首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three generations of a swine family produced by crossing a Japanese wild boar and three Large White female pigs were used to map QTL for various production traits. Here we report the results of QTL analyses for skeletal muscle fiber composition and meat quality traits based on phenotypic data of 353 F(2) animals and genotypic data of 225 markers covering almost the entire pig genome for all of the F(2) animals as well as their F(1) parents and F(0) grandparents. The results of a genome scan using least squares regression interval mapping provided evidence that QTL (<1% genome-wise error rate) affected the proportion of the number of type IIA muscle fibers on SSC2, the number of type IIB on SSC14, the relative area (RA) of type I on SSCX, the RA of type IIA on SSC6, the RA of type IIB on SSC6 and SSC14, the Minolta a* values of loin on SSC4 and SSC6, the Minolta b* value of loin on SSC15, and the hematin content of the LM on SSC6. Quantitative trait loci (<5% genome-wise error rate) were found for the number of type I on SSC1, SSC14, and SSCX, for the number of type IIA on SSC14, for the number of type IIB on SSC2, for the RA of type IIA on SSC2, for the Minolta b* value of loin on SSC3, for the pH of loin on SSC15, and for the i.m. fat content on SSC15. Twenty-four QTL were detected for 11 traits at the 5% genome-wise level. Some traits were associated with each other, so the 24 QTL were located on 11 genomic regions. In five QTL located on SSC2, SSC6, and SSC14, each wild boar allele had the effect of increasing types I and IIA muscle fibers and decreasing type IIB muscle fibers. These effects are expected to improve meat quality.  相似文献   

2.
Most QTL detection studies in pigs have been carried out in experimental F(2) populations. However, segregation of a QTL must be confirmed within a purebred population for successful implementation of marker-assisted selection. Previously, QTL for meat quality and carcass traits were detected on SSC 7 in a Duroc purebred population. The objectives of the present study were to carry out a whole-genome QTL analysis (except for SSC 7) for meat production, meat quality, and carcass traits and to confirm the presence of segregating QTL in a Duroc purebred population. One thousand and four Duroc pigs were studied from base to seventh generation; the pigs comprised 1 closed population of a complex multigenerational pedigree such that all individuals were related. The pigs were evaluated for 6 growth traits, 7 body size traits, 8 carcass traits, 2 physiological traits, and 11 meat quality traits, and the number of pigs with phenotypes ranged from 421 to 953. A total of 119 markers were genotyped and then used for QTL analysis. We utilized a pedigree-based, multipoint variance components approach to test for linkage between QTL and the phenotypic values using a maximum likelihood method; the logarithm of odds score and QTL genotypic heritability were estimated. A total of 42 QTL with suggestive linkages and 3 QTL with significant linkages for 26 traits were detected. These included selection traits such as daily BW gain, backfat thickness, loin eye muscle area, and intramuscular fat content as well as correlated traits such as body size and meat quality traits. The present study disclosed QTL affecting growth, body size, and carcass, physiological, and meat quality traits in a Duroc purebred population.  相似文献   

3.
We constructed a pig F2 resource population by crossing a Meishan sow and a Duroc boar to locate economically important trait loci. The F2 generation was composed of 865 animals (450 males and 415 females) from four F1 males and 24 F1 females and was genotyped for 180 informative microsatellite markers spanning 2,263.6 cM of the whole pig genome. Results of the genome scan showed evidence for significant quantitative trait loci (<1% genomewise error rate) affecting weight at 30 d and average daily gain on Sus scrofa chromosome (SSC) 6, carcass yield on SSC 7, backfat thickness on SSC 7 and SSC X, vertebra number on SSC 1 and SSC 7, loin muscle area on SSC 1 and SSC 7, moisture on SSC 13, intramuscular fat content on SSC 7, and testicular weight on SSC 3 and SSC X. Moreover, 5% genomewise significant QTL were found for birth weight on SSC 7, average daily gain on SSC 4, carcass length on SSC 6, SSC 7, and SSC X and lightness (L value) on SSC 3. We identified 38 QTL for 28 traits at the 5% genomewise level. Of the 38 QTL, 24 QTL for 17 traits were significant at the 1% genomewise level. Analysis of marker genotypes supported the breed of origin results and provided further evidence that a suggestive QTL for circumference of cannon bone also was segregating within the Meishan parent. We identified genomic regions related with growth and meat quality traits. Fine mapping will be required for their application in introgression programs and gene cloning.  相似文献   

