首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
以玫瑰为试材,采用L16(45)正交设计和单因素试验2种方法,研究模板DNA、Mg2+、dNTPs、引物和Taq酶5个因素对玫瑰SCoT-PCR反应体系的影响,建立最优化的反应体系并筛选合适引物。结果表明:模板DNA浓度为1.50ng/μL,Mg2+浓度为2.00mmol/L,dNTPs浓度为0.35mmol/L,引物浓度为0.70μmol/L,Taq酶用量为0.50U时,可建立玫瑰SCoT-PCR最佳反应体系,并筛选出20条扩增条带清晰、多态性丰富的SCoT引物。反应体系的优化及引物的筛选,为日后利用SCoT分子标记技术对玫瑰进行相关研究提供理论依据和技术支持。  相似文献   

2.
用单因素设计法对影响杨桃SCoT-PCR反应体系的主要因素Mg2+、dNTPs、引物、Taq DNA聚合酶及DNA模板浓度进行优化。结果表明,20μL反应体系中,含Mg2+2.5 mmol/L,dNTPs 0.3mmol/L,模板DNA 30mg/L,引物1.00μmol/L和Taq DNA聚合酶0.4U为最佳反应体系。用不同引物及杨桃DNA对该体系进行验证,扩增条带清晰,结果稳定可靠,证明该反应体系适用于杨桃SCoT-PCR扩增。  相似文献   

3.
以温郁金为试材,运用L25(56)正交设计在5个水平上对影响温郁金SCoT-PCR反应的模板DNA、Mg2+、dNTPs、Taq酶和引物5个因素进行优化试验,对PCR结果进行极差分析。建立并优化温郁金的目标起始密码子多态性-聚合酶链式反应(SCoT-PCR)体系,以期为温郁金的遗传多样性分析及分子鉴定等研究提供技术支持。结果表明:建立了温郁金SCoT-PCR的最佳反应体系(20μL):引物0.8μmol/L,dNTPs 0.4mmol/L,Mg2+1.5mmol/L,Taq酶0.5U,模板DNA 40ng,且确定各因素对温郁金SCoT-PCR反应效果的影响大小依次为:dNTPsTaq酶引物Mg2+模板DNA,其中dNTPs对体系影响最大。优化的温郁金SCoT-PCR反应体系在多个温郁金品种遗传多样性研究中得到了验证,结果表现出良好的稳定性、重复性和多态性丰富等特点,可用于今后温郁金品种遗传多样性分析、系统发育分析、遗传图谱构建、基因定位和分子标记辅助育种等研究。  相似文献   

4.
为建立和优化蛋黄果SCoT-PCR反应体系,以“仙桃1号”蛋黄果为试材,SCoT1为引物,采用L16(45)正交试验,对影响SCoT-PCR反应的DNA、Mg2+、dNTPs、引物及Taq聚合酶等因素进行优化;并选用3份地理位置相距较远的蛋黄果种质为模板,对优化反应体系进行验证。结果表明,不同因素对蛋黄果SCoT-PCR反应体系的影响存在差异,但不显著,其中最大的影响因素是Taq聚合酶含量,其次是dNTPs浓度、模板DNA含量、引物浓度和Mg2+浓度。蛋黄果SCoT-PCR最佳反应体系(20μL)为模板DNA 80 ng、3 mmol/L Mg2+、0.25 mmol/L dNTPs、0.4μmol/L引物、Taq 2 U。在该体系下,3份蛋黄果种质均能稳定扩增出清晰明亮、数目丰富且稳定性高的条带,说明优化的SCoT-PCR反应体系适用于蛋黄果SCoT分子标记。  相似文献   

5.
以番茄耐低温材料抗寒0号和不耐低温番青的F2为材料,利用正交试验设计对SRAP-PCR反应体系中的5因素(模板DNA、引物浓度、Mg2+浓度、dNTPs浓度、Taq DNA聚合酶)在4个水平上进行正交优化试验。结果表明:各因素水平变化对反应体系影响的大小依次为:引物>Taq DNA聚合酶>dNTPs>模板DNA>Mg2+。建立番茄耐低温SRAP-PCR的20 μL最佳反应体系为:模板DNA为15 ng、引物浓度0.75 μmol?L-1、Mg2+浓度2.0 mmol?L-1、dNTPs浓度0.125 mmol?L-1、Taq DNA聚合酶1.0 U。  相似文献   

