首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this study was to evaluate the influence of forest structure (mainly resulting from human uses) and forest type (the identity of the dominant tree species) on biodiversity. We determined the diversity of two taxonomical groups: the understory vegetation and the edaphic carabid beetle fauna. We selected eight types of forest ecosystems (five replicates or stands per forest type): pine (Pinus sylvestris) plantations of three age classes (10, 40 and 80 years since reforestation), an old-growth relict natural pine forest, and four types of oak (Quercus pyrenaica) stands: mature forests with livestock grazing and firewood extraction, mature forests where uses have been abandoned, “dehesa” ecosystems and shrubby oak ecosystems. The results obtained by a global PCA analysis indicated that both tree size and dominant species influenced the ordination of the 40 forest stands. In general, carabids were more sensitive to changes in forest heterogeneity and responded more clearly to the analysed structural variables than the understory vegetation, although the species richness of both groups was significantly correlated and higher in case of oak forests. Pine forest ecosystems were characterised by the lowest species richness for both taxonomical groups, the lowest plant diversity and by the lowest coefficients of variation and, consequently, low structural heterogeneity. As a result, it was very difficult to discriminate the effects of the spatial heterogeneity and the dominant tree species on biodiversity.  相似文献   

2.
In central eastern Korea, there has been a continued effort to sustain pine forests because of their value for wood and mushroom production, as well as for other resources. Through the analysis of previously burned areas,we clarified the effects of fire on vegetation dynamics of pine forests by measuring changes in species composition,population structure, and the growth rates of major tree species. Vegetation analysis was conducted on a series of 100 m^2 plots established in Korean red pine(Pinus densiflora Siebold. & Zucc.) and Mongolian oak(Quercus mongolica Fisch. Ex Ledeb.) forests situated in three different topographic positions on slopes where fire severity varied. We confirmed that most pine trees will succumb to even a surface fire, whereas oak may be killed following high intensity or infrequent fires but will sprout and become dominant. Complete protection from fire favors other, more shade-tolerant deciduous hardwoods. Different restoration plans apply, based on observed vegetation responses for each topographic zone. Near the ridge top,where pine seed sources are most limited, it may be necessary to restore pine forests by planting and to control competing shrubs and herbs. At the mountain foot, where exotic species and species modified by hybridization have invaded aggressively, restoration that involves the introduction of natural vegetation is required. Mid-slope sites,where pine has been replaced by natural vegetation dominated by Mongolian oak, do not require any form of restorative treatment.  相似文献   

3.
A regeneration predictor (RP) has been elaborated to forecast the minimal inter-fire period, required for full recovery (assumed at 1,000 mature stems ha?1, a typical value for a dense pine forest) of an even-aged, postfire regenerating Pinus halepensis population after a subsequent wildfire, in the future. The study has been conducted in three Aleppo pine forests of northern Euboea Island, Greece. Postfire field surveys of sapling growth, sapling density and reproductive dynamics (cone-bearing population fraction, annual cone and seed production per sapling, canopy seed bank build-up) were carried out for three, consecutive growing seasons (years). Additional postfire parameters, with values estimated from literature data, have been also included in order to devise the RP. In the cases of the three populations studied, the application of this RP provides time-windows for full recovery after a recurrent fire, as short as 10–15, 8–11 and 7–11 years, respectively (values corresponding to best and worst scenarios). It is suggested that in even-aged, postfire regenerating Aleppo pine populations, the minimal inter-fire period required for full recovery can be predicted by monitoring a few selected variables, namely (a) sapling density, (b) vegetative to reproductive shift dynamics, and (c) cones/sapling and germinable seeds/cone, for at least 2 years (either consecutive or 2–3 years apart) at a postfire age of 7–12 years.  相似文献   

