首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
《水生生物资源》1999,12(2):121-130
The French oyster farming industry relies almost exclusively on juveniles collected from the natural environment; the supply of spat produced by hatcheries is low, about 10 % of the industry's requirements. Development through selective breeding of oyster stocks which are better suited for aquaculture purposes, is likely to reverse this tendency since only hatcheries will be able to supply such animals. Scallop farming, which at present is poorly developed in France, relies exclusively on hatchery produced spat. Although hatchery technology is constantly being improved, significant production problems remain which must be solved before hatcheries become a major supplier of juveniles for the industry. This paper describes the present state of hatchery technology in France based on experimental results obtained with the great scallop Pecten maximus and the Pacific oyster Crassostrea gigas, over the past ten years. Compared to the great scallop, the Pacific oyster has higher D larva yields (60 % for C. gigas vs. 30 % for P. maximus) and a faster larval growth rate (10 μm·d−1 for C. gigas vs. 5 μm·d−1 for P. maximus). However, Pacific oysters have a greater heterogeneity during larval development and higher mortality rates (40 % for C. gigas vs. 25 % for P. maximus) which produce lower overall yields of pediveliger larvae ready-to-set for Pacific oysters (15 %) compared to the great scallop (30 %). Development of continuous larval and post-larval culture methods along with development of continuous phytoplankton technology offers one of the most promising methods to improve molluscan hatchery techniques.  相似文献   

2.
The effect of temperature on the development, growth, survival and settlement of Perna viridis was studied under controlled conditions to provide information needed for the development of commercial hatchery technology for green mussel P. viridis. Total mortality of the larvae occurred after 24 h at temperatures of 33°C and 35°C. At 24°C, larvae took longer to settle than at temperatures of 27°C, 29°C and 31°C. For optimum larval development (8–13 h), growth (17.2±0.84 μm day–1) and survival (55.2±0.84%), a hatchery rearing temperature of 31°C is required. For settlement no significant difference was seen between the percentage settlement at 29°C (49.3±3.34%) and 31°C (45.8±1.76%). However, the process of settlement began and ended earlier at 29°C (from 15 to 18 days) than at 31°C (from 18 to 20 days). Thus for larval settlement a temperature of 29°C is recommended.  相似文献   

3.
In order to optimize Pecten maximus larval performance and post-larval yield, larvae were fed five algal concentrations in the range 3–20 cells μL?1 in 2,800-L flow-through tanks without prophylactic antibiotics. Competent larvae were transferred to a commercial hatchery for settlement and provided uniform conditions for 4 weeks to observe effects. Increased diet concentration increased the sum of fatty acids (FA) in the total larval population, reaching 7 and 25 ng FA larvae?1 at 3 and 16 cells μL?1, respectively. The FA level in competent larvae was not affected by diet concentration and ranged from 30 to 46 ng larvae?1. Increased diet concentration increased larval growth rate, and the larvae were ready to settle 5 days earlier when fed 16 cells μL?1 compared to 3 cells μL?1. Larval ingestion rate increased during life span and with increased larval diet concentrations, but a considerable amount (40–60 %) of the added algal cells was lost from the larval rearing tanks due to the seawater flow. There was no effect on larval survival, final post-larval shell height, % of competent larvae transferred to settlement, or total yield of post-larvae. Final mean post-larval shell height was 509 μm and 25.5 % of competent larvae settled, resulting in a final post-larval yield between 6.9 and 17.6 % of the initial number of d3 larvae. Competent larvae with similar FA content produced similar numbers of post-larvae independent of diet concentration, even if higher diet concentrations resulted in higher rates of larval development and metamorphosis.  相似文献   

