首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Nonlactating Bos indicus x Bos taurus cows were used in three herds to determine the efficacy of different PGF2alpha treatments in combination with GnRH and melengestrol acetate (MGA) for a timed artificial insemination protocol. The start of the experiment was designated as d 0, at which time cows were assigned a body condition score and received 100 microg of GnRH. Cows were fed MGA (0.5 x mg x cow(-1) x d(-1)) on d 1 to 7. On d 7, cows received either a single injection of PGF2alpha (Lutalyse sterile solution; 25 mg; n = 297), a single injection of cloprostenol sodium (Estrumate; 500 microg; n = 297), or half the recommended dose of PGF2alpha (12.5 mg; n = 275) on d 7 and 8. On d 10, all cows were artificially inseminated and received 100 microg of GnRH. Pregnancy rates to the timed artificial insemination (39%) were not affected by treatment, herd, or treatment x herd. There was an effect (P < 0.01) of artificial insemination sire on timed artificial insemination pregnancy rate for one herd, but not the other two herds. Herd influenced (P < 0.05) 30-d pregnancy rates, but there were no treatment or treatment x herd effects as 72.3% of the cows became pregnant during the first 30 d of the breeding season. Results indicate that the type of PGF2alpha treatment administered 7 d after GnRH did not influence timed artificial insemination pregnancy rates in nonlactating Bos indicus x Bos taurus cows.  相似文献   

2.
Postpartum and lactating crossbred cows containing a percentage of Bos indicus breeding at three locations were studied to determine the efficacy of GnRH + PGF2alpha combinations for synchronization of estrus and(or) ovulation. Cows were equally distributed to each of three treatments by body condition score at the start of the experiment (d 0). All cows received 100 microg of GnRH on d 0 and 25 mg of PGF2alpha 7 d later. The three insemination protocols included 1) AI 12 h after exhibiting estrus during d 7 to 12 of the experiment (Select-Synch; n = 197); 2) timed-AI + 100 microg of GnRH on d 9 of the experiment (CO-Synch; n = 193); 3) AI 12 h after exhibiting estrus during d 7 to 10 of the experiment. Cows not exhibiting estrus by d 10 were timed-AI and injected with 100 microg of GnRH on d 10 of the experiment (Hybrid-Synch; n = 200). The percentage of cows exhibiting estrus during d 7 to 12 of the experiment was lower (P < 0.05) for CO-Synch (17.6%) cows than for Select-Synch or Hybrid-Synch (45.2 and 33.0%, respectively) cows, which did not differ (P > 0.05). For the Select-Synch and Hybrid-Synch cows that exhibited estrus during d 7 to 10 of the experiment and were artificially inseminated, conception rates were similar across treatments (50.5%). Pregnancy rates were greater (P < 0.01) for CO-Synch and Hybrid-Synch (31.0 and 35.5%, respectively) cows than for Select-Synch (20.8%) cows. A greater (P < 0.01) percentage of cycling cows became pregnant (34.5%) than noncycling cows (25.9%) across all treatments. The CO-Synch and Hybrid-Synch synchronization protocols resulted in greater pregnancy rates compared with the Select-Synch protocol in postpartum and lactating crossbred cows containing a percentage of Bos indicus breeding.  相似文献   

3.
We studied the effects of administering estradiol benzoate (EB) plus progesterone (P4) as part of a CIDR-based protocol during the growth or static phases of dominant follicle development on follicular wave emergence, follicular growth, synchrony of ovulation and pregnancy rate following CIDR withdrawal, treatment with PGF(2alpha) and GnRH, and fixed-time artificial insemination (TAI). Forty-one previously synchronized lactating Holstein dairy cows were randomly allocated to three treatment groups. The control group (n=14) received a CIDR on the third day after ovulation only (Day 0). The two treatment groups were administered CIDRs comprising 2 mg EB and 50 mg P4 either on the third (T1, n=14) or eighth day (T2, n=13) after ovulation (Day 0). All cows received PGF(2alpha) after CIDR removal on Day 7, GnRH on Day 9, and TAI 16 h after GnRH treatment. The proportion of cows with follicular wave emergence within 8 days of treatment differed (P<0.01) among the control (14.3%), T1 (85.7%), and T2 groups (92.9%). However, the mean intervals between treatment and wave emergence were not significantly different. There were significant differences in the diameters of the dominant follicles on Day 7 (P<0.01) and in preovulatory follicles on Day 9 (P<0.01), with the largest follicles observed in the control group and the smallest follicles observed in the T2 group. In contrast, the numbers of cows showing synchronous ovulation after GnRH treatment (92.9 to 100.0%) and pregnancy following TAI (46.2 to 50.0%) were similar between the treatment groups. The results showed that, irrespective of the phase (growth or static) of the dominant follicle, administration of 2 mg EB plus 50 mg P4 to CIDR-treated lactating dairy cows induced consistent follicular wave emergence and development, synchronous ovulation after GnRH administration, and similar pregnancy rates following TAI.  相似文献   