4.
Spatial pattern has a key role in the interactions between species in plant communities. These interactions influence ecological processes involved in the species dynamics: growth, regeneration and mortality. In this study, we investigated the effect of spatial pattern on productivity in mature mixed forests of sessile oak and Scots pine. We simulated tree locations with point process models and tree growth with spatially explicit individual growth models. The point process models and growth models were fitted with field data from the same stands. We compared species productivity obtained in two types of mixture: a patchy mixture and an intimate mixture. Our results show that the productivity of both species is higher in an intimate mixture than in a patchy mixture. Productivity difference between the two types of mixture was 11.3 % for pine and 14.7 % for oak. Both species were favored in the intimate mixture because, for both, intraspecific competition was more severe than interspecific competition. Our results clearly support favoring intimate mixtures in mature oak–pine stands to optimize tree species productivity; oak is the species that benefits the most from this type of management. Our work also shows that models and simulations can provide interesting results for complex forests with mixtures, results that would be difficult to obtain through experimentation.  相似文献   

5.
We examined tree species responses under forest harvesting and an increased fire disturbance scenario due to climate warming in northern Wisconsin where northern hardwood and boreal forests are currently predominant. Individual species response at the ecosystem scale was simulated with a gap model, which integrates soil, climate and species data, stratified by ecoregions. Such responses were quantified as species establishment coefficients. These coefficients were used to parameterize a spatially explicit landscape model, LANDIS. Species response to climate warming at the landscape scale was simulated with LANDIS, which integrates ecosystem dynamics with spatial processes including seed dispersal, fire disturbance, and forest harvesting. Under a 5 °C annual temperature increase predicted by global climate models (GCM), our simulation results suggest that significant change in species composition and abundance could occur in the two ecoregions in the study area. In the glacial lake plain (lakeshore) ecoregion under warming conditions, boreal and northern hardwood species such as red oak, sugar maple, white pine, balsam fir, paper birch, yellow birch, and aspen decline gradually during and after climate warming. Southern species such as white ash, hickory, bur oak, black oak, and white oak, which are present in minor amounts before the warming, increase in abundance on the landscape. The transition of the northern hardwood and boreal forest to one dominated by southern species occurs around year 200. In the sand barrens ecoregion under warming conditions, red pine initially benefits from the decline of other northern hardwood species, and its abundance quickly increases. However, red pine and jack pine as well as new southern species are unable to reproduce, and the ecoregion could transform into a region with only grass and shrub species around 250 years under warming climate. Increased fire frequency can accelerate the decline of shade-tolerant species such as balsam fir and sugar maple and accelerate the northward migration of southern species. Forest harvesting accelerated the decline of northern hardwood and boreal tree species. This is especially obvious on the barrens ecoregion, where the intensive cutting regime contributed to the decline of red pine and jack pine already under stressed environments. Forest managers may instead consider a conservative cutting plan or protective management scenarios with limited forest harvesting. This could prolong the transformation of the barrens into prairie from one-half to one tree life cycle.  相似文献   

6.
We analyzed the structure of pollarded oak forest and biometric indices of pollarded oak species in relation to aspect in northern Zagros forests, western Iran. A number of 319 circular plots (0.1 ha) were established using a systematic random method over the study area. In each plot, for all trees (diameter at breast height ≥5 cm) diameter was measured and tree species was recorded. Total height, trunk height, and major and minor diameter axis of the crown of two trees in each plot (nearest tree to the center of the plot and the largest tree in term of diameter) were measured. As the dispersion of slope and altitude classes in the study area were identical, the effect of these factors was assumed to be constant. To evaluate the effect of aspect on biometric indices of oak trees a comparison was used for each oak species separately. The results indicated that the forest species composition differed statistically significant in main aspects except for easterly and westerly aspects (P < 0.01). The diameter of similar oak trees was significantly different except for Lebanon oak in northerly and southerly and Gall oak in easterly and westerly aspects (P < 0.01), but there was no significant difference between the total height and crown area of similar oak species in different aspects. Differences in diameter, height, and crown area distributions showed a significant difference in main aspects. The basal area and tree density in northerly and southerly aspects were significantly different (P < 0.05).  相似文献   