4.
The toxicity of formalin and trifluralin to the larval stages of the mud crab Scylla serrata was compared in a static bioassay. Prophylactic doses of 5, 10, 15, 20 and 25 μg L−1 formalin and 0.05, 0.1, 0.2, 0.4 and 0.8 μg L−1 trifluralin were used. Toxicity was assessed on the basis of survival of larvae after 24, 48, 72 and 96 h exposure to the test chemicals and metamorphosis to the next larval stage. Result shows that larval survival in all stages was significantly reduced at concentrations of 20 and 25 μg L−1 formalin whereas larvae were able to tolerate all trifluralin treatments. However, larvae became more tolerant to high formalin concentrations as the larval stage progressed. Survival was better at 5, 10 and 15 μg L−1 formalin and in all trifluralin treatments than the control in almost all the larval stages. Faster metamorphosis was observed at 5 and 10 μg L−1 formalin and 0.05, 0.1 and 0.2 μg L−1 trifluralin concentrations. Doses of formalin and trifluralin obtained from the toxicity experiments were applied as prophylaxis to newly hatched larvae in white plastic basins. Prophylactic doses of 5 and 10 μg L−1 formalin and 0.05 and 0.1 μg L−1 trifluralin applied every other day were found to be effective in enhancing survival and larval development to megalopa compared with control. However, no megalopae survived to crab instar in all formalin treatments. Although the use of fungicides in rearing systems resulted in higher survival compared with controls, other strategies (i.e. maintenance of good water quality and hygienic practices in the hatchery) should be further investigated as an alternative to the use of chemicals in hatcheries.  相似文献   

5.
Survival, growth and yield of competent great scallop (Pecten maximus) larvae were investigated during a full production season in a commercial hatchery in western Norway. Broodstock were collected from natural scallop beds and 12 groups were induced to spawn during the period December 2002 to July 2003. Larvae were reared on a large scale in 36 flow-through tanks (3500 l) at 17±1 °C and continuously fed a mixture of five algal species produced in an indoor continuous-flow system. Large variations in larval performance between spawning groups and tanks were observed, but the results were as good as earlier results using the batch system and prophylactic addition of chloramphenicol. Growth from days 3–24 averaged 4.8 μm day−1±0.8 (sd) and survival 22.4%±21.8 (sd). Mean yield of day 3 larvae was 7.1%±10.0 (sd) and 26.6%±25.9 (sd) for those surviving to day 24. Yield was significantly correlated to larval survival. Larval success was related to initial larval density, algal concentration and season. It was found that the best production regime had an initial larval density lower than 6 ml−1 and algal concentration of less than 12 μl−1 regardless of season. Seventeen tanks met these criteria and produced a mean yield of 0.5 larvae ml−1 to settlement. Flow-through systems are currently regarded as the only feasible method for viable hatchery production of P. maximus larvae in Norway.  相似文献   

6.
Scallop Pecten maximus spat (1.3–2.1 mm shell height) from different settlement groups were transferred from hatchery to land‐based nursery at different ages and sizes. Chemical content, growth and survival were compared at transfer time and after 1 and 8 weeks of nursery growth. Growth was lowest and mortality highest in the first week after transfer. Mean shell height growth was 21.5–71.4 μm day?1 and ash‐free dry weight (AFDW) growth ?2.7 to 10.3 μg day?1. Spat from the first settlement group attained a larger size and weight than spat from larvae settled 3 days later, but had a lower daily growth rate (%). Keeping the late‐settled spat a longer time in the hatchery to reach a bigger size before transfer seemed not to improve subsequent nursery growth. Survival showed a large variation with mean survival ranging from 32% to 74%. A substantial reduction in lipid content was found after transfer to the nursery. Sterol content at transfer was the only lipid class correlating with survival in the nursery. Based on the results, it is justified that spat groups of different settlement age are included in production of 15‐mm great scallop spat if they are transferred from the hatchery at the same age.  相似文献   

7.
Harvesting practices of the clam Chionista fluctifraga show a decline in commercial size and densities, but no strategies have been developed to maintain clam beds. Aquaculture represents an alternative for preserving this resource. Adult clams from commercial grounds were used as broodstock. Conditioning, induction of spawning, cultivation of larvae, settlement of eyed larvae and nursing of postlarvae were performed in the hatchery for producing spat. Larvae and postlarvae were used to measure increase in shell height and data were fitted to exponential growth models. Spat were placed in floating trays and maintained in off‐bottom cultivation for 9 months. Samples of clams and tissues were collected monthly to measure absolute growth, shell height increase and a condition index. Larvae, postlarvae and juveniles showed exponential growth patterns. Mean shell height increased about 0.030 mm day?1 during larval and post‐larval stages and 0.049 mm day?1 during field cultivation. Pediveligers (height 215 ± 83 μm) entered metamorphosis at days 9–13 after fertilization, and postlarvae reached 3011.7 ± 325.5 μm (height) at day 60. After field cultivation, survival was about 95%; juvenile shell height was 20.6 ± 2.2 mm, and total weight was 5.3 ± 0.7 g. Growth rates were superior to natural conditions and the condition index was high throughout the study. Our results show that spat of C. fluctifraga can be produced in the hatchery, and that field production can be maintained in off‐bottom trays until reaching commercial size. Aquaculture activities for this species need to be established and evaluated.  相似文献   