4.
Recently, reproductive management has become more difficult as a result of increased herd size. Problems with missing estrous signs and decrease in conception rate by artificial insemination (AI) performed at wrong timing have caused low AI conception rates. In 1995, ovulation synchronization and fixed-time AI (Ovsynch/TAI) was developed in the USA as a new reproductive technology, which was accepted as an useful reproductive management tool in many countries. However, no information on the use of Ovsynch/TAI was available in Japan. It was, therefore, warranted to show the ovulation rate and conception rate after Ovsynch/TAI using gonadotropin releasing hormone analogue (GnRH-A, fertirelin acetate) and prostaglandin F2alpha (PGF2alpha)-THAM, both were commercially available in this country. The conception rate after Ovsynch/TAI has been known to vary among different herds and individuals. Investigation and analysis of factors affecting the conception rate was also warranted to improve the conception rate. A series of experiments were carried out to establish Ovsynch/TAI using domestically produced GnRH-A and PGF2alpha and to study factors affecting conception rate after Ovsynch protocol. Ovsynch using 100 microg GnRH-A and 25 mg PGF2alpha were observed using ultrasonography. As a result, a high synchronization rate of ovulation at 16 to 20 h after the second GnRH injection was confirmed. The conception rate after Ovsynch/TAI was compared in 87 cows with the conception rate after AI at estrus induced by PGF2alpha (139 cows). Conception rate after Ovsynch/TAI was higher than the figure after AI at induced estrus (59.1% vs 20.9%, P<0.05). The dose of GnRH-A was also studied and a practical dose of GnRH-A was found to be 50 microg per cow. To clarify some factors affecting the conception rate after Ovsynch/TAI, 1,558 cows were investigated for the state of their ovaries, days after calving, parity, season, ovarian cyclicity postpartum and nutritional state at the day of Ovsynch. The overall conception rate after Ovsynch/TAI was 51.5%. Fifty-six cows (3.6%) showed estrus at 6 to 7 d after the first injection of GnRH-A. The conception rate after Ovsynch/TAI was low in cows that were 40 to 60 d postpartum, those in their 5th lactation or more, those bred in July to August, and those recovering ovarian cyclicity later than 56 d postpartum. The conception rate after Ovsynch/TAI was high in cows in which body condition score (BCS) was 3.75 at dry period and 3.0 at the day of Ovsynch. In conclusion, Ovsynch/TAI is an effective tool for the reproductive management of dairy cows. A steady and sufficient conception rate after Ovsynch/TAI could be expected by taking the factors affecting the conception rate into the consideration.  相似文献   

5.
Pregnancy rate to the Ovsynch protocol can be improved if cows are presynchronized (i.e., two PGF(2alpha) injections given 14 days apart and the second injection of PGF(2alpha) given 12 days prior to the first GnRH of the Ovsynch program) so that a greater proportion of cows during the Ovsynch protocol ovulate to the first GnRH injection and have a CL at PGF(2alpha) injection. Pregnancy rates were normal in anestrous cows (39.6%) if they ovulated to both injections of GnRH. Estradiol cypionate (ECP) can be used to replace GnRH to induce ovulation as a modification of the Presync-Ovsynch program (i.e., Presync-Heatsynch). Pregnancy rates after TI were 37.1+/-5.8% for Presync-Ovsynch compared to 35.1+5.0% for Presync-Heatsynch. Use of ECP to induce ovulation was an alternative to GnRH in which greater uterine tone, ease of insemination and occurrence of estrus, improved acceptance by inseminators. A GnRH agonist (Deslorelin; 750 microg) implant inserted at 48 h after injection of PGF(2alpha), as a component of the Ovsynch protocol, induced ovulation, development of a normal CL and delayed follicular growth until 24 d after implant insertion. Utilization of Deslorelin implants (450 microg and 750 microg) to induce ovulation compared to GnRH (100 microg) within the Ovsynch protocol resulted in 27 d pregnancy rates (GnRH 100 microg, 39%; Deslorelin implants 450 microg, 40% and 750 microg, 27.5%) with 12.7%, 5.0% and 9.5% embryonic losses by 41 d of pregnancy, respectively. Induction of an accessory CL with injection of hCG on day 5 after insemination improved conception rates by 7.1%. Bovine somatotrophin injected at first insemination following a Presync-Ovsynch program in cycling-lactating dairy cows increased 74 days pregnancy rates (57.1%>42.6%).  相似文献   