7.
We aimed to study tree effects on the chemical properties of forest soils. We compared soil features of three types of forest ecosystems, each with four stands (replicates): beech forests (Fagus sylvatica), oak forests (dominated by Quercus pyrenaica) and pine plantations (Pinus sylvestris). Five samples from the top 10 cm of soil were taken per stand, from which pH, organic matter content (O.M.), total nitrogen (N) and available calcium (Ca2+), magnesium (Mg2+), potassium (K+) and sodium (Na+) were determined. Litter layer depth was measured at each soil sampling point. We also measured tree density and crown diameters at each stand. Our results indicated that soil samples from the four pine plantation stands were more similar while oak and beech stands were characterised by great variability in terms of soil properties and leaf litter depth. Although the identity of the dominant tree species significantly influenced several topsoil chemical properties (increase in pH and available cations in oak forests and higher organic matter and total nitrogen in beech and pine ecosystems), there were other important factors affecting soil features that may be taken under consideration. Differences between soil properties of the three types of forest ecosystems were mainly related to the characteristics of the litter layer and less related to the tree layer structure. Finally, the establishment of pine plantations in naturally deciduous tree areas made the topsoil features more homogeneous.  相似文献   

8.

Key message

In the African rim of the Western Mediterranean Basin, cork oak forests and pine plantations coexist. Under similar fire regimes, cork oak forest is more resilient in terms of habitat structure (canopy, understory, and complexity of vegetation strata) than pine plantation. By contrast, both woodland types show similar resilience in plant species composition. Resilience in habitat structure varies between the two woodland types because of the resprouting and seeding strategies of cork oak and pine species, respectively. These differences can be relevant for the conservation of biodiversity of forested ecosystems in a future scenario of increased fire frequency and scale in the Mediterranean basin.

Context

Wildfires have major impacts on ecosystems globally. In fire-prone regions, plant species have developed adaptive traits (resprouting and seeding) to survive and persist due to long evolutionary coexistence with fire. In the African rim of the Western Mediterranean Basin, cork oak forest and pine plantation are the most frequently burnt woodlands. Both species have different strategies to respond fire: cork oak is a resprouter while pines are mostly seeders.

Aims

We have examined the hypothesis that pine plantations are less resilient in habitat structure (canopy, understory, diversity of vegetation strata) and plant composition than cork oak woodlands.

Methods

The habitat structure and plant species composition were measured in 30 burnt and 30 unburnt 700-m transects at 12 burnt sites from north-western Africa, where the two forest types can coexist. Habitat structure and plant species composition were compared between burnt and unburnt transects from cork oak and pine plantation woodlands with generalized linear mixed models and general linear models.

Results

The results showed significant interaction effect of fire and forest type, since cork oak forest was more resilient to fire than was pine plantation in habitat structure. By contrast, both forest types were resilient to fire in the composition of the plant communities, i.e., plant composition prior to fire did not change afterwards.

Conclusion

The higher structural resilience of cork oak forest compared to pine plantation is related to the resprouting and seeding strategies, respectively, of the dominant tree species. Differences in the responses to fire need to be considered in conservation planning for the maintenance of the Mediterranean biodiversity in a future scenario of changes in fire regime.
  相似文献   

