2)的变化规律。【结果】棉花叶片光合势(LAD)、作物生长率(CGR)、群体净同化率(NAR)、叶面积指数(LAI)、产量、生物量的水、氮单因子效应表明,施氮量56.2—122.8 kg?hm-2时,各群体生理指标、产量、生物量与施氮量呈显著的正相关。施氮量122.8—134.2 kg?hm-2时,LAD、CGR与施氮量呈显著的正相关,NAR、LAI、产量和生物量变化不显著。灌水量37.52—192 mm时,群体生理指标、产量、生物量与灌水量呈显著的正相关。灌水量192—218.48 mm,LAD、CGR、LAI与灌水量呈显著的正相关,NAR、产量和生物量变化不明显。棉花群体生理指标、生物量、产量的水氮耦合效应表明,灌水量在37.52—192 mm范围内,LAD、CGR、NAR、LAI随灌水量增加而均增长,但增长趋势随施氮量增加而逐渐降低。灌水量在192—218.48 mm各群体生理指标、生物量、产量变化不显著。施氮量56.2—95.2 kg?hm-2,群体生理指标、产量、生物量随施氮量增加而增长,但增长趋势随灌水量增长而逐渐降低。施氮量从95.2增加到134.2 kg?hm-2,各群体生理指标、生物量、产量随施氮量变化不显著。【结论】交替隔沟灌能够协调棉花群体生长发育,提高棉花产量和水、氮利用效率。  相似文献   

5.
黄淮海平原冬小麦生长期土壤水氮利用效率模拟分析   总被引:2,自引:0,他引:2  
 【目的】以黄淮海平原为研究区域,采用基于地理信息系统(GIS)的模拟模型对区域农田土壤水氮行为进行模拟和评价。【方法】建立和验证土壤水、热、氮和作物生长联合模型并与GIS相结合,在1999~2000年黄淮海平原的农村社会经济和土壤、气候等条件背景下,对冬小麦生长期土壤水氮利用效率和氮素损失量的区域分布规律进行分析。【结果】区域模拟结果表明,水分利用效率(WUE)、氮素利用效率(NUE)及土壤氮素淋失情况的空间分布在各地貌区之间有明显差异。多元线性逐步回归分析表明,1 m土体的氮素淋失量与灌水和降水量、施氮量、土壤饱和导水率(Ks)呈极显著的正相关;WUE与施氮量和日照时数呈极显著的正相关,而与降水和灌水量、Ks呈极显著的负相关;NUE与降水和灌水量、日照时数呈极显著的正相关,与施氮量、Ks呈极显著的负相关。【结论】黄淮海平原区域农田土壤水氮行为受自然条件和农田管理措施的显著影响,其空间分布规律可利用基于GIS的过程模型进行模拟和评价。  相似文献   

6.
膜下滴灌棉花水氮耦合对其干物质和水分利用效率的影响   总被引:6,自引:0,他引:6  
在膜下滴灌条件下,设置不同水、氮用量,测定不同生育期各处理的植物干物质积累和土壤水分含量,结合试验区详细的气象资料,计算棉田各处理水分利用效率。结果表明,随着氮肥用量的增加,棉花干物质积累的快速增长期推迟,最大积累速率增加,棉花干物质的快速增长期在初花-盛铃期,持续45 d左右,棉花总干物质随氮肥用量的增加而增加,灌水量对干物质积累也表现出同样的趋势。干物质水分利用率(WUE)随着灌溉水量、施氮量的增加呈现先增加而后降低的趋势。试验中最优水氮组合为灌水4 800 m3/hm2、施氮肥300 kg/hm2。在这个组合下,棉花干物质积累、水分利用效率和产量均达到最大。  相似文献   