6.
In Exp. 1, 187 lactating beef cows were treated with injections of GnRH 7 d before and 48 h after prostaglandin F2alpha (PGF2alpha; Cosynch) or with Cosynch plus a 7-d treatment with an intravaginal progesterone (P4)-releasing insert (CIDR-B; Cosynch + CIDR). In Exp. 2, 183 lactating beef cows were treated with the Cosynch protocol or with Cosynch plus a 7-d treatment with norgestomet (Cosynch + NORG). In Exp. 1 and 2, blood samples for later P4 analyses were collected on d -17, -7 (first GnRH injection), 0 (PGF2alpha injection), and at timed artificial insemination (TAI; 48 h after PGF2alpha). In Exp. 3, 609 lactating beef cows were treated with the Cosynch + CIDR protocol or were fed 0.5 mg of melengestrol acetate (MGA) per day for 14 d before initiating the Cosynch protocol 12 d after the 14th d of MGA feeding (MGA + Cosynch). Blood samples were collected as in Exp. 1 and 2, plus additional samples on d -33 and -19 before PGF2alpha. In Exp. 4, 360 lactating beef cows were treated with a Cosynch + CIDR protocol, with TAI occurring at either 48 or 60 h after PGF2alpha, while receiving either GnRH or saline to form four treatments. Blood samples were collected as in Exp. 1 and 2. In Exp. 1, addition of P4 reduced the ability of the first GnRH injection to induce ovulation in anestrous cows with low P4 before PGF2alpha but improved (P = 0.06) pregnancy rates (61 vs 66%). In Exp. 2, the addition of NORG mimicked P4 by likewise increasing (P < 0.01) pregnancy rates (31 vs 51%) beyond those after Cosynch. In Exp. 3, the Cosynch + CIDR protocol increased (P < 0.001) pregnancy rates from 46 to 55% compared to the MGA + Cosynch protocol. In Exp. 4, administration of GnRH at TAI improved (P < 0.05) pregnancy outcomes (50 vs 42%), whereas timing of TAI had limited effects. We conclude that a progestin treatment concurrent with the Cosynch protocol improved pregnancy outcomes in all experiments, but pretreatment of cows with MGA was not as effective as the CIDR insert or NORG implants in this Cosynch-TAI model. Most of the improvement in pregnancy rates was associated with the increase in pregnancy rates of anestrous cows, regardless of whether ovulation was successfully induced in response to GnRH 7 d before PGF2alpha. Injection of GnRH at TAI following the Cosynch + CIDR protocol increased pregnancy rates in cycling cows with high P4 before the PGF2alpha injection and in anestrous cows with low P4 before PGF2alpha injection.  相似文献   

7.
This study compared two types of controlled internal drug release (CIDR)-based timed artificial insemination (TAI) protocol for treatment of repeat breeder dairy cows. In the first trial of the experiment, 55 repeat breeder cows were randomly assigned to the following two treatments. (1) In the EB group, a CIDR device was inserted into the cows, and then the cows were administered an injection of 1 mg estradiol benzoate (EB) plus 50 mg progesterone (P4; Day 0). On Day 7, they were given an injection of PGF(2alpha) and the CIDR device was removed. The cows were given an injection of 1 mg EB on Day 8 and were subjected to TAI 30 h later (n=27). (2) In the gonadotrophin releasing hormone (GnRH) group, a CIDR device was inserted into the cows, and then the cows were administered an injection of 250 microg gonadorelin (GnRH; Day 0). On Day 7, they were given an injection of PGF(2alpha) and the CIDR device was removed. The cows were given an injection of 250 microg GnRH on Day 9 and were subjected to TAI 17 h later (n=28). In the second trial, 41 repeat breeder cows that were confirmed as not pregnant in the first trial were randomly assigned to the same two treatments used in the first trial (an EB group of 20 cows and a GnRH group of 21 cows). The ovaries of 15 cows from each group were examined by transrectal ultrasonography in order to observe the changes in ovarian structures, and blood samples were collected for analysis of serum P4 concentrations. The pregnancy rates following TAI in the first (18.5 vs. 32.1%) and second (40.0 vs. 38.1%) trials and the combined rates (27.7 vs. 34.7%) did not differ between the EB and GnRH groups. The proportions of cows with follicular wave emergence within 7 days did not differ between the EB (12/15) and GnRH groups (13/15). The interval to wave emergence was shorter (P<0.01) in the GnRH group than in the EB group, but there was no difference in the mean diameters of dominant follicles on Day 7 between the groups. Moreover, the proportions of cows with synchronized ovulation following a second EB or GnRH treatment did not differ between the groups. In conclusion, treatment with either EB or GnRH in a CIDR-based TAI protocol results in synchronous follicular wave emergence, follicular development, synchronous ovulation, and similar pregnancy rates for TAI in repeat breeder cows.  相似文献   

8.
We compared synchronization and pregnancy rates, and the increase in blood progesterone concentrations during luteal development, between (1) Ovsynch plus an intravaginal controlled internal drug release (CIDR) device protocol followed by timed embryo transfer (timed ET), and (2) a conventional estrus synchronization method using PGF(2 alpha) and ET in suckled postpartum Japanese Black beef cows. Cows in the PGF group (n=18) received a PGF(2 alpha) analogue when a CL was first palpated per rectum at 10-d intervals after 1 to 2 month postpartum. Cows (n=11), which showed estrus (Day 0) within 5 d of the PGF(2 alpha), and had a CL on Day 7, received ET. Cows in the Ovsynch+CIDR group (n=19) underwent the Ovsynch protocol plus a CIDR for 7 d (GnRH analogue and CIDR on Day-9, PGF(2alpha) analogue with CIDR removal on Day-2, and GnRH analogue on Day 0), with ET on Day 7. The ovulation synchronization (100%) and embryo transfer (100%) rates in the Ovsynch+CIDR group were greater (P<0.01) than the estrus synchronization (66.7%) and the embryo transfer (61.1%) rates in the PGF group. The postpartum interval at ET in the Ovsynch+CIDR group (62.5 +/- 2.5 d) was shorter (P<0.01) than in the PGF group (74.9 +/- 3.9 d). The pregnancy rate in the Ovsynch+CIDR group (57.9%) did not differ significantly from that in the PGF group (50.0%). Plasma progesterone concentrations were not significantly different in the two groups on Days 0, 1, 2, 5, 7, 14 and 21. In summary, higher synchronization and transfer rates, and shorter postpartum interval to ET, can be achieved with timed ET following the Ovsynch plus CIDR protocol than after estrus with the single PGF(2 alpha) treatment followed by ET in suckled postpartum recipient beef cows. Pregnancy rates were similar. Also, the increase in blood progesterone concentrations during luteal development following ovulation synchronized by the Ovsynch plus CIDR protocol was similar to that after estrus induced by the PGF(2 alpha) treatment.  相似文献   