9.
Complexity of uneven-aged forests results from the heterogeneity of their structure reflected among others by the spatial pattern of their components. Forest structure is usually modified by various processes operating at different scales and time. Structure and processes are not independent, and both are important drivers of forest dynamics. The impact of natural processes on forest structure manifested in the specific spatial pattern of trees can be quantified by point pattern analysis applied to long-term repeatedly measured stem-mapped plots. Such studies are relatively scarce in the literature although they provide better insight into the mechanisms affecting forest dynamics. Our study is focused on the spatiotemporal analysis of the structure of mixed uneven-aged Scots pine-dominated forest located at the Kampinoski National Park (Poland). Univariate analysis showed that the initial pattern of all live trees was initially random and it shifted toward more uniform with forest aging. Spatial patterns of individual tree species varied from that stated for all forest community. We observed changes in spatial pattern of Scots pine and common oak from random toward more clumped (pine) or uniform (oak) pattern. In case of black alder and common birch, the initial aggregated pattern was maintained over the examined 14-year period of the forest succession. Bivariate analysis showed that the most common interspecific association between pairs of tree species was spatial segregation (pine vs. alder, alder vs. birch and oak vs. birch) followed by spatial independence (pine vs. oak and oak vs. alder). The positive association was stated only for pine and birch and only for certain spatial scales (> 5 m). Simultaneously, at small distances they showed reciprocal repulsion. Changes in spatial relationships between tree species were negligible over 14-year period of forest succession. Our results confirmed the density-dependent mortality process in the uneven-aged Scots pine-dominated forest over 14-year period of forest development. Our study showed that spatial interactions between individuals along with species-specific ecological requirements should be incorporated into realistic models of forest development, helping to manage the forest ecosystems toward their greater structural complexity.  相似文献   

10.
Understory plants are important components of forests because they are responsible for the majority of the vascular plant diversity of forest ecosystems. The richness and composition of understory communities are closely related to the tree layer diversity, structure and composition. The aim of this study was to examine the understory diversity of Anatolian black pine (Pinus nigra Arnold subsp. pallasiana (Lamb.) Holmboe)-dominated forests on the Kazda?? Mountains of West Turkey. To describe the overstory structure and composition in a numerically and quantitatively well-defined manner, cumulative abundance profiles (CAPs) of the tree species were used. The resemblance of the sampling plots was classified into five stand types assessing the CAP through the Fuzzy C-Means clustering method. A permutational multivariate analysis of variance (PERMANOVA) was performed to test the variance of the community ecological distance between the five stand types, and the results showed significant differences in these clusters. Many shade-tolerant plants were associated with the mixed stands of Anatolian black pine–Kazda?? fir. The composition of the herb and shrub layer could not be explained by the environmental variables but by differences in the overstory structure of the stands. Pure or nearly pure Anatolian Black pine stands were more diverse than mixed oak–Anatolian black pine and Kazda?? fir–Anatolian black pine stands. However, although dense and young pure Anatolian black pine stands had the most diverse plant species in the shrub layer, they were ranked third in terms of the herb layer diversity. The Anatolian black pine–Kazda?? fir mixed stands had the lowest herb and shrub layer diversity. These results allow us to comprehend the relationship between the overstory structure and composition, and the understory diversity. Understanding this relationship is important for the conservation of understory plant diversity in the management of forest ecosystems.  相似文献   

11.
One of the arguments against using prescribed fire to regenerate oak (Quercus spp.) forests is that the improvement in species composition of the hardwood regeneration pool is temporary and multiple burns are necessary to achieve and maintain oak dominance. To explore this concern, I re-inventoried a prescribed fire study conducted in the mid-1990s to determine the longevity of the effects of a single prescribed fire on hardwood regeneration. The initial study was conducted in three oak shelterwood stands in central Virginia, USA. In 1994, each stand was divided into four treatments (spring, summer, and winter burns and a control) and the hardwood regeneration was inventoried before the fires. During the burns, fire intensity was measured and categorized in each regeneration sampling plot. Second-year postfire data showed marked differences in species mortality rates, depending on season-of-burn and fire intensity: oak and hickory (Carya spp.) regeneration dominated areas burned by medium- to high-intensity fire during the spring and summer while yellow-poplar (Liriodendron tulipifera) and red maple (Acer rubrum) seedlings dominated unburned areas and all areas treated with low-intensity fire regardless of season-of-burn. The treatments were re-inventoried in 2006 and 2007 to determine whether these fire effects were still present. The new data show that the species distributions by season-of-burn and fire intensity found in 1996 still existed 11 years after the treatments. The fact that fire effects in oak shelterwood stands can last at least a decade has important management implications for resource professionals interested in sustaining oak forests in the eastern United States.  相似文献   