8.
In bivalve aquaculture, selecting suitable probiotic treatments can be crucial for improving hatchery‐rearing of larvae and juveniles. We assessed the potential of five bacterial strains, previously selected in vitro, to improve survival, growth and resistance of catarina scallop Argopecten ventricosus during early and late larval and juvenile developmental stages, as well as during exposure to the pathogen Vibrio alginolyticus. Hatchery‐reared larvae and juveniles were treated with eight treatments of single or combined strains of Bacillus and Lactobacillus at 1 × 106 CFU mL?1 every 48 h for 9 days (larvae) and 21 days (juveniles). Compared with the control, significantly higher survival and growth in size and weight of early veliger larvae occurred with the antibiotic and the RL5 (Lactobacillus graminis) treatments. Significantly enhanced settlement of pediveliger larvae occurred with a different probiotic strain, the mix of Lactobacillus and Bacillus (MIX‐LB), while higher survival and growth of early juveniles occurred with C3 (Lactobacillus plantarum). The mix of Bacillus (MIX‐B) significantly increased survival of juveniles from V. alginolyticus after 120‐h infection, consistent with maximum activity of superoxide dismutase enzyme. In contrast, all untreated and infected scallops died by 96 h. The three Bacillus strains performed poorly when used as single treatments and when given to early developing larvae. Our results indicate that the action mechanism of probiotic strains is stage specific and strain specific, generating different responses by the host, including improved survival and growth (likely from better nutrient assimilation) and higher resistance against pathogens (possibly from strengthening the immune system).  相似文献   

9.
Isostichopus badionotus is a new commercially important sea cucumber in the Caribbean that has rapidly shown signs of overexploitation. There is no information on the growth and survival rates for wild or hatchery‐produced early juveniles. Hatchery production and determination of juvenile growth rates are essential for future aquaculture efforts for this species. In this study, daily growth rate (GR), specific growth rate (SGR), weight gain (WG), survival rate (SR), and weight–length relation (WLR) were evaluated using small (0.01 g) and large (0.25 g) hatchery‐produced early juveniles under laboratory conditions. Growth was rapid compared to other cultured sea cucumber species; maximal values of SGR and WG were obtained for small juveniles (4.58%/day and 2,191%, respectively), while maximal GR and SR were obtained for large juveniles (0.29 mm/day and 99.17%, respectively). A wide range of sizes was evident at the end of each trial. The WLR of small and large juveniles fit with a negative allometric growth trend. This study highlights the potential production of I. badionotus as early juvenile stages withstand hatchery handling well and exhibit a high SR, reaching commonly released mean sizes (>0.7 g and 25 mm) after almost 3 months (120 days postfertilization).  相似文献   

10.
The performance of hatchery‐reared juveniles either in aquaculture grow‐out systems or stock enhancement is likely to be dependent on a range of factors during the hatchery phase of production. With recent progress in the development of hatchery systems for the mud crabs Scylla spp., there is growing interest in evaluation of the quality of hatchery‐reared juveniles relative to wild seed crabs as currently used in aquaculture. Hatchery‐reared and wild‐collected Scylla paramamosain juveniles were stocked either together in ponds or separately. All crabs were tagged with microwire‐coded tags, so that origin could be determined in the mixed groups. Preliminary validation demonstrated that tagging did not affect survival or growth, with a tag retention of 94%. After 106 days of culture, there was no significant difference in survival at harvest between the two sources of crabs. The wild juvenile crabs had a significantly higher initial weight:carapace width (CW) ratio compared with those from the hatchery, indicating a difference in condition. However, where crabs were stocked separately, the hatchery‐reared animals exhibited significantly faster growth than those collected from the wild, both in terms of specific growth rate and CW increase per month. However, in the mixed ponds, where there was competition with wild crabs, there was no significant difference in growth rate between crabs from the two sources. Overall, the results demonstrate that the growth performance of hatchery‐reared S. paramamosain can at least equal that of wild‐collected seed crabs in ponds culture.  相似文献   

