首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abiotic stresses on seedling regeneration in xeric ecosystems are great, hence recruitment processes can be facilitated by stand factors that ameliorate the germinant-scale microenvironment. An experiment was conducted on the eastern slope of the Cascade Range to test the effects of shrub cover, simulated seed caching, and substrate on the recruitment of Pacific ponderosa pine (Pinus ponderosa var. ponderosa Dougl. ex Laws.) seedlings. Failure rates of seeds sowed in exclosures were large, with less than 30% emerging as germinants in the spring following fall sowing. Simulated seed caching improved emergence rates by more than sevenfold and was responsible for 88% of all spring germinants. Emergence rates were lowest from uncached seeds on litter. Just 16% of the crop survived the summer and fall to the month of November, or less than 5 months after emergence. Shrub cover did not affect emergence rates, but establishment rates were higher: seedlings beneath shrubs succumbed to desiccation at a slower rate than unshaded seedlings. By August there were 2.3 times more survivors at shrub-shaded sites than unshaded sites, and by the end of fall, when seedlings were considered established, more than 78% existed beneath shrubs. This study provides evidence that the natural recruitment of ponderosa pine seedlings is facilitated by the occurrence of the species’ common shrub associates.  相似文献   

2.
Omi SK  Yoder B  Rose R 《Tree physiology》1991,8(3):315-325
Post-storage water relations, stomatal conductance, and root growth potential were examined in ponderosa pine (Pinus ponderosa Dougl. ex Laws.) seedlings from high- and low-elevation seed sources that had been lifted either in October or November and freezer stored, or in March, and then grown hydroponically in a greenhouse for 31 days. Seedlings lifted in October had poor root initiation (< 17 new roots per seedling), low predawn leaf water potentials (< -1.5 MPa), and low stomatal conductance (7.10 mmol m(-2) s(-1)) compared with seedlings lifted in November or March. There was little difference in post-storage water relations and stomatal conductance between seedlings lifted in November and those lifted in March. Throughout the 31-day test, seedlings from the high-elevation seed source produced 3-9 times more new roots, had higher predawn leaf water potentials (-0.6 to -0.7 MPa versus -1.1 to -1.6 MPa), and 1.3-5 times greater stomatal conductance than seedlings from the low-elevation seed source. For all seedlings on Day 31, the number of new roots was significantly related to predawn leaf water potential (r(2) = 0.65) and stomatal conductance (r(2) = 0.82). Similarly, the dry weight of new roots per seedling on Day 31 accounted for a significant amount of the variation in predawn leaf water potential (r(2) = 0.81) and stomatal conductance (r(2) = 0.49).  相似文献   

3.
Woody and herbaceous vegetation that captures scarce soil moisture often kills or stunts the growth of conifer seedlings in young plantations in the Sierra Nevada of California. Two methods for excluding this vegetation are to apply large (3-m×3-m), long-lasting (at least 5 years) mulches around the seedlings soon after planting, or to repeatedly grub seedlings of competing vegetation in study plots. Both techniques were tested and proved to be effective, significantly increasing ponderosa pine diameter and height relative to the control and to seedlings surrounded by small paper mulches. The effective treatments were large enough to enable conifer seedlings to capture site resources unimpeded by competing plants. Eight species of shrubs, seventeen forbs, four grasses, and one fern grew naturally on the study site.Results suggest that the forester now has two biologically effective means for controlling unwanted vegetation and for attaining rapid early pine growth in environments similar to the study area. Although more expensive, the large heavy polyester mulches ($9.90 per seedling over 5 years) give the forester an alternative to manual release ($2.05 per seedling over 5 years).  相似文献   