12.
We compared breeding avian communities among 11 habitat types in north-central Michoacán, Mexico, to determine patterns of forest use by endemic and nonendemic resident species. Point counts of birds and vegetation measurements were conducted at 124 sampling localities from May through July, in 1994 and 1995. Six native forest types sampled were pine, pine–oak, oak–pine, oak, fir, and cloud forests; three habitat types were plantations of Eucalyptus, pine, and mixed species; and the remaining two habitats were shrublands and pastures. Pastures had lower bird-species richness and abundance than pine, oak–pine, and mixed-species plantations. Pine forests had greater bird abundance and species richness than oak forests and shrublands. Species richness and abundance of endemics were greatest in fir forests, followed by cloud forests. Bird abundance and richness significantly increased with greater tree-layer complexity, although sites with intermediate tree complexity also supported high abundances. When detrended correspondence-analysis scores were plotted for each site, bird species composition did not differ substantially among the four native oak-and-pine forest types, but cloud and fir forests, Eucalyptus plantations, and mixed-species plantations formed relatively distinct groups. Plantations supported a mixture of species found in native forests, shrublands, and pastures. Pastures and shrublands shared many species in common, varied greatly among sites in bird-species composition, and contained more species specific to these habitats than did forest types.  相似文献   

13.
Red oaks – cherrybark oak (Quercus pagoda Raf.), willow oak (Quercus phellos L.), water oak (Quercus nigra L.), and Nuttall oak (Quercus texana Buckley; aka: Quercus nuttallii Palmer) – are not regrowing in Mississippi Delta river floodplain forests in the southeastern United States in sufficient numbers to sustain the former species composition and timber and wildlife values. Even if vigorous red oak reproduction becomes established, partial harvesting that does not remove the taller trees will suppress understory red oak height growth more than it will suppress height growth of such other species as sugarberry (Celtis laevigata Willd.), American elm (Ulmus americana L.), cedar elm (Ulmus crassifolia Nutt.), swamp dogwood (Cornus foemina Mill.), green ash (Fraxinus pennsylvanica Marshall), and sweetgum (Liquidambar styraciflua L.). Consequently, the red oaks in these partially harvested stands become increasingly suppressed and probably die; and there is a shift in species composition to the other species. In addition to ensuring vigorous oak reproduction, silvicultural clearcutting or rapid removal of the residual trees following shelterwood or seed tree harvesting to provide full sunlight is needed to ensure red oaks become a dominant part of these future river floodplain stands.  相似文献   

14.
We compared the structure of the arboreal layer and the diversity and species composition of the understory vegetation of three types of mature forest communities: oak (Quercus pyrenaica) and beech (Fagus sylvatica) forests and Scots pine (Pinus sylvestris) plantations. Our main aim was to determine whether differences in these variables existed and were due to the identity of the dominant tree species. We selected four stands or replicates per forest type located geographically close and with relatively similar conditions. We found no differences in the arboreal structure of oak and beech forests, which were characterised by great variability in tree size, while in case of plantations, this variability was lower at both the intra-stand (estimated by the coefficient of variation) and inter-stand (i.e. the four replicates harboured trees of similar sizes) scales. However, the highest variability in the canopy layer of natural forests was not consistently linked to greater understory species richness. Indeed, the lowest plant species richness was found in beech forests, while oak forests harboured the highest value at either the sampling unit (per m2) or stand scales. The greatest negative correlation between plant diversity and the environmental variables measured was found for litter depth, which was the highest in beech forests. The results obtained by the CCA indicated that the four replicates of each forest type clustered together, due to the presence of characteristic species. We concluded that pine plantations did not approach the environmental conditions of native forests, as plantations were characterised by singular understory species composition and low arboreal layer variability, compared to natural woodlands.  相似文献   