9.
We investigated whether CIDR-based ovulation-synchronization protocols inhibit secretion of prostaglandin (PG) F2alpha from the uterus in the following luteal phase in non-cycling beef cows. Ten early (a month) postpartum non-cycling Japanese Black beef cows were treated with (1) Ovsynch (GnRH analogue on Day 0, PGF2alpha analogue on Day 7, and GnRH analogue on Day 9; n=3), (2) Ovsynch+CIDR (Ovsynch protocol plus a CIDR for 7 days from Day 0; n=4), or (3) estradiol benzoate (EB) Ovsynch+CIDR (EB on Day 0 in lieu of the first GnRH treatment followed by the Ovsynch+CIDR protocol; n=3). An oxytocin challenge was administered on Day 24 to examine uterine PGF2alpha secretion. Plasma concentrations of 13,14-dihydro-15-keto- PGF2alpha were lower at 30-120 min after oxytocin administration in the Ovsynch+CIDR group and 75 min after administration in the EB Ovsynch+CIDR group than in the Ovsynch group (P<0.05). Plasma progesterone concentrations were higher from Days 1 to 7 in the Ovsynch+CIDR group and from Days 1 to 5 in the EB Ovsynch+CIDR group than in the Ovsynch group (P<0.05). The progesterone concentrations were higher on Days 27 and 29 in both CIDR-treated groups than in the Ovsynch group (P<0.05). In conclusion, in non-cycling beef cows, CIDR-based ovulation-synchronization protocols inhibit uterine PGF2alpha secretion in the following luteal phase and prevent premature luteolysis as is seen with the Ovsynch protocol.  相似文献   

10.
Two experiments were conducted during 2 yr to evaluate differences in ovulation potential and fertility in response to GnRH or hCG. In Exp. 1, 46 beef cows were given 100 microg of GnRH or 500, 1,000, 2,000, or 3,000 IU of hCG. Ovulation incidence was not different between GnRH and any of the hCG doses, indicating that ovulatory capacity of at least 500 IU of hCG was equivalent to GnRH. In Exp. 2, beef cows (n = 676) at 6 locations were assigned randomly to a 2 x 3 factorial arrangement of treatments. Main effects were: 1) pre-timed AI (TAI) treatment (GnRH or hCG) and 2) post-TAI treatment (saline, GnRH, or hCG) to initiate resynchronization of ovulation in previously inseminated cattle. Blood samples were collected (d -21 and -10) to determine progesterone concentrations and assess cyclicity. Cattle were treated with a progesterone insert on d -10 and with 100 microg of GnRH or 1,000 IU of hCG. A PGF(2alpha) injection was given at insert removal on d -3. Cows were inseminated 62 h (d 0) after insert removal. On d 26 after first TAI, cows of unknown pregnancy status were treated with saline, GnRH, or hCG to initiate a CO-Synch protocol. Pregnancy was diagnosed 33 d after first TAI to determine pregnancies per AI (P/AI). Nonpregnant cows at 6 locations in yr 1 and 1 location in yr 2 were given PGF(2alpha) and inseminated 56 h later, concurrent with a GnRH injection. Five weeks later, pregnancy diagnosis was conducted to determine pregnancy loss after first TAI and pregnancy outcome of the second TAI. Injection of pre-TAI hCG reduced (P < 0.001) P/AI compared with GnRH, with a greater reduction in cycling cows. Post-TAI treatments had no negative effect on P/AI resulting from the first TAI. Serum progesterone was greater (P = 0.06) 7 d after pre-TAI hCG than after GnRH and greater (P < 0.05) after post-TAI hCG on d 26 compared with saline 7 d after treatment in association with greater frequency of multiple corpora lutea. Compared with saline, injections of post-TAI GnRH and hCG did not increase second insemination P/AI, and inconsistent results were detected among locations. Use of hCG in lieu of GnRH is contraindicated in a CO-Synch + progesterone insert protocol. Compared with a breeding season having only 1 TAI and longer exposure to cleanup bulls, total breeding season pregnancy rate was reduced by one-third, subsequent calving distribution was altered, and 50% more AI-sired calves were obtained by applying 2 TAI during the breeding season.  相似文献   