4.
The effects of nutrient loading (NLOAD) on the frost hardening and dehardening of Picea abies (L.) Karst. seedlings were investigated under nursery conditions. Before NLOAD, second-year container seedlings were either short-day (SD) treated for 3 weeks in July or left for the natural photoperiod (CO). By mid-September, after 5 weeks of NLOAD, the fertilization of three foliar nutrient concentration levels (low = L-SD, medium = M-SD, and high = H-SD) for the SD-treated seedlings and one (medium = M-CO) for the CO-seedlings was completed. The NLOAD resulted in foliar nitrogen concentration 10.6, 16.1, 22.3, and 17.5 g kg−1 for L-SD, M-SD, H-SD and M-CO seedlings, respectively. The NLOAD had no effects on the morphology or dry mass variables of the seedlings, while SD-treatment reduced the dry mass of shoots, but not that of roots. The frost hardiness (FH) of different batches of the seedlings was assessed by the visual scoring of damage in their needles, stems and buds after their controlled exposure to freezing during frost hardening and dehardening. The low nutrient concentration in the SD-treated seedlings (L-SD seedlings) resulted in poor FH, to an even lower extent than that of the M-CO seedlings. The NLOAD did not affect the dehardening of the seedlings at the end of the freezer storage in the following spring.  相似文献   

5.
The herbicide, hexazinone, was applied four ways over ponderosa pine, 2–0 seedlings planted in northeast Oregon. The four treatments were two broadcast applications, a single broadcast application, a large spot application, and a small spot application. Seedling survival and growth were monitored for five growing seasons. Results indicate that survival more than doubled with either large or small spot applications compared to no application, and either one or two broadcast applications can increase survival an additional 30% over spot applications. Differences in stem volume were substantial, with two broadcast applications yielding more than twice the volume of a single broadcast treatment and more than five times the volume of seedlings treated with spot applications. Trees in small spots were still three times bigger than surviving seedlings in the control. These results are consistent with the concept of competition threshold. Management implications were considered in terms of cost of established seedlings. Although broadcast applications cost more per acre than spot applications, gains in seedling survival, growth and quality offset the additional cost and translate into lower established seedling costs. The cost effectiveness of broadcast applications also may be seen in the elimination of replanting or in-planting requirements and increases in long-term growth potential of the established trees.  相似文献   

6.
Ethane production was evaluated as a method for assessing freeze damage to loblolly pine (Pinus taeda L.) seedlings by comparing it to the widely used electrolyte leakage method. Paired measurements, first ethane production and then electrolyte leakage, were conducted on the pooled needle samples at temperatures between 0° and –12°C. Ethane production rates increased in a linear fashion with decreasing temperatures between 0° and –12°C for both Virginia Coastal Plain (R2=0.80) and Marion County, Florida (R2=0.87) seed sources. The Florida seedlings were consistently 2° to 4°C higher than the Virginia seedlings at a given ethane level. Electrolyte leakage expressed as Index of Injury initially increased with decreasing temperatures, but then leveled off at or decreased below –8°C. The log-log linear regression of ethane production against Index of Injury indicated good correspondence for both seed sources (Virginia – R2=0.81; Florida – R2=0.91). Ethane production appears more rapid and to require less sampling than does electrolyte leakage while producing comparable results to the electrolyte leakage method.  相似文献   

7.
8.
Four equations were developed for predicting the probability of Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] and ponderosa pine (Pinus ponderosa Dougl. ex Laws.) survival for the first (0–1) and first to third (1–3) growing seasons after applying mulching, scalping, or artificial shading (shade cards) treatments in plantations in southwestern Oregon, U.S.A. Variables describing conifer size, levels of competing vegetation, presence of silvicultural treatments, site factors, and climate factors were collected from 13 sites ranging from 0 to 6 years after planting and examined as potential predictors of survival. Age, stem diameter, a competition index for shrubs, severity of growing season at time of treatment, average annual precipitation, aspect, and slope angle were predictors of Douglas-fir survival during 0–1 and 1–3 growing seasons after treatment; the presence of silvicultural treatments was also a predictor only during the first growing season after treatment. Age, aspect, and slope angle were predictors of ponderosa pine survival over both 0–1 and 1–3 growing seasons after treatment; height-diameter ratio, competition indices for herbs, shrubs, and hardwoods, silvicultural treatment, severity of growing season at time of treatment, and average annual precipitation were also predictors only during the first growing season after treatment; crown width was a predictor of survival only during 1–3 growing seasons after treatment. When significant in the models, predicted probability of survival increases with treatments, less severe weather conditions, diameter, crown width, age, and precipitation; probability decreases with increasing height-diameter ratio and competition indices for herbs, shrubs, and hardwoods.  相似文献   