4.
Pigs from the F(2) generation of a Duroc x Pietrain resource population were evaluated to discover QTL affecting growth and composition traits. Body weight and ultrasound estimates of 10th-rib backfat, last-rib backfat, and LM area were serially measured throughout development. Estimates of fat-free total lean, total body fat, empty body protein, empty body lipid, and ADG from 10 to 22 wk of age were calculated, and random regression analyses were performed to estimate individual animal phenotypes representing intercept and linear rates of increase in these serial traits. A total of 510 F(2) animals were genotyped for 124 micro-satellite markers evenly spaced across the genome. Data were analyzed with line cross, least squares regression, interval mapping methods using sex and litter as fixed effects. Significance thresholds of the F-statistic for single QTL with additive, dominance, or imprinted effects were determined at the chromosome- and genome-wise levels by permutation tests. A total of 43 QTL for 22 of the 29 measured traits were found to be significant at the 5% chromosome-wise level. Of these 43 QTL, 20 were significant at the 1% chromosome-wise significance threshold, 14 of these 20 were also significant at the 5% genome-wise significance threshold, and 10 of these 14 were also significant at the 1% genome-wise significance threshold. A total of 22 QTL for the animal random regression terms were found to be significant at the 5% chromosome-wise level. Of these 22 QTL, 6 were significant at the 1% chromosome-wise significance threshold, 4 of these 6 were also significant at the 5% genome-wise significance threshold, and 3 of these 4 were also significant at the 1% genome-wise significance threshold. Putative QTL were discovered for 10th-rib and last-rib backfat on SSC 6, body composition traits on SSC 9, backfat and lipid composition traits on SSC 11, 10th-rib backfat and total body fat tissue on SSC 12, and linear regression of last-rib backfat and total body fat tissue on SSC 8. These results will facilitate fine-mapping efforts to identify genes controlling growth and body composition of pigs that can be incorporated into marker-assisted selection programs to accelerate genetic improvement in pig populations.  相似文献   

5.
Three informative pig F2 families based on European Wild Boar (W), Meishan (M) and Pietrain (P) crosses have been used for genome‐wide linkage and quantitative trait loci (QTL) analysis. Altogether 129 microsatellites, 56 type I loci and 46 trait definitions (specific to growth, fattening, fat deposition, muscling, meat quality, stress resistance and body conformation) were included in the study. In the linkage maps of M × P, W × P and W × M families, average spacing of markers were 18.4, 19.7 and 18.8 cM, the numbers of informative meioses were 582, 534 and 625, and the total lengths of autosomes measured were 27.3, 26.0 and 26.2 Morgan units, respectively. Maternal maps were on average 1.3 times longer than paternal maps. QTLs contributing more than 3% of F2 phenotypic variance could be identified at p < 0.05 chromosome‐wide level. Differences in the numbers and positions of QTLs were observed between families. Genome‐wide significant QTL effects were mapped for growth and fattening traits on eight chromosomes (1, 2, 4, 13, 14, 17, 18 and X), for fat deposition traits on seven chromosomes (1, 2, 3, 4, 6, 7 and X), for muscling traits on 11 chromosomes (1, 2, 3, 4, 6, 7, 8, 12, 14, 15 and X), for meat quality and stress resistance traits on seven chromosomes (2, 3, 6, 13, 16, 18 and X), and QTLs for body‐conformation traits were detected on 14 chromosomes. Closely correlated traits showed similar QTL profiles within families. Major QTL effects for meat quality and stress resistance traits were found on SSC6 in the interval RYR1‐A1BG in the W × P and M × P families, and could be attributed to segregation of the RYR1 allele T derived from Pietrain, whereas no effect in the corresponding SSC6 interval was found in family W × M, where Wild Boar and Meishan both contributed the RYR1 allele C. QTL positions were mostly similar in two of the three families for body conformation traits and for growth, fattening, fat deposition and muscling traits, especially on SSC4 (interval SW1073‐NGFB). QTLs with large effects were also mapped on SSC7 in the major histocompatibility complex (MHC) (interval CYP21A2‐S0102) and affected body length, weight of head and many other traits. The identification of DNA variants in genes causative for the QTLs requires further fine mapping of QTL intervals and a positional cloning. However, for these subsequent steps, the genome‐wide QTL mapping in F2 families represents an essential starting point and is therefore significant for animal breeding.  相似文献   