11.
This study evaluated the pregnancy rates following either a controlled internal drug release (CIDR)-based timed artificial insemination (TAI) or an embryo transfer (TET) protocol compared with that following a single PGF(2alpha) injection and AI after estrus (AIE) in lactating repeat breeder dairy cows. Fifty-three lactating dairy cows diagnosed as repeat breeders were used in this study and were randomly assigned to the following three treatments. (1) Cows, at random stages of the estrous cycle, received a CIDR device and 2 mg estradiol benzoate (EB; Day 0), a 25 mg PGF(2) (alpha) injection at the time of CIDR removal on Day 7 and a 1 mg EB injection on Day 8. The cows then received TAI 30 h (Day 9) after the second EB injection using dairy semen (TAI group, n=13). (2) Cows, at random stages of the estrous cycle, received the same hormonal treatments as in the TAI group. The cows then received TET on Day 16 using frozen-thawed blastocysts or morula embryos collected from Korean native cattle donors (TET group, n=13). (3) Cows, at the luteal phase, received a 25 mg injection of PGF(2alpha) and AIE using dairy semen (control group, n=27). The ovaries of the cows in the TET group were examined by transrectal ultrasonography to determine ovulation of the preovulatory follicles, and blood samples were collected for serum progesterone (P4) analysis. The pregnancy rate was significantly higher in the TET group (53.8%) than in the control (18.5%) or TAI (7.7%) groups (P<0.05). The ultrasonographic observations demonstrated that all the cows in the TET group ovulated the preovulatory follicles and concomitantly formed new corpora lutea. Accordingly, the mean serum P4 concentration remained constant between Day 0 and Day 7 of the luteal phase, decreased dramatically on Day 8 (P<0.01) and subsequently increased by Day 16 (P<0.01). These data suggest that the CIDR-based TET protocol can be used to effectively increase the pregnancy rate in lactating repeat breeder dairy cows.  相似文献   

12.
Beef cows (n = 473) from two locations were stratified by breed, postpartum interval, age, and AI sire and were randomly allotted to one of four treatments for synchronization of ovulation. Ovulation synchronization protocols included the Ovsynch protocol with (n = 114) or without (n = 123) 48-h calf removal from d 7 to 9 (d 0 = 1st GnRH injection) or the CO-Synch protocol with (n = 119) or without (n = 117) 48-h calf removal from d 7 to 9. The Ovsynch protocol included administration of GnRH (100 microg; i.m.) on d 0, PGF2alpha (25 mg; i.m.) on d 7, GnRH (100 microg; i.m.) on d 9, and timed insemination on d 10. The CO-Synch protocol included administration of GnRH (100 microg; i.m.) on d 0, PGF2alpha (25 mg; i.m.) on d 7, and GnRH (100 microg; i.m.) with timed insemination on d 9. Blood samples were collected from all cows on d -10 and d 0 for analysis of serum progesterone. Cows with at least one serum progesterone concentration greater than 1 ng/mL were considered to be cyclic at the time of treatment. Conception rates of cows that received the CO-Synch + calf removal, Ovsynch + calf removal, CO-Synch, or Ovsynch protocol (63, 61, 54, and 52%, respectively) were not different (P = 0.50). Conception rates were not different (P = 0.80) among CO-Synch- and Ovsynch-treated cows; however, both estrual status and 48-h calf removal affected conception rates. Conception rates of cyclic cows (66%) were greater (P = 0.01) than those of anestrous cows (53%), regardless of which synchronization protocol was used. When data were pooled across synchronization protocol, conception rates of cows with 48-h calf removal (62%) were greater (P = 0.09) than conception rates of cows without calf removal (53%). The CO-Synch + calf removal protocol induces a fertile ovulation in cyclic and anestrous cows, requires handling cattle just three times, results in high conception rates from timed insemination, and should be a useful program for synchronization of ovulation in beef cows.  相似文献   

13.
The objectives of this study were to determine the effects of incorporating a progesterone intravaginal insert (CIDR) between the day of GnRH and PGF2alpha treatments of a timed AI protocol using estradiol cypionate (ECP) to synchronize ovulation on display of estrus, ovulation rate, pregnancy rate, and late embryonic loss in lactating cows. Holstein cows, 227 from Site 1 and 458 from Site 2, were presynchronized with two injections of PGF2alpha on study d 0 and 14, and subjected to a timed AI protocol (100 mixrog of GnRH on study d 28, 25 mg of PGF2alpha on study d 35, 1 mg of ECP on study d 36, and timed AI on study d 38) with or without a CIDR insert. Blood was collected on study d 14 and 28 for progesterone measurements to determine cyclicity. Ovaries were scanned on d 35, 37, and 42, and pregnancy diagnosed on d 65 and 79, which corresponded to 27 and 41 d after AI. Cows receiving a CIDR had similar rates of detected estrus (77.2 vs. 73.8%), ovulation (85.6 vs. 86.6%), and pregnancy at 27 (35.8 vs. 38.8%) and 41 d (29.3 vs. 32.3%) after AI, and late embryonic loss between 27 and 41 d after AI (18.3 vs. 16.8%) compared with control cows. The CIDR eliminated cows in estrus before the last PGF2alpha injection and decreased (P < 0.001) the proportion of cows bearing a corpus luteum (CL) at the last PGF2alpha injection because of less ovulation in response to the GnRH and greater spontaneous CL regression. Cyclic cows had greater (P = 0.03) pregnancy rates than anovulatory cows at 41 d after AI (33.8 vs. 20.4%) because of decreased (P = 0.06) late embryonic loss (16.0 vs. 30.3%). The ovulatory follicle was larger (P < 0.001) in cows in estrus, and a greater proportion of cows with follicles > or = 15 mm displayed estrus (P < 0.001) and ovulated (P = 0.05) compared with cows with follicles <15 mm. Pregnancy rates were greater (P < 0.001) for cows displaying estrus, which were related to the greater (P < 0.001) ovulation rate and decreased (P = 0.08) late embryonic loss for cows in estrus at AI. Cows that were cyclic and responded to the presynchronization protocol (high progesterone at GnRH and CL at PGF2alpha) had the highest pregnancy rates. Incorporation of a CIDR insert into a presynchronized timed AI protocol using ECP to induce estrus and ovulation did not improve pregnancy rates in lactating dairy cows. Improvements in pregnancy rates in cows treated with ECP to induce ovulation in a timed AI protocol are expected when more cows display estrus, thereby increasing ovulation rate.  相似文献   