9.
RIKALA  RISTO  REPO  TAPANI 《New Forests》1997,14(1):33-44
In this study the effect of summer fertilization on the initiation of frost hardening of containerized second-year Scots pine (Pinus sylvestris L.) seedlings is studied. During the second growing season three different fertilization programs (water soluble NPK with micronutrients) determined by electrical conductivity of peat water extract (0.2, 0.5 and 1.2 mS cm-1) were initiated. The growth and nutrient concentrations of needles were monitored during the fertilization period. The frost hardiness of seedlings was assessed on four separate occasions at two week intervals from August 7 to September 18. This assessment was based on artificial freezing tests and visual damage scoring of tissue browning on current-year needles. Clear differences in foliar N, P and K concentrations were observed between the fertilization treatments. Fertilization prolonged the growing period of needles and increased root collar diameter. In all the tests, the highest fertilization level resulted in the highest level of frost hardiness. The difference between the fertilization treatments ranged from 1 °C to 2.2 °C. Frost hardiness increased with an increase in foliar nitrogen concentration and slightly less consistently with increases in foliar phosphorus and potassium concentrations.  相似文献   

10.
Gilles  S.L.  Binder  W.D. 《New Forests》1997,13(1-3):91-104
Cold hardened, dehardened, and newly flushed foliage of one year old white spruce (Picea glauca [Moench.] Voss) seedlings were exposed to various sub-zero temperatures (--2 to --22.5°C) either in the dark or light. The freezing treatment had no significant effect on the variable fluorescence to maximal fluorescence ratio (Fv/Fm) of hardened seedlings, either in the light or dark. Also, no visible damage or increase in electrolyte leakage were evident in either the light or the dark treated seedlings. Both dehardened and newly flushed foliage were significantly affected by the freezing treatment, and light enhanced the effect. A decline in Fv/Fmincreased electrolyte leakage and visible damage were observed at warmer temperatures in newly flushed needles than in dehardened needles. Seedlings exposed to sub-zero treatments in the light also had lower Fv/Fm, increased electrolyte leakage and showed more visible damage than seedlings exposed to the same sub-zero treatments in the dark. The temperature where 50% of the needles were damaged (LT50) as estimated from visible damage data was --10.8°C in the light and --12.1°C in the dark for dehardened, one year old needles. The LT50in newly flushed needles was --4.8°C in the light and --6.2°C in the dark. Recovery of Fv/Fmvalues 3 days after freezing exposure was only evident in treatments where little visible damage was present. Both Fv/Fmand electrolyte leakage were strongly correlated with visible damage.  相似文献   

11.
本文综述了电导法不同计量单位在植物抗寒研究中的应用。电解质渗出率、相对抗性和回归系数“b”更为有用  相似文献   

12.
Frost hardiness of tissues along the length of the stem and the root was investigated in first‐year black spruce (Picea mariana (Mill.) B.S.P.) seedlings. Frost hardiness of 1 cm long stem and root segments was evaluated based on Index of Injury, calculated from post‐freezing electrolyte leakage. Frost hardiness was tested approximately weekly beginning seven weeks after seedlings were transferred from an 18 to a 10 h photoperiod, both at day/night temperatures of 26°C/16°C. Trees were transferred to temperatures of 10°C day and 5°C night at a 10 h photoperiod after a further 18 days. Frost hardiness was greater at the terminal bud and least at the root tips. Although shoots were generally more frost hardy than roots, differences in hardiness along the stem and root axes were gradual, rather than abruptly differing at the shoot‐root interface. All tissues, including root tips, increased in frost hardiness after conditioning for 18 days under short photoperiods (10 h) and warm temperatures (26?C/16°C, day/night). Under cold temperatures (10°C/5°C, day/night) all tissues, excepting the root tips, tolerated — 16°C with little subsequent electrolyte leakage.  相似文献   