7.
研究了不同滴水量(2 850、3 900、4 950 m3/hm2)与施氮量(0、180、270、360 N kg/hm2)条件下南疆膜下滴灌棉花蕾期、花铃期与盛铃期功能叶水分利用效率WUE与蒸腾速率E。结果表明,在蕾期、花铃期水分与氮素对棉花叶片水分利用效率WUE无显著影响;在盛铃期,WUE显著地受到水分的影响,施氮、施氮与水分的交互作用对WUE无显著影响。在盛铃期时,滴水量为4 950 m3/hm2时WUE显著高于滴水量为3900、2 850 m3/hm2时的WUE,后两者之间的WUE无显著差异。不同处理棉花叶片蒸腾速率E在蕾期均高于花铃期和盛铃期。在蕾期,水分与氮素对蒸腾速率无显著影响;在花铃期,水分对蒸腾速率E的影响达到了显著水平,最高滴水量处理的蒸腾速率也最高,而施氮、水分与施氮的交互作用对蒸腾速率E无显著影响。在盛铃期,最高滴水量4 950 m3/hm2条件下,蒸腾速率E显著地受到施氮的影响,施氮量最高时,其蒸腾速率也最高。南疆膜下滴灌棉花水分利用效率、蒸腾速率的大小与棉田冠层环境因子密切相关,其中,温度是最主要的影响因子。WUE与叶片温度、空气温度、空气饱和差、胞间CO2与空气CO2浓度比呈现出极显著的负相关关系,WUE与光合有效辐射PAR呈显著负相关关系,WUE与空气相对湿度、空气CO2浓度呈现出极显著的正相关关系。蒸腾速率与空气温度、叶片温度、光合有效辐射PAR呈现出极显著的正相关关系。蒸腾速率与空气CO2浓度、胞间CO2与空气CO2浓度比呈现出极显著的负相关关系。  相似文献   

8.
针对水氮互作提高限量灌溉玉米水分利用效率理论依据薄弱问题,通过田间试验,设置了不同水氮处理,研究了绿洲灌区不同灌水量和施氮组合对玉米光合特性及叶水势日变化的影响,以期为干旱地区以氮调水、提高作物水分利用效率提供依据.结果表明:玉米的净光合速率、蒸腾速率、气孔导度、叶水势均随灌水量的增加而提高,但叶片WUE随灌水量的增加而降低.在同一灌水量下,360kg/hm2的施氮量有利于提高玉米叶片的光合速率、蒸腾速率、气孔导度和叶片WUE,施氮量达到540kg/hm2时玉米的光合速率、蒸腾速率、气孔导度较360kg/hm2施氮处理呈下降趋势.适于玉米高效进行光合作用的施氮量在360~540 kg/hm2之间.在低灌水量(5 700m3/hm2)的条件下,增施氮肥降低了叶水势;灌水量增加时,玉米叶水势随氮肥施用量的增加而提高.灌水量和施氮量对玉米净光合速率、蒸腾速率、叶水势、WUE的互作效应明显,但二者对气孔导度的互作效应不显著;施氮量对WUE的影响大于灌水量的影响,水分胁迫导致玉米净光合速率和水分利用效率的降低可通过增施氮肥得到部分补偿.水氮协同调控是优化玉米光合特性的可行途径.  相似文献   