14.
The objectives of this study were to 1) compare cumulative pregnancy rates in a traditional management (TM) scheme with those using a synchronization of ovulation protocol (CO-Synch + CIDR) for timed AI (TAI) in Bos indicus-influenced cattle; 2) evaluate ovarian and hormonal events associated with CO-Synch + CIDR and CO-Synch without CIDR; and 3) determine estrual and ovulatory distributions in cattle synchronized with Select-Synch + CIDR. The CO-Synch + CIDR regimen included insertion of a controlled internal drug-releasing device (CIDR) and an injection of GnRH (GnRH-1) on d 0, removal of the CIDR and injection of PGF2alpha (PGF) on d 7, and injection of GnRH (GnRH-2) and TAI 48 h later. For Exp. 1, predominantly Brahman x Hereford (F1) and Brangus females (n = 335) were stratified by BCS, parity, and day postpartum (parous females) before random assignment to CO-Synch + CIDR or TM. To maximize the number of observations related to TAI conception rate (n = 266), an additional 96 females in which TM controls were not available for comparison also received CO-Synch + CIDR. Conception rates to TAI averaged 39 +/- 3% and were not affected by location, year, parity, AI sire, or AI technician. Cumulative pregnancy rates were greater (P < 0.05) at 30 and 60 d of the breeding season in CO-Synch + CIDR (74.1 and 95.9%) compared with TM (61.8 and 89.7%). In Exp. 2, postpartum Brahman x Hereford (F1) cows (n = 100) were stratified as in Exp. 1 and divided into 4 replicates of 25. Within each replicate, approximately one-half (12 to 13) received CO-Synch + CIDR, and the other half received CO-Synch only (no CIDR). No differences were observed between treatments, and the data were pooled. Percentages of cows ovulating to GnRH-1, developing a synchronized follicular wave, exhibiting luteal regression to PGF, and ovulating to GnRH-2 were 40 +/- 5, 60 +/- 5, 93 +/- 2, and 72 +/- 4%, respectively. In Exp. 3, primiparous Brahman x Hereford, (F1) heifers (n = 32) and pluriparous cows (n = 18) received the Select Synch + CIDR synchronization regimen (no GnRH-2 or TAI). Mean intervals from CIDR removal to estrus and ovulation, and from estrus to ovulation were 70 +/- 2.9, 99 +/- 2.8, and 29 +/- 2.2 h, respectively. These results indicate that the relatively low TAI conception rate observed with CO-Synch + CIDR in these studies was attributable primarily to failure of 40% of the cattle to develop a synchronized follicular wave after GnRH-1 and also to inappropriate timing of TAI/GnRH-2.  相似文献   

15.
OBJECTIVE: To evaluate the effectiveness of a reproductive management program consisting of combinations of Ovsynch/TAI and prostaglandin (PG) F(2alpha) treatments in Holstein dairy cows under a pasture-based dairying system. DESIGN: Field trial. PROCEDURE: A total of 1177 cows in 8 commercial dairy farms were randomly allocated to control and treatment groups. Treatment group cows received one of two interventions depending upon the number of days postpartum (DPP) before the planned start of breeding. Cows more than 50 DPP by the planned start of breeding received the Ovsynch/TAI treatment, consisting of gonadotrophin releasing hormone (GnRH) - PGF(2alpha)- GnRH plus timed artificial insemination. Cows between 40 and 50 DPP received a PGF(2alpha) treatment followed by oestrus detection and, if the cow was not seen in oestrus, the cow received a second PGF(2alpha) 14 days later. Control cows were submitted to twice a day heat detection followed by artificial insemination. The experimental period was the start of the breeding season plus 21 days for cows over 50 DPP at the start of breeding, and was 40-61 DPP for cows that calved later and passed their voluntary waiting period after the start of the breeding season. RESULTS: Submission rate was higher for the treated group than for the control group (84.9% vs. 55.1%; P < 0.0001), as was the conception rate (51.0% vs. 46.1%; P < 0.03). Due to farm variations, pregnancy rate was similar in both groups (38.5% vs. 28.2%; P > 0.1). Within the treated group, conception rate and pregnancy rate of the cows inseminated after a PGF(2alpha) were higher than for timed artificial inseminated cows (51.4% vs. 32.6%; P < 0.001), and (37.8% vs. 32.6%; P < 0.001). CONCLUSION: A programmed reproductive management protocol may improve reproductive efficiency in dairy farms with seasonal breeding, by increasing submission and conception rates at the beginning of the breeding season and/or at the end of the voluntary waiting period. Fertility of cows bred after a PGF(2alpha) synchronised heat was greater than after an Ovsynch/TAI protocol.  相似文献   