13.
Heiskanen  Juha  Rikala  Risto 《New Forests》1998,16(1):27-42
Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Roth.) seedlings were grown in containers filled with growth media based on medium-textured sphagnum peat, coarse perlite and fine sand. The seedlings were then planted into fine and coarse sandy soils in 2.2 l pots, which were subjected to two water-content treatments (only one for birch). After the seedlings had grown five weeks in a greenhouse, rooting into the surrounding soil and shoot growth were measured. Addition of perlite and sand to peat medium slightly affected rooting; thus suggesting minor effects on seedling establishment. However, nitrogen concentration of the seedlings varied between growth media and correlated positively with rooting into the soil. The particle size and water content of the soil affected considerably rooting of the seedlings. Seedling height at the time of planting did not affect rooting or shoot growth. The fact that the fewest out-grown roots occurred in the dry fine sandy soil, suggests that dry soil together with high strength and resistance to root penetration reduce rooting and water uptake by container seedlings most and may thus cause water and nutrient stresses to seedlings after outplanting.  相似文献   

14.
Bigras  F.J.  Margolis  H.A. 《New Forests》1997,13(1-3):29-49
Damage to containerized forest seedlings due to freezing can occur in the fall or early winter in Canadian forest nurseries. The following spring, damage to shoots and impairment of growth is observed. The objectives of this experiment were to measure the impact of late fall low temperatures (0° to --30°C) on whole seedlings of the three most common species used for reforestation in Quebec: black spruce (BS), white spruce (WS) and jack pine (JP). Impacts of freezing temperatures on (i) whole seedling and apical bud mortality, (ii) shoot growth and root mortality, (iii) stem electrical resistance, (iv) shoot and root water relations, (v) concentrations of N, P, K, Ca, Mg, and total sugars in shoots were assessed. JP showed the highest rate of whole seedling mortality while WS showed the highest rate of apical bud mortality. JP was the most severely affected: destruction of the root system at low temperatures as well as a reduction of shoot growth and stem diameter and a decrease (more negative) in shoot and root water potential. WS showed a reduction of shoot growth despite no apparent damage to the root system at low temperatures. BS was not affected by temperatures as low as --30°C. Nutrient and sugar concentrations were not affected by low temperature treatments.  相似文献   

15.
Seventeen‐week‐old black spruce seedlings were hardened under short daylengths and one of three short day length environments, which were either warm (24/16°C, day/night) throughout a 10 week hardening period (WW), cool (10/5°C) throughout hardening (CC), or warm for three weeks followed by seven weeks of cool temperatures (WC). Greatest root and shoot frost hardiness resulted from the exposure of seedlings to three weeks of warm followed by seven weeks of cool temperatures. Seedlings receiving warm temperatures throughout hardening increased in root and shoot frost hardiness, but to a lesser extent than seedlings exposed to cool temperatures. The frost hardiness of woody roots was generally greater than that of fine roots, but the extent of the difference in frost hardiness depended on the time since bud initiation and on the hardening treatment.  相似文献   

16.
The changes of Ca2+ levels in young leaf cells of bromegrass under different controlled chilling temperatures were inves-tigated by an antimonite precipitation eytochemical method. The main results were as follows: under 25/20℃ (day/night) tempera-ture and 14 h photoperiod, electron-dense Ca2+ antimonite precipitates, indicators of Ca2+ localization, were mainly localized in the vacuoles, cell walls and intercellular spaces; few Ca2+ deposits were observed in the cytosol and nuclei. After a 3℃ chilling treatment for 3 h, many Ca2+ precipitates appeared in the cytosol and nuclei, indicating that Ca2+ influx had occurred in the cytosol and nuclei.When the 3℃ treatment was prolonged to 8 h, more Ca2+ deposits appeared in the nuclei and cytosol, but the amount of Ca2+ depos-its in both the cytosol and nuclei decreased markedly after a 24 h treatment and most Ca2+ deposits were returned to the vacuoles and intercellular spaces after an 8 d treatment. When bromegrass was exposed to 7℃ for 3 h, the Ca2+ distribution in the cells had no visible changes, compared with that of the 25/20℃ grown control plants. However, when the chilling treatment of 7℃ was pro-longed to 8 h, a Ca2+ influx occurred, where many Ca2+ deposits were observed in the nuclei and cytosol. More Ca2+ deposits ap-peared in the nuclei and cytosol after a 24 h treatment, but the amount of Ca2+ deposits in the cytosol and nuclei was reduced mark-edly after an 8 d treatment. After a 14 d treatment, the remaining low level of Ca2+ was recovered in both the cytosol and nuclei andthe Ca2+ deposits were again located in the vacuoles and the intercellular spaces. The dynamics of subcellular Ca2+ localization in young leaf cells of bromegrass during a 12℃ chilling treatment were similar to those of the 7℃ treatment. Besides, the results showed that the frost tolerance of bromegrass exposed to 3℃ for 8 d increased by 6℃, for 7℃ and 8 d by 4℃ and for 12℃ and 14 d by 3℃, compared with the controls. Finally, the relationship between different Ca2+ dynamics and induced frost tolerance was also explored.  相似文献   