9.
种植密度和水氮互作对南疆棉花生长和水氮利用的影响   总被引:1,自引:0,他引:1  
【目的】研究种植密度和水氮互作对南疆棉花生长、产量和水氮利用效率的影响,为棉田合理密植和水氮优化调控提供技术支撑。【方法】在新疆库尔勒市尉犁县31团进行大田棉花滴灌试验,采用裂区设计,设置种植密度、灌水量和施肥量3个因素,其中种植密度设置2个水平:26万株/hm~2(D_1,当地种植密度,株距10 cm)和32万株/hm~2(D_2,株距8 cm);灌水量设置2个水平:80%ET_C(W_1,ET_C为作物蒸发蒸腾量)和100%ET_C(W_2);施氮量设置3个水平:200 kg/hm~2(N_1)、300 kg/hm~2(N_2)和400 kg/hm~2(N_3)。在生育期(苗期、蕾期、花期、铃期和吐絮期)测定棉花生长指标,收获时统计产量及产量构成要素。【结果】种植密度和水氮交互对棉花生长、干物质累积、产量和水氮利用效率有显著影响,在高种植密度(D_2)下,棉花株高、茎粗、叶面积指数和干物质累积量均随灌水量和施氮量的增加而增加;在低种植密度(D_1)下,各指标随施氮量的增加呈先增后减的趋势。吐絮期棉花株高和茎粗均在低密度高水中氮(D_1W_2N_2)处理下达到最大值,分别为105.33 cm和11.16 mm,较D_1W_2N_1、D_1W_2N_3处理分别提高了10.10%,6.40%和6.69%,3.65%;全生育期内各处理棉花叶面积指数(LAI)和干物质增长量均于铃期达到最大值,D_1W_2N_2和D_2W_2N_3处理的最终干物质累积量较大,但二者之间并无显著差异(P0.05)。籽棉产量、水分利用效率均以D_1W_2N_2处理较大,分别为7 421.0 kg/hm~2和1.50 kg/m~3。在相同种植密度和灌水量下,氮素利用效率(NUE)、氮素吸收效率(UPE)和氮肥偏生产力(NPFP)均随施氮量增加呈降低趋势,以D_2W_2N_1处理的氮素吸收效率最高,为0.77 kg/kg,较产量最高的D_1W_2N_2处理高4.05%,但其产量较D_1W_2N_2下降约7.0%。【结论】综合高产、节肥和水氮利用效率等因素,种植密度26万株/hm~2、生育期灌水100%ET_C(311.98 mm)和施氮量300 kg/hm~2是南疆棉花膜下滴灌施肥管理的最优栽培方式组合。  相似文献   

10.
水氮利用效率低是限制新疆棉花生产的主要因素,通过研究新疆膜下滴灌棉花水氮耦合作用,保证新疆棉花稳产高产是关键。近年来,在新疆膜下滴灌棉花水氮耦合方面,新疆学者进行了大量的研究,但是棉花具体的各生育期灌水施氮量、灌水施氮比例、灌水施氮频率等,没有精准的结论,是新疆膜下滴灌棉花提高水氮利用效率需要攻克的一大难题。  相似文献   

11.
The aims of this research were to compare subsurface drip irrigation scheduling and nitrogen fertilization rates in cucumber, and evaluate yield and quality of cucumber fruit, water (WUE), irrigation water (IWUE), and nitrogen use (NUE) efficiencies in the solar greenhouse in Southwest China. The irrigation water amounts were determined based on the 20 cm diameter pan (Ep) placed over the crop canopy, and cucumber plant was subjected to three irrigation water levels (I1, 0.6 Ep; I2, 0.8 Ep; and I3, 1.0 Ep) in interaction with three nitrogen fertilization levels (N1,300 kg ha-1; N2, 450 kg ha-1; and N3, 600 kg ha-1). The results showed that the cucumber fruit yield increased with the improvement of irrigation water. Irrigation water increased yields by increasing the mean weight of the fruits, and also by increasing fruit number. But the highest values of IWUE and WUE were obtained from 12 treatment. NUE significantly decreased with the improvement of N application, but increased by irrigating more water. The quality of cucumber fruit decreased with the improvement irrigation water and nitrogen fertilization. In conclusion, the optimum irrigation level and nitrogen fertilizer application level for cucunber under subsurface drip irrigation in the solar greenhouse in Southwest China were 0.8 Ep and 450 and 600 kg ha-1, respectively.  相似文献   