6.
Pigs from the F(2) generation of a Duroc x Pietrain resource population were evaluated to discover QTL affecting carcass composition and meat quality traits. Carcass composition phenotypes included primal cut weights, skeletal characteristics, backfat thickness, and LM area. Meat quality data included LM pH, temperature, objective and subjective color information, marbling and firmness scores, and drip loss. Additionally, chops were analyzed for moisture, protein, and fat composition as well as cook yield and Warner-Bratzler shear force measurements. Palatability of chops was determined by a trained sensory panel. A total of 510 F(2) animals were genotyped for 124 microsatellite markers evenly spaced across the genome. Data were analyzed with line cross, least squares regression interval, mapping methods using sex and litter as fixed effects and carcass weight or slaughter age as covariates. Significance thresholds of the F-statistic for single QTL with additive, dominance, or imprinted effects were determined on chromosome- and genome-wise levels by permutation tests. A total of 94 QTL for 35 of the 38 traits analyzed were found to be significant at the 5% chromosome-wise level. Of these 94 QTL, 44 were significant at the 1% chromosome-wise, 28 of these 44 were also significant at the 5% genome-wise, and 14 of these 28 were also significant at the 1% genome-wise significance thresholds. Putative QTL were discovered for 45-min pH and pH decline from 45 min to 24 h on SSC 3, marbling score and carcass backfat on SSC 6, carcass length and number of ribs on SSC 7, marbling score on SSC 12, and color measurements and tenderness score on SSC 15. These results will facilitate fine mapping efforts to identify genes controlling carcass composition and meat quality traits that can be incorporated into marker-assisted selection programs to accelerate genetic improvement in pig populations.  相似文献   

7.
A QTL study for carcass composition and meat quality traits was conducted on finisher pigs of a cross between a synthetic Piétrain/Large White boar line and a commercial sow cross. The mapping population comprised 715 individuals evaluated for a total of 30 traits related to growth and fatness (4 traits), carcass composition (11 traits), and meat quality (15 traits). Offspring of 8 sires (n = 715) were used for linkage analysis and genotyped for 73 microsatellite markers covering 14 chromosomal regions representing approximately 50% of the pig genome. The regions examined were selected based on previous studies suggesting the presence of QTL affecting carcass composition or meat quality traits. Thirty-two QTL exceeding the 5% chromosome-wise significance level were identified. Among these, 5 QTL affecting 5 different traits were significant at the 1% chromosome-wise level. The greatest significance levels were found for a QTL affecting loin weight on SSC11 and a QTL with an effect on the Japanese color scale score of the loin on SSC4. About one-third of the identified QTL were in agreement with QTL previously reported. Results showed that QTL affecting carcass composition and meat quality traits segregated within commercial lines. Use of these results for marker-assisted selection offers opportunities for improving pork quality by within-line selection.  相似文献   

8.
Results from univariate outbred F2 interval mapping and sib-pair analyses of 12 growth and 28 carcass traits to identify QTL on SSC 2, 6, 13, and 18 were compared. Phenotypic and genetic data were recorded on a three-generation resource population including 832 F2 pigs from a cross between three Berkshire sires and 18 Duroc dams. Thirty markers with an average spacing of approximately 16 cM were genotyped across the four chromosomes. The outbred F2 mixed model included the effects of sex, birth month, and year, one-QTL additive, dominance and imprinting coefficients calculated every 1 cM using interval mapping, and a random family effect. The general sib-pair model used to describe the phenotypic differences between sib-pairs included the same systematic and random effects and a one-QTL additive coefficient calculated every 1 cM. The outbred F2 analysis found significant evidence of QTL on SSC 2 associated with 105-d weight, backfat thicknesses, LM area, fat percent, shear force, juiciness, marbling, and tenderness. In addition, QTL were identified on SSC 6 relating to 42-d weight and LM area, and on SSC 18 for fat and moisture percents. In most instances, the outbred F2 approach offered greater power to detect QTL; however, the sib-pair analysis offered greater power in several instances. The trait-specific superiority could be due to the relative advantage of each model within a trait data set. The two approaches provided complementary evidence for QTL segregating between the Berkshire and Duroc breeds used in the study that may be used to aid marker-assisted introgression and selection and candidate gene studies to improve swine growth and meat quality characteristics.  相似文献   