16.
Our objectives were to identify stages of the estrous cycle at which initiation of a timed artificial insemination (Ovsynch/TAI) protocol may reduce pregnancy rates and to monitor ovarian follicle dynamics and corpus luteum development after initiation of the Ovsynch/TAI protocol at different stages of the cycle. Cycling Holstein heifers (n = 24) were injected twice with prostaglandin F2alpha to induce estrus and were scanned by ovarian ultrasonography to determine the day of ovulation (d 0). Heifers were assigned to initiate the Ovsynch/TAI protocol at d 2 (n = 5), 5 (n = 5), 10 (n = 4), 15 (n = 5), or 18 (n = 5) of the cycle. The Ovsynch/TAI was initiated with an injection of gonadotropin-releasing hormone agonist followed 7 d later with an injection of prostaglandin F2alpha. At 36 h after injection of prostaglandin F2alpha, heifers were injected with gonadotropin-releasing hormone agonist and inseminated 16 h later. Heifers were scanned daily during the Ovsynch/TAI protocol and every other day after insemination until 16 d later. Blood samples were collected daily starting at the 1st day heifers were scanned and continued until 16 d after insemination. Initiation of the Ovsynch/TAI protocol at d 15 of the estrous cycle caused heifers to ovulate prior to insemination. A shortened return to estrus (< 16 d) was caused by ovulation failure to the second gonadotropin-releasing hormone injection, by incomplete regression of the corpus luteum, and by short life-span of the induced corpus luteum. Day of the cycle in which the Ovsynch/TAI protocol is initiated affects dynamics of follicular development, plasma progesterone profiles, and occurrence of premature ovulation. Size of the pre-ovulatory follicle was associated positively with subsequent progesterone concentrations following insemination.  相似文献   

17.
Five experiments evaluated the effects of supplemental Ca salts of PUFA on reproductive function of Bos indicus beef cows. In Exp. 1, nonlactating and multiparous grazing cows (n = 51) were assigned to receive (as-fed basis) 0.1 kg of a protein-mineral mix + 0.1 kg of ground corn per cow/d, in addition to 0.1 kg per cow/d of 1) Ca salts of PUFA (PF), 2) Ca salts of SFA (SF), or 3) kaolin (control). Treatments were offered from d 0 to 20 of the estrous cycle. No treatment effects were detected on serum progesterone concentrations (P = 0.83), day of luteolysis (P = 0.86), or incidence of short cycles (P = 0.84). In Exp. 2, nonlactating and multiparous grazing cows (n = 43) were assigned to receive PF, SF, or control from d 0 to 8 of the estrous cycle. On d 6, all cows received (intramuscularly) 25 mg of PGF(2α). No treatment effects were detected on serum progesterone concentrations on d 6 (P = 0.37), and incidence (P = 0.67) or estimated time of luteolysis (P = 0.44). In Exp. 3, twenty-seven lactating and multiparous grazing cows, approximately 30 to 40 d postpartum, were assigned to receive PF or control for 10 d beginning at the first postpartum ovulation. No treatment effects were detected (P = 0.85) on incidence of short cycles. In Exp. 4, lactating and multiparous grazing cows (n = 1,454), approximately 40 to 60 d postpartum, were assigned to receive 1 of the 7 treatments for 28 d after timed AI (TAI; d 0): 1) control from d 0 to 28, 2) SF from d 0 to 14 and then control, 3) PF from d 0 to 14 and then control, 4) SF from d 0 to 21 and then control, 5) PF from d 0 to 21 and then control, 6) SF from d 0 to 28, and 7) PF from d 0 to 28. Cows receiving PF for more than 21 d after TAI had greater (P < 0.01) pregnancy to TAI compared with all other treatments combined (50.4 vs. 42.4%, respectively). In Exp. 5, lactating and multiparous grazing cows (n = 501), approximately 40 to 60 d postpartum, were assigned to receive 1 of the 4 treatments for 21 d after TAI (d 0): 1) PF from d 0 to 14 and then control, 2) control from d 0 to 6 and then PF, 3) control from d 0 to 13 and then PF, and 4) PF from d 0 to 21. Cows receiving PF after d 14 of the experiment had greater (P = 0.02) pregnancy to TAI compared with cows not receiving PF during the same period (46.8 vs. 33.1%, respectively). In summary, supplemental Ca salts of PUFA during the expected time of luteolysis increased pregnancy to TAI in beef cows.  相似文献   