15.
To examine the relationship between forest succession following fire and the composition of bird communities, we investigated the vegetation structure, bird population density, foraging behavior and guild structure in bamboo grasslands (11 years since the last fire), pine savanna (41 years), pine woodland (58 years), old-growth hemlock forest (never burned), and old-growth spruce forest (never burned) in the Tatachia area of central Taiwan. Canopy height, total foliage cover, tree density, total basal area of tree, total basal area of snags, foliage height diversity, and tree species richness all increased with successional age. However, shrub cover peaked in intermediate successional stages. The vertical profile of foliage cover was more diverse in later successional forests, which had more breeding bird species and ecological guilds. All the breeding bird species recorded in early and intermediate stages were also found distributed in the late successional forests. Because Taiwan has high precipitation and humidity, and most forest fires in Taiwan are caused by human activities, forest fires and large areas of early successional vegetation were probably rare in the mountain areas of Taiwan prior to the arrival of humans. Therefore, bird species have not had enough time to adapt to areas with early or intermediate successional vegetation. Moreover, late successional forests host all the major plant species found in the early and intermediate stages and have higher foliage height diversity index, which was positively correlated with the bird species richness and bird species diversity index in this study. As a result, all breeding bird species and guilds in the area can be found in late successional forests. Efforts for conserving avian diversity in Taiwan should focus on protecting the remaining native old-growth forests.  相似文献   

16.
Most of world's forests of different climates have a history of fire, but with different severities. Fire regimes for broadleaf deciduous forests have return intervals that vary from many decades (or less) to centuries (or more). Iran has a total of 1.2 million ha of temperate forest in the north, where fires burn about 300–400 ha annually. This study focused on the impact of fire on forest structure, tree species quality, and regeneration composition (specially beech) in the Chelir forest of northern Iran. The results showed that forest fires changed the structure and had different effects on tree species composition between burned and control areas. Thin barked species such as oriental beech (Fagus orientalis Lipsky) and coliseum maple (Acer cappadocicum Gled.) have been affected more than those with thick bark, like hornbeam (Carpinus betulus L.) and chestnut-leaved oak (Quercus castaneifolia C.A. Mey). The density of oriental beech regeneration in the unburned area was greater than in the burned area, while the quantity of regeneration of hornbeam, coliseum maple and velvet maple (Acer velutinum Boiss) was higher in burned area. Forest fire had a greater effect on oriental beech quality, and changed regeneration composition in the burned area. Fire prevention activities should be considered as a silvicultural treatment for preserving these valuable forests.  相似文献   

17.
The total area ofPinus densiflora andP. thunbergii forests in Ibaraki Prefecture in 1978 was 65,200 ha, which decreased to 30,300 ha by 1985 mainly due to pine wilt mortality caused byBursaphelenchus xylophilus. This damage has also continued thereafter. To estimate the survivability of pine trees in Ibaraki Prefecture, pine tree mortality has been studied in eight experimental forests for over 20 years, and ground surveys throughout the Prefecture were also conducted in 1995. Survival in the experimental forests corresponded well to the results of ground surveys. Pine forests remained as pure stands if control measures were undertaken or if they were located in cool areas. In warm areas where no control was undertaken, most of the pine forests disappeared and only a few pine trees remained in mixed forests, while on dry soils no mature or old pine trees survived. Since surviving pine forests are often cut for wood utilization,P. densiflora andP. thunbergii may decrease in area to become rare species in the future unless controls are applied and/or reforestation with resistant pines is carried out. A part of this paper was orally presented at the 108th Annual Meeting of the Japanese Forestry Society (1997).  相似文献   