9.
利用24个微卫星进行猪数量性状座位定位及其遗传效应分析   总被引:10,自引:2,他引:10  
以 3头英系大白公猪与 7头梅山母猪杂交产生的三代资源家系用来检测猪重要经济性状的数量性状座位(QTL) ,2 0 0 0年下半年随机选留 140头F2代个体 ,进行屠宰测定 ,记录了包括生长、胴体组成等 43个性状 ;从已定位于家猪 3、4和 7号染色体上的遗传标记中选用 2 4个微卫星标记对所有个体进行基因型检测。采用最小二乘回归区间定位法进行QTL检测 ,通过置换实验来确定显著性阈值。在所研究的 32个生长和胴体性状中 ,3条染色体总共 16个QTL达到染色体显著水平 (P <0 0 5 ) ,其中 4个达到染色体极显著性水平 (P <0 0 1) ;同时在 4号和 7号染色体上还检测到了影响器官重性状的 3个QTL ,达到了染色体显著水平 (P <0 0 5 )。在某些QTL座位 ,其有利等位基因来源于具有较低性状平均值的品种。 2QTL模型分析下 ,在 4号染色体上检测到影响板油重的 2个QTL ,并且它们的效应方向相反。  相似文献   

10.
11.
A search for genomic regions affecting birth characters and accretion of weight and backfat was conducted in a Meishan-White Composite reciprocal backcross resource population. Birth traits analyzed (n = 750) were vigor score, number of nipples, and birth weight. Subsequent measures on gilts and barrows (n = 706) analyzed were weaning weight, 8-wk weight, ADG from 8 to 18 wk of age, ADG from 18 to 26 wk of age, 26-wk weight, and backfat over the first rib, last rib, and last lumbar vertebrae at 14 and 26 (n = 599) wk of age. Feed intake and growth of 92 individually penned barrows were also analyzed. A genomic scan was conducted with microsatellite markers spaced at approximately 20-cM intervals, a least squares regression interval analysis was implemented, and significance values were converted to genomewide levels. No associations were detected for traits measured at birth except for number of nipples, where one significant and two suggestive regions were identified on chromosomes (SSC) 10, 1, and 3, respectively. Early growth was affected by a region on SSC 1 as evidenced by associations with weights collected at weaning and 8 wk of age and ADG from 8 to 18 wk of age. Other regions detected for early growth rate were on SSC 2, 12, and X. Chromosomal regions on SSC 6 and 7 affected ADG from 18 to 26 wk of age. All measures of backfat were affected by regions on SSC 1 and X, whereas SSC 7 consistently affected backfat measures recorded at 26 wk of age. Suggestive evidence for QTL affecting backfat at 14 wk of age was also detected on SSC 2, 6, 8, and 9. These results have improved our knowledge about the genetics of growth rate and fat accretion at the molecular level in swine.  相似文献   

12.
Pig chromosome 7 (SSC 7) has been shown to be rich in QTL affecting performance and quality traits. Most studies mapped the QTL close to the swine leukocyte antigens (SLA), which has a large effect on adaptability and natural selection. Previous comparative mapping studies suggested that the 15-cM region limited by markers LRA1 (mapped at 55 cM) and S0102 (mapped at 70 cM) contains hundreds of genes. To decrease the number of candidate genes, we improved the mapping resolution with a genetic chromosome dissection through a backcross recombinant progeny test program between Meishan (MS) and European (EU; i.e., Large White or Landrace) breeds. Three first-generation backcross--(EU x MS) x EU--and two second-generation backcross--([EU x MS] x EU) x EU--sires carrying a recombination in the QTL mapping interval were progeny-tested (i.e., measured for a total of 44 growth, fatness, carcass and meat quality traits). Progeny family size varied from 29 to 119 pigs. Animals were genotyped for markers covering the region of interest. Progeny-test results allowed the QTL interval to be decreased from 15 to 20 cM down to 10 cM, and even less than 6 cM if we assumed that the EU pigs used in this study share only one QTL allele. Except for a putative QTL affecting some carcass composition traits, the SLA is excluded as a candidate region, suggesting that it might be possible to apply a marker-assisted selection strategy for this QTL, while controlling SLA allele diversity. The strong QTL effects remaining in animals with only 12.5% (issued from first-generation backcross boars) and 6.25% (issued from second-generation back-cross boars) Meishan genetic background shows that epistatic interactions are likely to be limited. Finally, the QTL does not have strong effects on meat quality traits.  相似文献   