18.
We examined the relations between plasma insulin-like growth factor (IGF) -I concentrations during treatment with CIDR-based or Ovsynch protocol for timed AI and conception and plasma steroid concentrations in early postpartum Japanese Black beef cows. Cows in the control group (Ovsynch; n = 21) underwent Ovsynch protocol (GnRH analogue on Day 0, PGF(2alpha) analogue on Day 7, and GnRH analogue on Day 9), with AI on Day 10, approximately 20 h after the second GnRH treatment. Cows in the Ovsynch+CIDR group (n = 22) received Ovsynch protocol plus a CIDR for 7 days (starting on Day 0). Cows in the further treatment group (EB+CIDR+GnRH; n = 22) received 2 mg of estradiol benzoate (EB) on Day 0 in lieu of the first GnRH treatment, followed by the same treatment as in the Ovsynch+CIDR protocol. Plasma IGF-I concentrations were determined on Days -7, 0, 7, 9 and 17. Conception rates were improved in the CIDR-combined groups (both CIDR-treated groups were combined) relative to Ovsynch group (P < 0.05) for cows with low IGF-I concentrations (<1,000 ng/ml) on Days -7, 0, and 7, but improved conception rate produced by the CIDR-based protocols did not occur in cows with a high IGF-I concentration (> or =1,000 ng/ml). Plasma estradiol-17beta concentrations increased from Day 0 to 7 (P < 0.05) and were unchanged from Day 7 to 9 in the Ovsynch group with low IGF-I concentrations on Day 0, while they were unchanged from Day 0 to 7 and increased from Day 7 to 9 (P < 0.05) in the Ovsynch group with high IGF-I concentrations on Day 0 and in the CIDR-combined group. Plasma progesterone concentrations in the Ovsynch group with low IGF-I concentrations on Day 0 were higher on Day 14 than in the Ovsynch group with high IGF-I concentrations on Day 0 and in the CIDR-combined group (P < 0.05). In conclusion, CIDR-based protocols may improve conception relative to Ovsynch in early postpartum beef cows with lower plasma IGF-I concentrations at the start of the protocols. This improvement is probably due to prevention of premature increases of estradiol-17beta and progesterone concentrations, which occurred in cows with low IGF-I concentrations treated with Ovsynch, by the CIDR treatment.  相似文献   

19.
Ovsynch is a program developed to synchronize ovulation for timed breeding. In this paper, the authors investigate whether controlled internal drug release (CIDR)-based protocols prevent premature ovulation before timed-artificial insemination (AI) when Ovsynch is started a few days before luteolysis in cycling beef cows. Nine beef cows at 16 days after oestrus were treated with (1) Ovsynch, i.e. gonadotropin releasing hormone (GnRH) analogue on day 0, prostaglandin (PG) F(2alpha) analogue on day 7 and GnRH analogue on day 9 with timed-AI on day 10, (n=3); (2) Ovsynch+CIDR (Ovsynch protocol plus a CIDR for 7 days from day 0, n=3), or (3) oestradiol benzoate (OB)+CIDR+GnRH (OB on day 0 in lieu of the first GnRH treatment, followed by the Ovsynch+CIDR protocol, n=3). In the Ovsynch group (1) plasma progesterone concentrations fell below 0.5 ng/mL earlier (day 5) than in both CIDR-treated groups (2) and (3), where this occurred on day 8. Plasma oestradiol-17beta concentrations peaked on day 8 in the Ovsynch group and on day 9 in both CIDR-treated groups. The dominant follicle ovulated on day 10 in the Ovsynch group and on day 11 in both CIDR-treated groups. Thus, both CIDR-based protocols prevented premature ovulation before timed-AI in Ovsynch when the protocol was started a few days before luteolysis. This reflects the fact that progesterone levels remained high until the beef cattle were treated with PGF(2alpha).  相似文献   

20.
We determined whether a fixed-time AI (TAI) protocol could yield pregnancy rates similar to a protocol requiring detection of estrus, or estrous detection plus TAI, and whether adding a controlled internal device release (CIDR) to GnRH-based protocols would enhance fertility. Estrus was synchronized in 2,598 suckled beef cows at 14 locations, and AI was preceded by 1 of 5 treatments: 1) a CIDR for 7 d with 25 mg of PG F(2alpha) (PGF) at CIDR removal, followed by detection of estrus and AI during the 84 h after PGF; cows not detected in estrus by 84 h received 100 mug of GnRH and TAI at 84 h (control; n = 506); 2) GnRH administration, followed in 7 d with PGF, followed in 60 h by a second injection of GnRH and TAI (CO-Synch; n = 548); 3) CO-Synch plus a CIDR during the 7 d between the first injection of GnRH and PGF (CO-Synch + CIDR; n = 539); 4) GnRH administration, followed in 7 d with PGF, followed by detection of estrus and AI during the 84 h after PGF; cows not detected in estrus by 84 h received GnRH and TAI at 84 h (Select Synch & TAI; n = 507); and 5) Select Synch & TAI plus a CIDR during the 7 d between the first injection of GnRH and PGF (Select Synch + CIDR & TAI; n = 498). Blood samples were collected (d -17 and -7, relative to PGF) to determine estrous cycle status. For the control, Select Synch & TAI, and Select Synch + CIDR & TAI treatments, a minimum of twice daily observations for estrus began on d 0 and continued for at least 72 h. Inseminations were performed using the AM/PM rule. Pregnancy was diagnosed by transrectal ultrasonography. Percentage of cows cycling at the initiation of treatments was 66%. Pregnancy rates (proportion of cows pregnant to AI of all cows synchronized during the synchronization period) among locations across treatments ranged from 37% to 67%. Pregnancy rates were greater (P < 0.05) for the Select Synch + CIDR & TAI (58%), CO-Synch + CIDR (54%), Select Synch & TAI (53%), or control (53%) treatments than the CO-Synch (44%) treatment. Among the 3 protocols in which estrus was detected, conception rates (proportion of cows that became pregnant to AI of those exhibiting estrus during the synchronization period) were greater (P < 0.05) for Select Synch & TAI (70%; 217 of 309) and Select Synch + CIDR & TAI (67%; 230 of 345) cows than for control cows (61%; 197 of 325). We conclude that the CO-Synch + CIDR protocol yielded similar pregnancy rates to estrous detection protocols and is a reliable TAI protocol that eliminates detection of estrus when inseminating beef cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号