6.
以苦瓜‘MC9’为试材,采用L16(45)正交实验,对苦瓜SSR-PCR反应体系的Mg2+浓度、dNTPs浓度、模板DNA量、Taq聚合酶量、引物浓度等5个因素的4个水平进行优化试验,并通过正交设计直观分析法对Mg2+浓度、dNTPs浓度、Taq聚合酶量进行了单因素确定。结果表明:最佳反应体系为1μL 10×PCR buffer,Mg2+浓度为1.75mmol·L~(-1),dNTPs浓度为0.25mmol·L~(-1),Taq DNA聚合酶1U,DNA 100ng,引物0.20mmol·L~(-1),ddH2O补足至10μL。  相似文献   

7.
以番茄耐低温材料抗寒0号和不耐低温番青的F2为材料,利用正交试验设计对SRAP-PCR反应体系中的5因素(模板DNA、引物浓度、Mg2+浓度、dNTPs浓度、Taq DNA聚合酶)在4个水平上进行正交优化试验.结果表明:各因素水平变化对反应体系影响的大小依次为:引物>Taq DNA聚合酶>dNTPs>模板DNA>Mg2+.建立番茄耐低温SRAP-PCR的20 μL最佳反应体系为:模板DNA为15 ng、引物浓度0.75 μmol·L-1、Mg2+浓度2.0 mmol·L-1、dNTPs浓度0.125 mmol·L-1、Taq DNA聚合酶1.0 U.  相似文献   

8.
以偃麦草叶片DNA为模板,利用单因子和L16(45)正交实验设计对影响偃麦草SRAP-PCR反应效果的Mg2+、引物、dNTPs、DNA、Taq DNA聚合酶5种因素进行优化,并比较了不同退火温度对扩增反应的影响,通过综合比较分析建立偃麦草SRAP-PCR的优化反应体系。结果表明:优化的偃麦草SRAP-PCR总体系20μL中,Mg2+1.75 mmol/L,引物0.15μmol/L,dNTPs 0.20mmol/L,DNA 50ng,Taq DNA聚合酶0.75U,2μL 10×PCR buffer;Mg2+和引物浓度对扩增效果影响最大,DNA浓度影响最小;采用该体系对32份偃麦草进行验证,扩增结果清晰稳定,此体系的建立为利用SRAP分子标记进行偃麦草遗传多样性、抗性标记等研究奠定了技术基础。  相似文献   

9.
以粉枝莓为试材,以改良CTAB法提取的基因组DNA为模板,从引物、dNTPs、Mg~(2+)浓度以及退火温度4个因素,对SCoT-PCR反应体系进行了优化,以建立适合粉枝莓SCoT-PCR最佳扩增体系。结果表明:SCoT-PCR反应体系的最佳条件为dNTPs 0.125mmol·L~(-1)、Taq DNA聚合酶0.15μL、引物1.0μmol·L~(-1)、Mg2+0.625mmol·L~(-1)、模板40ng、反应体积20μL、退火温度为51℃。该优化体系扩增的产物条带清晰,稳定性高。  相似文献   

10.
采用正交设计与单因素结合法,对国兰ISSR-PCR反应体系中的4个因素(dNTPs、引物浓度、Mg2+、Taq DNA聚合酶)进行优化试验,结果用DPS软件进行分析.结果表明:各因素对PCR结果均有显著影响,其中Taq DNA聚合酶对反应的影响最大;筛选出了各反应因素的最佳水平,建立国兰ISSR-PCR的最佳反应体系(25μL)为:dNTPs 0.2mmol/L、引物1.0 μmol/L、Mg2+2.5 mmol/L、Taq DNA聚合酶1U.  相似文献   

11.
枇杷属植物ISSR反应体系的建立和优化   总被引:7,自引:1,他引:6  
首次通过正交实验,对影响枇杷属植物ISSR反应较大的Mg2+、Taq酶、dNTPs、引物、模板DNA浓度进行筛选,并对扩增反应程序进行优化。优化后的反应体系为:25μL反应体系中,含10×buffer2.5μL,Mg2+浓度2.0mmol·L-1,Taq酶1.5U,引物0.3μmol·L-1,模板DNA60ng,dNTPs0.15mmol·L-1。反应程序为94℃预变性5mim;94℃变性1mim,退火温度70s,72℃延伸1.5mim,40次循环;72℃延伸7mim,4℃保存。  相似文献   