12.
The Northeast Plain is the largest maize production area in China, and drip irrigation has recently been proposed to cope with the effects of frequent droughts and to improve water use efficiency (WUE). In order to develop an efficient and environmentally friendly irrigation system, drip irrigation experiments were conducted in 2016–2018 incorporating different soil water conservation measures as follows: (1) drip irrigation under plastic film mulch (PI), (2) drip irrigation under biodegradable film mulch (BI), (3) drip irrigation incorporating straw returning (SI), and (4) drip irrigation with the tape buried at a shallow soil depth (OI); with furrow irrigation (FI) used as the control. The results showed that PI and BI gave the highest maize yield, as well as the highest WUE and nitrogen use efficiency (NUE) because of the higher root length density (RLD) and better heat conditions during the vegetative stage. But compared with BI, PI consumed more soil water in the 20–60 and 60–100 cm soil layers, and accelerated the progress of root and leaf senescence due to a larger root system in the top 0–20 cm soil layer and a higher soil temperature during the reproductive stage. SI was effective in improving soil water and nitrate contents, and promoted RLD in deeper soil layers, thereby maintaining higher physiological activity during the reproductive stage. FI resulted in higher nitrate levels in the deep 60–100 cm soil layer, which increased the risk of nitrogen losses by leaching compared with the drip irrigation treatments. RLD in the 0–20 cm soil layer was highly positively correlated with yield, WUE and NUE (P<0.001), but it was negatively correlated with root nitrogen use efficiency (NRE) (P<0.05), and the correlation was weaker in deeper soil layers. We concluded that BI had advantages in water–nitrogen utilization and yield stability response to drought stress, and thus is recommended for environmentally friendly and sustainable maize production in Northeast China.  相似文献   

13.
不同管理模式下农田水氮利用效率及其环境效应   总被引:7,自引:2,他引:5  
 【目的】定量化不同水氮管理模式下的农田水氮利用效率和环境效应,为制定优化的水肥管理措施提供理论指导。【方法】在华北平原北部的冬小麦-夏玉米轮作区,设置了农民习惯和基于土壤水分养分实时监测的优化管理两种水氮管理模式。首先,应用田间系统的观测数据(2004年10月至2006年9月)对水氮管理模型进行了校验,然后应用校验后的模型计算得到了两种水氮管理模式下的作物产量、农田水分渗漏、氮素淋失、气体损失和水氮利用效率等。【结果】2年内农民习惯和优化管理下的灌水量差别不大,而优化管理的施肥量(540 kg N·hm-2)仅为农民习惯施肥量(1 100 kg N·hm-2)的一半。农民习惯和优化管理模式下的作物年平均产量分别为11 579和11 748 kg·hm-2;两者的水分利用效率分别为1.65和1.72 kg·m-3;氮素利用效率分别为15和24 kg·kg-1 N。氮素淋失和氨挥发是氮素损失的主要途径,农民习惯和优化管理下的氮素淋失分别为407和68 kg N·hm-2;氨挥发分别达到了282和104 kg N·hm-2。【结论】优化管理下的作物产量和水氮利用效率都高于农民习惯管理的,并且氮素损失明显低于农民习惯管理。因此,为了保证该地区的农业可持续发展,必须改进当前农民习惯的水氮管理措施。  相似文献   