11.
The combined effects of stocking density and microalgae ration on survival and size of Saccostrea echinata larvae were studied in two‐factor experiments for the major developmental stages: D‐veliger (1‐day posthatch [dph], Experiment 1), umbonate (12 dph, Experiment 2), and eyed (19 dph, Experiment 3) larvae. Larvae were stocked into replicate sets of four 10‐L aquaria with ambient 1‐μm filtered sea water (28 ± 1.5°C and 36 ppt) and cultured for four days at densities of 0.5, 2, 5, 7, or 10 larvae/mL and provided with microalgae rations at each of five densities (cells larvae?1 day?1); 0, 1, 3, 5, or 8 × 103 (D‐veliger larvae, Experiment 1); 0, 5, 12, 18, or 25 × 103 (umbonate larvae, Experiment 2); and 0, 15, 30, 40, or 60 × 103 (eyed larvae, Experiment 3). Microalgae rations for each larval life stage were selected on the basis of increasing food requirement with larval size and comprised a 2:1:1 mixture of Chaetoceros calcitrans, Tisochrysis lutea, and Pavlova spp., calculated on an equal dry‐weight basis. Contour plots were generated from larval survival and larval size (dorso‐ventral measurement [DVM]) data to determine optimal culture conditions. Larvae showed high survival (54–100%) over a wide range of both treatment parameters across all life stages, confirming broad tolerance limits for this species. The interaction effects of larval stocking density and microalgae ration on larval size were significant (p < 0.001) across all life stages. Results indicate that maximum larval size (DVM) is achieved when S. echinata are cultured at: 6–8 larvae/mL and fed 5–6 × 103 cells larvae?1 day?1 for D‐veligers (mean DVM >80 μm), at 2–8 larvae/mL and fed 11–25 × 103 cells larvae?1 day?1 for umbonate larvae (mean DVM > 190 μm), and at 1–4 larvae/mL and fed 15–40 × 103 cells larvae?1 day?1 for eyed larvae (mean DVM >230 μm). Results will help refine current hatchery methods for S. echinata supporting further development toward commercial aquaculture production of this species.  相似文献   

12.
A flow-through (FT) culture system is described for calico scallop, Argopecten gibbus, larvae. Its performance was assessed by larval survival rate, shell growth, settlement rate and post-larval shell growth for the duration of larval life (13 days). Comparisons were made with larvae reared in standard static system (S). Effect of increased larval density on FT performance was also investigated. With comparable larval densities, survival rate of Day 2 larvae to pediveliger stage was similar in both larval rearing systems. Shell growth for FT-reared larvae was comparable or significantly higher than in the static system (P < 0.01). Settlement rate of pediveligers was comparable for both systems, averaging 30.7%, and no significant difference was seen in shell growth of FT- and static-reared pediveligers. Increased initial larval density did not affect survival rate in FT, but did negatively affect larval shell growth, settlement rate and post-larval shell growth yielding lower growth and minimal settlement rate (10.9 ± 2.8%) compared to the static system. This FT system was successful as larval rearing system, optimising space allocation in the hatchery, reducing labour, and eliminating the use of antibiotics. Optimising initial larval density within the system needs to be investigated in association with food ration.  相似文献   

13.
This study examined the feeding selectivity of Hippocampus kuda juveniles under captive conditions and evaluates different food organisms that could be used to improve hatchery‐rearing of this species. Newly born H. kuda were reared for 10 days in 60‐L capacity tanks and fed rotifers (Brachionus rotundiformis), zooplankton (mostly Pseudodiaptomus annandalei and Acartia tsuensis) alone or both food sources. The size and amount of food ingested increased as seahorses grew. Selective feeding of seahorses appeared to change as they develop, preferring copepod adults over nauplii and rotifers. A. tsuensis was highly selected by juveniles over P. annandalei. Specific growth rate in terms of body weight (SGR‐BW, 15% day–1) was the highest and mortality rate (9% at day 10) the lowest in seahorses fed a mixed food sources. Slowest growth rate (0.3% day–1) and highest mortality rate (60% at day 7) were observed in seahorses fed rotifers alone. These results indicate that copepods are suitable food for seahorse juveniles, but a mixture of food organisms in the rearing tank environment enhances survivorship and growth of H. kuda, thus potentially providing a source of cultured rather than wild specimens for characterizing the life history of this threatened species.  相似文献   