12.
【目的】建立和优化枇杷AS-PCR反应体系,为开展枇杷S基因快速鉴定奠定基础。【方法】以‘大五星’、‘早钟6号’和‘龙泉5号’为试材,通过正交实验设计对影响枇杷AS-PCR反应较大的Mg2+等5个因素的浓度进行筛选,并对扩增反应程序进行优化,运用正交设计直观分析法和DPS 7.05统计软件对扩增结果进行方差分析。【结果】优化后的枇杷AS-PCR反应分析体系为:25μL反应体系中,含10×buffer2.5μL,Mg2+浓度2.0 mmol·L-1,Taq酶1.5 U,引物0.5μmol·L-1,模板DNA80ng,dNTPs0.4 mmol·L-1。反应程序为94℃预变性1 min;94℃变性30 s,退火温度30 s,72℃延伸1 min,35次循环;72℃延伸5 min,4℃保存。【结论】建立了基于S基因保守序列设计引物的枇杷AS-PCR反应体系,利用该体系成功确定了‘大五星’的S基因型为S2-S41,其中S41为新分离鉴定的枇杷S-RNase基因,它们在GenBank上的登录号分别为JQ228451和JX217035。  相似文献   

13.
草莓属植物SCoT分析体系的建立及优化   总被引:1,自引:0,他引:1  
为利用SCoT技术开展草莓属(Fragaria)植物种质资源遗传多样性及分子系统学研究,以草莓属植物11个野生种和1个栽培品种为试材,采用L25(56)正交试验设计,建立了草莓属植物的最优SCoT-PCR反应体系,即20μL反应体系中,含Mg2+2.0 mmol·L-1、dNTPs 0.3 mmol·L-1、Taq酶0.75 U、引物0.75μmol·L-1、模板DNA 40 ng,并对退火温度进行了优化,对电泳检测方法及草莓属植物DNA提取方法进行了改进。共筛选出22个适于进行草莓属植物SCoT分析的引物。经验证,该反应体系稳定性好、可重复性强、多态性高、扩增效果好,适于草莓属植物的SCoT分析。  相似文献   

14.
正交设计优化果梅ISSR反应体系   总被引:16,自引:0,他引:16  
以果梅(PrunusmumeSieb.etZucc.)品种鸳鸯梅为试材,采用改良的CTAB法提取果梅嫩叶DNA,利用正交设计L16(45)探讨Mg2+、dNTPs、引物、TaqDNA聚合酶及模板DNA用量对果梅ISSR-PCR反应的影响,正交试验的结果采用直观分析和方差分析相结合。建立了果梅的ISSR-PCR优化反应体系,在20μL反应体系中含2μL10×Buffer,2.5mmol·L-1Mg2+,0.2mmol·L-1dNTPs,0.32μmol·L-1引物,20~80ng模板DNA,0.75UTaqDNA聚合酶。在此基础上探讨了引物UBC840的最适退火温度、最佳循环次数及延伸时间,引物UBC840的最适退火温度为50.6℃。应用该优化反应体系,用2个不同引物对19份果梅资源DNA进行ISSR-PCR扩增,结果显示优化的反应体系具有较高的稳定性。  相似文献   

15.
以合肥黄心乌为试材,利用正交试验设计,对SRAP-PCR反应体系中的Mg2+浓度、dNTPs浓度、引物浓度、Taq聚合酶浓度和模板DNA浓度进行5因素4水平的筛选分析,用me3-em3引物组合进行PCR扩增以确定最佳反应体系。结果表明,安徽乌菜SRAP-PCR最佳反应体系为:10×PCR buffer 1μL,Mg2+ 3.0mmol·L-1,dNTPs 0.2mmol·L-1,引物各0.5mol·L-1,模板DNA 4.0ng·μL-1,Taq聚合酶0.05U·μL-1,总体积为10μL。利用此反应体系对安徽乌菜进行PCR扩增并电泳检测,其结果清晰、稳定、可靠,可用于安徽乌菜的遗传分析。  相似文献   