14.
滴灌施肥对免耕冬小麦水分利用及产量的影响   总被引:11,自引:0,他引:11  
【目的】为解决黄淮海平原麦区冬小麦滴灌用水量和合理的水肥配合等问题,以山东省桓台县免耕农田为试验点,系统研究了滴灌施肥对土壤水分垂直运移、冬小麦产量及其构成因素、水分利用效率等的影响。【方法】采用测墒补灌和生育期滴灌施肥相结合的方法,以常规漫灌施肥处理为对照。设置65 mm(W1)、98 mm(W2)、130 mm(W3)、195 mm(W4)和260 mm(W5)5个滴灌梯度水平处理。在130 mm滴灌水平下,分别于冬小麦的分蘖期、拔节期、孕穗期、扬花期和灌浆期5个生育时期设置相应的氮磷钾肥料配比,采用氮磷钾3个因素,每个因素4个水平的二次饱和D-最优设计方法进行田间试验。氮、磷、钾4个水平分别为:0水平(0、0、0),1水平(94.5、42.4、59.2 kg•hm-2),2水平(189、84.7、118.3 kg•hm-2)和3水平(270、121、169 kg•hm-2)。【结果】测墒补灌试验结果表明,W1、W3和W5处理滴灌后土壤水分主要向下运移至60、80和100 cm以下土层。滴灌量越大,土壤水分垂直运移深度越大。滴灌量260 mm时存在灌溉水深层渗漏的风险;W1处理在整个生育期土壤含水量明显低于其他滴灌处理,滴灌量130 mm以上的处理,整个生育期0-80 cm土层的含水量为田间持水量的75%-80%;滴灌施肥处理与常规漫灌施肥处理相比显著增加了冬小麦的有效穗数,不同滴灌处理中灌溉量与穗粒数呈正相关关系,与千粒重呈负相关关系;滴灌量130 mm时,小麦籽粒产量最高;滴灌显著提高了冬小麦的水分利用效率,并以W3处理最高,达2.28 kg•m-3;对滴灌施肥试验的拟合结果表明,试验区冬小麦最佳N、P2O5和K2O施用量分别为206.63、86.72和88.07 kg•hm-2。【结论】在黄淮海平原地区免耕冬小麦采用测墒补灌和滴灌施肥相结合的方法可以显著提高水分利用效率和小麦籽粒产量,较常规对照分别提高了57.46%和21.13%。主要原因是滴灌后水分向下运移至作物根区内,减少了灌溉水深层渗漏的风险,促进了作物对随水施入肥料的吸收。合理的滴灌施肥配比下总体可节水51.85%,节约氮肥23.47%、磷肥28.33%和钾肥47.89%。  相似文献   

15.
王军  黄冠华  郑建华 《中国农业科学》2010,43(15):3168-3175
 【目的】甜瓜是西北内陆旱区的一种主要经济作物,探讨不同沟灌水肥对甜瓜水分利用效率(WUE)和品质的影响,提出适合该地区的甜瓜水肥高效利用技术模式。【方法】于2008和2009年在甘肃武威中国农业大学石羊河流域农业与生态节水试验站开展了连续两年的田间试验,在膨果期分别设置了3个灌水下限水平:65%—70%、55%—60%、45%—50%的田间持水量(FC);施肥量设置为:160、120、80 kgN?hm-2和无肥对照处理;灌溉方式为常规沟灌和隔沟灌。【结果】膨果期适度水分亏缺有利于提高甜瓜的水分利用效率,并在一定程度上改善其品质;相同施肥量条件下,灌水量下限为55%—60% FC处理其WUE、总可溶性固形物(TSS)和Vc含量普遍高于灌水量下限为65%—70% FC处理的结果;相同水分条件下,施肥量为120 kgN?hm-2处理其产量、WUE、TSS和Vc含量均高于施肥量为160 kgN?hm-2和施肥量为80 kgN?hm-2处理的结果。隔沟灌处理的WUE比常规沟灌高4.5%—10.6%。【结论】适合于该地区的甜瓜水肥组合模式为膨果期灌水下限为55%—60%FC和全生育期施氮量为120 kgN?hm-2。  相似文献   

16.
施用有机无机复混肥对太湖平原乌泥土稻麦生长的影响   总被引:1,自引:0,他引:1  
通过长期定位试验,于2009至2010年在苏南地区稻麦轮作体系下,研究以菜粕堆肥、猪粪堆肥和中药渣堆肥为原料的有机无机复混肥及无机肥对水稻和小麦产量、不同时期功能叶叶绿素含量(SPAD值)和氮素利用率的影响。结果表明:各施肥处理的水稻和小麦产量均显著高于不施氮肥处理,其中以菜粕堆肥、猪粪堆肥和中药渣堆肥为原料的有机无机复混肥处理的水稻产量分别比无机肥处理的水稻产量增加9.5%、16.2%和17.4%;3种有机无机复混肥处理的小麦产量显著高于无机肥处理(4 146.1 kg.hm-2),增产率为16.2%~20.3%。在水稻季和小麦季,3种有机无机复混肥处理的不同时期功能叶SPAD值及氮素利用率均不同程度高于无机肥处理或与无机肥处理持平。以中药渣堆肥为原料的有机无机复混肥处理,在稻麦轮作体系下能够获得比单施无机肥处理更高的小麦和水稻产量、功能叶SPAD值及氮素利用率。  相似文献   