14.
In June 1989, the water column along a transect in the north-central Gulf of St Lawrence was thermally stratified (10–14oC at the surface; 0-loC at 30 m). In the surface layer, nitrate and chlorophyll concentrations were very low; the mean concentration of chlorophyll a > 5 μm in the subsurface maximum was 0.26 μg1-1. Autotrophic and (presumably) heterotrophic flagellates and dinoflagellates were the most abundant micro-plankton. In this system, redfish (Sebastes spp.) larvae and the planktonic copepod Calanus finmarchicus overwhelmingly dominated the ichthyoplankton and zoo-plankton, respectively. Redfish larvae, Calanus females and Calanus eggs were most abundant in the surface layer (0–25 m) day and night. Daily specific egg production rates of Calanus, calculated from shipboard incubations of females, approached the predicted maximal level for this species at the ambient temperature of the surface layer, indicating no or little food limitation. The redfish larvae were feeding almost exclusively on the Calanus eggs and were found in greatest abundance along the transect where Calanus egg production rates (eggs m-2 day-1), calculated from the product of the specific egg production rate and female concentration, were highest. The mono-specificity of the larval redfish diet and the codom-  相似文献   

15.
A series of experiments were conducted to obtain an efficient larval rearing protocol for Megabalanus azoricus. The first part of this study investigates the effect of microalgae‐based diets on survival and larval development. Mono and mixed‐diets were tested at 20 ± 1°C, in a sequence of 11‐day feeding experiments. The second part presents a preliminary study on the influence of a biofilm on recruitment and use of oyster spat collectors in a mass rearing system. A photographic record of larval development and a brief reference to the diagnostic features that enable quick larval staging are also presented, along with morphometric measurements. Of the microalgae tested (Chaetoceros sp., Chloromonas sp., Dunaliella sp., T‐Isochrysis sp. and Skeletonema sp.) the mixed‐diet Skeletonema sp. with T‐Isocrysis sp. showed the highest survival percentages: total survival ranged from 79.7 to 85.7% and 69.7–80.0% of nauplii were in stage VI after 11 days of rearing. Cypris were also present, but only represented 5.3% of the survivors at most. In the mass rearing system juveniles were found settled in the collectors after 25 days, at 20 ± 1°C. However recruitment was less than 1%. Preliminary results showed no settlement preference towards collectors with biofilm. Nevertheless, this study provides the first record of M. azoricus settlement under laboratorial conditions and represent a starting point for future larval rearing studies.  相似文献   

16.
Clearance rate (CR) and ingestion rate (IR) of different sizes (89, 125 and 188 μm shell length) of Pinctada margaritifera larvae were determined when feeding on various microalgae. The microalgae tested were the diatoms, Chaetoceros muelleri and C. simplex, and flagellates, Tahitian Isochrysis aff. galbana, Pavlova lutheri and P. salina at 5 or 10 cells μL–1. Both CR and IR of microalgae tested in this study increased with increasing larval size; but at all larval sizes, diatoms resulted in lower CR and IR. Of the microalgae tested, P. margaritifera larvae showed greatest CR and IR with the two Pavlova spp. Maximum CR for P. salina was 10.5, 21.2 and 29.7 μL h–1 for larvae with shell lengths of 89, 125 and 188 μm, respectively. The highest IR values for P. margaritifera larvae with shell lengths of 89, 125 and 188 μm were 8.7, 81.0 and 165.7 cells·larva–1 h–1, respectively. CR and IR of P. salina were approximately five times higher than those recorded for C. muelleri and C. simplex.  相似文献   

17.
An optimal chemical shell marking protocol was developed for the New Zealand green‐lipped mussel, Perna canaliculus with a view to its future use in larval tracking experiments. Larval P. canaliculus aged either 10, 15 or 19 days post fertilization were immersed in treatments of 50, 100 and 200 mg L?1 of calcein for a period of 24 h before measurements of shell mark brightness were taken. There was 100% marking success in all calcein treatments for all age classes, with 19‐day larvae immersed in 200 mg L?1 calcein producing the brightest mark. Growth was not affected by calcein immersion; however, 10‐day larvae exhibited significantly higher levels of mortality compared with 15‐ and 19‐day larvae suggesting a reduced resilience to the marking protocols in younger larvae. In a mass staining experiment, a solution of 100 mg L?1 calcein was used to successfully stain15.6 million hatchery reared P. canaliculus larvae. Calcein, therefore, offers a low impact method with which to stain the sensitive early life stages of this species thus providing a rapid method for identifying individuals of interest, i.e. individuals released in the wild or specific family lines within a hatchery environment.  相似文献   