16.
采用改良CTAB法提取了桦褐孔菌总DNA,确定ISSR最适25 μL反应体系为模板DNA浓度15 ng·μL-1,dNTPs 浓度150 μmol· L-1,引物浓度25 μmol·L-1,Taq DNA聚合酶浓度2.0 U,Mg2+浓度1.4 mmol· L-1,10×buffer 2.5 μL,其余用ddH2O补足;确定ISSR扩增程序为:94℃预变性5 min,35个循环:94℃变性1 min、45℃~51℃退火1 min(退火温度因不同引物而定)、72℃延伸1 min,最后72℃延伸5 min,4℃保存.筛选出16条ISSR引物,并成功应用引物UBC842完成了21株桦褐孔菌的ISSR-PCR反应.  相似文献   

17.
樱桃SRAP-PCR体系优化及其遗传多样性分析   总被引:5,自引:1,他引:4  
选取亲缘关系较远的3个不同基因型樱桃资源为试材,对影响SRAP标记PCR反应的模板、Mg2+、dNTPs、Taq酶及引物浓度进行了优化,建立了适合于樱桃SRAP标记的扩增体系。反应体系具体为:模板DNA75ng,dNTPs0.2mmol·L-1,Mg2+2.5mmol·L-1,引物0.3μmol·L-1,Taq酶1.0U,反应总体积20μL。采用优化的扩增体系,对45个樱桃种质材料进行了遗传多样性分析,筛选8对扩增清晰且多态性高的引物组合,检测位点共227个,其中多态性位点192个,占84.6%。应用NTSYS-pc软件进行聚类分析(UPGMA),结果表明45个樱桃品种可分为欧洲甜樱桃和中国樱桃2大类,品种间遗传相似系数在0.52~0.98;其中中国樱桃与甜樱桃种间的相似系数最小,表明2类种质具有不同的遗传背景;而组群内的不同品种资源表现了较高的遗传相似性。SRAP分子标记的聚类分析揭示了樱桃品种间亲缘关系与地理分布以及来源相关。  相似文献   

18.
SRAP分析体系的优化及在枇杷种质资源研究上的应用   总被引:16,自引:2,他引:14  
以me7(5’-TGAGTCCAAACCGGTCC-3’)和em7(5’-GACTGCGTACGAATTCAA-3’)正反向引物组合对西班牙枇杷品种Javierin进行了SRAP分析体系的优化,结果表明,在25μL反应体系中,5种主要成分的适宜浓度或用量分别是:dNTPs0.3mmol/L,Mg2+2.5mmol/L,TaqDNA聚合酶1.0U,引物0.3μmol/L,模板DNA20ng,优化的扩增程序为:94℃预变性5min,94℃变性1min,35℃复性1min,72℃延伸1min30s,5个循环;之后94℃变性1min,50℃复性1min,72℃延伸1min30s,35个循环;最后72℃下延伸10min。并将该优化的体系在来自中国、西班牙、日本、意大利和美国的46份枇杷种质资源上进行了SRAP扩增的初步应用,经琼脂糖和聚丙烯酰胺凝胶电泳均获得了清晰、重复性好的SRAP指纹图谱。  相似文献   

19.
吕杰  马媛  金湘  毛培宏  吕光辉 《北方园艺》2011,(14):131-134
以塔里木河流域胡杨(Populus euphratica)硅胶干燥叶片为材料,采用改进CTAB法提取胡杨基因组DNA,得到满足RAPD(Random amplif ied polymorphic DNA),随机扩增多态性DNA分析的胡杨基因组DNA。通过单因素优化试验,得到胡杨RAPD分析的最佳反应体系为:40 ng模板DNA,0.8 U rTaqDNA聚合酶,2.5 mmol/L Mg2+,0.3 mmol/L dNTPs,0.5μmol/L随机引物,1×buffer缓冲液,ddH2O补足至10μL。扩增反应程序为:94℃预变性5 min,94℃变性30 s,38℃复性30 s,72℃延伸120 s,35个循环,最后72℃延伸7 min。  相似文献   

20.
苹果IRAP技术体系的建立及优化   总被引:1,自引:0,他引:1  
通过苹果逆转座子长末端重复序列(LTR)保守区域设计引物,对影响苹果IRAP反应的重要因素进行了研究,建立并优化了苹果IRAP分子标记技术体系。优化的苹果IRAP分子标记体系为:25μL反应体系中,模板DNA50ng、Mg2+2.5mmol·L-1、dNTPs0.2mmol·L-1、10×buffer2.5mmol·L-1、TaqDNA聚合酶1.0U、引物0.4μmol·L-1。该体系在所试苹果品种中均获得了较理想的扩增效果,并能鉴定部分芽变品种。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号