17.
In recent years, the use of fertigation technology with center pivot irrigation systems has increased rapidly in the North China Plain(NCP). The combined effects of water and nitrogen application uniformity on the grain yield, water use efficiency(WUE) and nitrogen use efficiency(NUE) have become a research hotspot. In this study, a two-year field experiment was conducted during the winter wheat growing season in 2016–2018 to evaluate the water application uniformity of a center pivot with two low pressure sprinklers(the R3000 sprinklers were installed in the first span, the corresponding treatment was RS; the D3000 sprinklers were installed in the second span, the corresponding treatment was DS) and a P85 A impact sprinkler as the end gun(the corresponding treatment was EG), and to analyze its effects on grain yield, WUE and NUE. The results showed that the water application uniformity coefficients of R3000, D3000 and P85 A along the radial direction of the pivot(CU_H) were 87.5, 79.5 and 65%, respectively. While the uniformity coefficients along the traveling direction of the pivot(CU_C) were all higher than 85%. The effects of water application uniformity of the R3000 and D3000 sprinklers on grain yield were not significant(P0.05); however, the average grain yield of EG was significantly lower(P0.05) than those of RS and DS, by 9.4 and 11.1% during two growing seasons, respectively. The coefficients of variation(CV) of the grain yield had a negative correlation with the uniformity coefficient. The CV of WUE was more strongly affected by the water application uniformity, compared with the WUE value, among the three treatments. The NUE of RS was higher than those of DS and EG by about 6.1 and 4.8%, respectively, but there were no significant differences in NUE among the three treatments during the two growing seasons. Although the CU_H of the D3000 sprinklers was lower than that of the R3000, it had only limited effects on the grain yield, WUE and NUE. However, the cost of D3000 sprinklers is lower than that of R3000 sprinklers. Therefore, the D3000 sprinklers are recommended for winter wheat irrigation and fertigation in the NCP.  相似文献   

18.
【目的】利用模型定量分析不同水肥管理对设施菜地氮素损失及水氮利用效率的影响,为设施菜地合理水肥管理措施的制定提供理论指导。【方法】2010—2011年在山东寿光设施大棚设置了4种水肥管理模式:对照+畦灌(CK)、传统施肥+畦灌(FP)、优化施肥+畦灌(OPT)和传统施肥+滴灌(RI)。利用EU-Rotate_N模型模拟了两个生长季(春夏茬和秋冬茬)各处理下设施黄瓜地的产量、氮素淋失和气体损失等,并计算了水氮利用效率。【结果】两个生长季内滴灌处理(RI)比畦灌处理(CK、FP和OPT)节水约60%,且灌溉水利用效率提高了2倍多。在各施肥处理中,春夏茬和秋冬茬黄瓜的氮素气体损失分别占施氮量的16%—19%和6%—11%,氮素淋失量分别占施氮量的14%—57%和20%—55%,其中OPT和RI处理的氮素淋失量比FP处理分别减少了19%—31%和63%—76%。OPT处理两茬黄瓜的氮素利用效率比FP处理分别提高了3%和7%,而RI处理的氮素利用效率比FP处理分别提高了41%和44%。【结论】氮素淋失是设施菜地氮素损失的主要途径,滴灌和优化施肥均能有效地减少菜地土壤硝态氮的淋失,提高氮素利用效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号