18.
Despite the large progress obtained in recent years, Senegalese sole (Solea senegalensis) production of high quality juveniles is still a bottleneck. This paper examines the effect of larval and post-larval lipid nutrition on juvenile performance and quality. Four dietary treatments were tested: A—enriched Artemia spp. (EA); B—non-enriched Artemia spp. (NEA); C—EA during the pelagic larval period and NEA after larval settlement; D—50% EA and 50% NEA. Juvenile fatty acid profile at 60 days after hatching (DAH) clearly reflected the larval and post-larval diet composition. Feeding sole larvae on NEA (poor in lipids and essential fatty acids-EFA) had a negative effect, reducing growth (total length and dry weight) after 30 DAH and decreasing digestive enzyme activity at the end of the rearing period (60 DAH). However, relatively good performance compared to the EFA-richest treatment (A) was obtained when larvae were fed 50% EA and 50% NEA (D) or even EA only during the pelagic larval period followed by NEA after larval settlement (C). Malpigmentation was not affected by the dietary regimes and its incidence was very low. However, skeletal deformities were prevalent, particularly in the caudal complex, independently of diet. The results confirm that Senegalese sole appear to have lower larval EFA requirements than most cultured marine species and potentially even lower requirements during the post-larval stage. The importance of studying the impact of early nutrition on later juvenile stages was clearly highlighted in this study.  相似文献   

19.
Scaling up the hatchery production of juvenile sandfish Holothuria scabra is constrained by limited hatchery space and the associated high operational costs. To shorten the hatchery rearing phase, ocean nursery systems like floating hapa nets have been used with good prospects but with limitations during rough sea conditions. In this study, the potential of bottom‐set trays (0.14 m2) as an alternative ocean nursery system for early sandfish juveniles (0.5 ± 0.1 cm) was evaluated. The effects of stocking density and presence of artificial substrates (AS) on the growth and survival were determined in a 60‐day field experiment. Average length and growth rates at lower stocking density treatment (100 individuals tray?1) were significantly higher (1.45 ± 0.22 cm; 0.03 ± 0.01 cm day?1) than at higher stocking density treatments (400 and 500 individuals tray?1) 0.95 ± 0.06 cm; 0.03 ± 0.004 cm day?1) with or without AS (< .05) respectively. The coefficient of variation in length (CV) at high stocking densities were significantly higher than at low densities (< .05) and growth rate was strongly negatively correlated with density. Survival was significantly higher (55% ± 9%) in trays with AS across all stocking density treatments than in trays without AS (34% ± 2%). Results suggest that AS may have reduced intra‐ and interspecific interactions, resulting to significantly lower growth variations and higher survival. The bottom‐set tray with AS can be a practical alternative ocean nursery unit for rearing early sandfish juveniles particularly when the sea surface condition is rough. With improved design and density management, survival and growth may be further enhanced.  相似文献   

20.
The objective of this study was to understand the microbial flora associated with the hatchery system of giant fresh water prawn, Macrobrachium rosenbergii during an entire rearing cycle. Bacteriological and physico-chemical analysis was done for different samples of water, larvae, and Artemia. The total bacterial load in well water, seawater and inlet water varied from 101 to 105 cfu ml− 1 with higher counts seen in larval rearing tank (LRT) water. The Vibrio count ranged between 101 to 103 cfu ml− 1. Larval samples harboured a bacterial load of 106 to 107 cfu/10 larvae. The bacterial load in Artemia hatching water ranged from 4.90 × 104 to 5.63 × 106 cfu ml− 1 while Artemia had a load ranging from 1.08 × 107 to 2.09 × 109 cfu g− 1. Vibrio count in the LRT water ranged from 101-103 cfu ml− 1 while the count in larvae ranged from 102 to 104 cfu/10 larvae. The bacterial genera were predominantly Gram-negative and comprised of Aeromonas spp., Pseudomonas spp., Vibrio spp. and Bacillus spp. and non-spore formers (NSF) were the dominant Gram-positive bacteria. This study documents the bacterial flora associated with Macrobrachium hatchery system during a regular normal run. Knowledge of the qualitative and quantitative aspects of bacterial flora in the hatchery would help to understand disturbances, if any, brought about during disease outbreaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号