17.
In Finland, under nursery conditions hybrid aspen may continue their shoot growth until early September. Thus, frost hardening is usually delayed. To solve this problem, we used a three-week period of short-day (SD) treatment between late July and mid-August. During autumn after frost exposure, frost hardiness (FH) was assessed three times with a stem-browning test. The re-sults showed that after SD treatment shoot growth ceased and FH increased when compared to untreated hybrid aspen. Furthermore, the height of SD-treated hybrid aspen varied much less than that of the control plants. We conclude that SD treatment in the nursery during the growing period can be used as a supplementary method for producing well-hardened and uniform hybrid aspen plants.  相似文献   

18.
This study investigates the effects of cold-acclimation in conferring chilling tolerance in seedlings of the mulberry(Morus alba) variety ‘Qiuyu'. Changes in photosynthesis and antioxidant enzymes in chilling acclimatized(CA), and non-acclimatized(NA) seedlings were recorded during chilling stress(3 °C) and a recovery period(25 °C) each for 3 days. The results showed that CA plants had higher net photosynthetic rates(P_n), stomatal conductance(G_s), and maximum photochemical efficiency of photosystem Ⅱ(F_v/F_m) in response to chilling stress compared to NA. The seedlings maintained the same trends during the recovery stage. The responses of Q_A reduction degree (1-q_P) and prime electronic transfer rates(F_o) were lower in acclimatized than in non-acclimatized seedlings. Low-temperature acclimation and chilling stress also caused an increase in leaf proline and soluble sugar contents. Leaf malondialdehyde levels were significantly lower while ascorbate peroxidase(APX) activity was significantly higher in acclimatized seedlings, suggesting that elevated osmolytes and APX confer resistance to chilling temperatures. In this study on the response of mulberry seedlings to chilling stress, we also looked at the recovery process. The response to chilling determines whether mulberry leaves can survive under cold temperatures, while the recovery process determines whether photosynthesis can recover as soon as possible to avoid any secondary damage.  相似文献   

19.
邓恩桉具有生长快、材性好、耐寒的特点,成为我国桉树北移种植的优良树种。本文概述了国内有关邓恩桉抗寒性的研究动态,讨论了邓恩桉抗寒性与细胞膜系统、保护酶系统等方面的相关性,参考其他植物抗寒性研究方法与思路,对邓恩桉抗寒性的进一步研究提出了一些设想。  相似文献   

20.
Cold storing bareroot pine (Pinus spp.) seedlings grown in the southern U.S. for as little as 1 week in a cooler (just above freezing) in the fall (November to mid‐December) has been shown to reduce seedling survival after outplanting. In contrast, survival of container‐grown seedling is typically not affected when stored for 4 weeks in coolers in November and December. Wounds sustained by seedlings as they are lifted from nursery beds may allow Pythium spp. to infect bareroot seedling roots. Once in the cool, moist storage environment, Pythium multiplies and may result in seedling mortality after outplanting. Bareroot loblolly pine (Pinus taeda) and container‐grown loblolly, longleaf (Pinus palustris), slash (Pinus elliottii) and shortleaf pine (Pinus echinata) seedlings were inoculated with either Pythium dimorphum or Pythium irregulare, cold stored with or without peat moss and monitored for survival after outplanting. Peat moss did not increase bareroot loblolly pine survival or reduce Pythium populations when seedlings were inoculated with Pythium prior to storage. Pythium irregulare reduced survival of longleaf and shortleaf pine grown in peat moss and perlite, respectively. Pythium did not affect loblolly or slash pine, but wounding their roots did reduce seedling survival when grown in containers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号