18.
There is little knowledge how ungulate pressure on forest regeneration may be mitigated by silvicultural methods. The knowledge is especially needed for artificially regenerated, deciduous tree species. We studied factors affecting browsing incidence by deer in the Pisz Forest District in Poland, an area where 10,000 ha of forest was damaged by a 2002 hurricane. In 2006, we established three experimental plots (in total, 22.6 ha), in which the main species was Scots pine (Pinus sylvestris) admixed with pedunculate oak (Quercus robur). The data on browsing were collected in 2008–2015. In general, oak browsing incidence was unrelated to oak planting density. On a plantation scale, it was significantly affected by the pine age. Although in each variant all the oaks were browsed for four consecutive years (2009–2012), in 2013 browsing incidence began to decrease. When the pines grew higher and formed a physical barrier, it was harder for deer—roe deer (Capreolus capreolus), red deer (Cervus elaphus) and moose (Alces alces)—to move through and locate the oaks. Moreover, within plantations, oak browsing incidence was higher in the patches with shorter pines. Browsing of individual saplings or small groups of saplings was also negatively affected by the height of neighbouring pine saplings. Oak density influenced deer selectivity depending on the tree height. In a low oak tree density, browsing incidence was unrelated to oak height, while in higher tree density, deer selected oaks of the height between 40 and 100 cm. We postulate that deciduous admixture in a coniferous (unattractive) stand can be planted with a few year delay. Older coniferous trees should impede locating of attractive tree species by deer and the browsing incidence.  相似文献   

19.
The low nutrient supply of heathland soils is often insufficient for the nutrient demand of growing forests and woodlands, and additional atmospheric input of nutrients is beneficial for the tree growth. On old heathland soils tree species influencing nutrient input with regard to higher amounts have competitive benefits on the early stages of succession and/or as first planted trees with consequences for both the successional development and the nutrition and management of heathland and forests. In three stages of heathland forest succession on highly acidified and nutrient poor soil, the influence of the canopies of a Calluna heathland, a pioneering birch-pine woodland, and a terminal oak-beech forest on nutrient input was investigated. Of all investigated species Scots pine has the highest interception of water and nutrients (N, K, Ca, Mg). As a consequence, the nutrient input into the pioneering birch-pine forest is the highest of the three types of ecosystems. This ability to meliorate the nutrient supply by increasing the nutrient input favours pine in the early stages of the succession. The enhanced nutrient input and accumulation within the young successional forest ecosystems involves two different succession and/or management considerations depending upon the further ecosystem development.
  • 1.The increasing nutrient availability mitigates the negative influence of the highly acidified nutrient poor soil on the growth of oak and beech and facilitates the conversion of pine dominated woodlands and forests into forests dominated by broadleaved species.
  • 2.For regeneration of heathland from naturally established pine woodlands and forests, deforestation have to be combined with techniques of nutrient impoverishment of the soil.
  相似文献   

20.
The paper deals with the issue of the spontaneous development of Central-European floodplain forests. The research object was the Cahnov–Soutok National Nature Reserve situated on the confluence of Dyje R. and Morava R. in the Czecho–Slovak-Austrian borderland area. This locality has been left to spontaneous development since the beginning of the 1930s. In the years 1973, 1994 and 2006, the surveyed site was subjected to the measurement of standing and lying, live and dead trees reaching a diameter at breast height of 10 cm and the whole area regeneration of woody species. The work objective is to describe the most pronounced trends in tree layer changes having occurred in the period of study and to capture changes in the total tree volume and production of dendromass during the disintegration of the old grazing oak layer. The survey into the near-natural floodplain forest of Cahnov–Soutok showed that (1) the most significant trend is a decreased representation of Quercus robur in all monitored indicators and conversely an expanding representation of Acer campestre, Carpinus betulus and Tilia cordata and (2) that the floodplain forest ecosystem demonstrates a high-level stability in the total volume of tree biomass with an essential change in the tree species composition, spatial structure and average stem volume of individual trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号