13.
A genome-wide scan for QTL affecting economically important traits in beef production was performed using an F(2) resource family from a Japanese Black x Limousin cross, where 186 F(2) animals were measured for growth, carcass, and meat-quality traits. All family members were genotyped for 313 informative microsatellite markers that spanned 2,382 cM of bovine autosomes. The centromeric region of BTA2 contained significant QTL (i.e., exceeding the genome-wide 5% threshold) for 5 carcass grading traits [LM area, beef marbling standards (BMS) number, luster, quality grade, and firmness), 8 computer image analysis (CIA) traits [LM lean area, ratio of fat area (RFA) to LM area, LM area, RFA to musculus (M.) trapezius area, M. trapezius lean area, M. semispinalis lean area, RFA to M. semispinalis area, and RFA to M. semispinalis capitis area], and 5 meat quality traits (contents of CP, crude fat, moisture, C16:1, and C18:2 of LM). A significant QTL for withers height was detected at 80.3 cM on BTA5. We detected significant QTL for the C14:0 content in backfat and C14:0 and C14:1 content in intermuscular fat around the 62.3 to 71.0 cM region on BTA19 and for C14:0, C14:1, C18:1, and C16:0 content and ratio of total unsaturated fatty acid content to total SFA content in intramuscular fat at 2 different regions on BTA19 (41.1 cM for C14:1 and 62.3 cM for the other 4 traits). Overall, we identified 9 significant QTL regions controlling 27 traits with genome-wide significance of 5%; of these, 22 traits exceeded the 1% genome-wide threshold. Some of the QTL affecting meat quality traits detected in this study might be the same QTL as previously reported. The QTL we identified need to be validated in commercial Japanese Black cattle populations.  相似文献   

14.
Porcine chromosome 4 harbours many quantitative trait loci (QTL) affecting meat quality, fatness and carcass composition traits, detected in resource pig populations previously. However, prior to selection in commercial breeds, QTL identified in an intercross between divergent breeds require confirmation, so that they can be segregated. Consequently, the objective of this study was to validate several QTL on porcine chromosome 4 responsible for meat and carcass quality traits. The experimental population consisted of 14 crossbred paternal half-sib families. The region of investigation was the q arm of SSC4 flanked by the markers S0073 and S0813. Regression analysis resulted in the validation of three QTL within the interval: Minolta a * loin, back fat thickness and the weight of trimmed ham. The results were additionally confirmed by factor analysis. Candidate genes were proposed for meat colour, which was the most evident QTL validated in this study.  相似文献   

15.
An experimental F2 cross between Iberian and Landrace pig strains was performed to map quantitative trait loci (QTL) for diverse productive traits. Here we report results for meat quality traits from 369 F2 animals with records for pH 24 h postmortem (pH 24 h), muscle color Minolta measurements L* (lightness), a* (redness), and b* (yellowness), H* (hue angle), C* (chroma), intramuscular fat (IMF) and haematin pigment content measured in the longissimus thoracis. Pigs were genotyped for 92 markers covering the 18 porcine autosomes (SSC). Results of the genome scan show evidence for QTL for IMF (SSC6; F = 27.16), pH 24 h (SSC3; F = 7.73), haematin pigments (SSC4 and SSC7; F = 8.68 and 9.47 respectively) and Minolta color measurements L* (SSC4 and SSC7; F =16.42 and 7.17 respectively), and a* (SSC4 and SSC8; F = 8.05 and 7.36 respectively). No QTL were observed for the color measurements b*, H*, and C*. Alternative models fitting epistasis between QTL were also tested, but detected epistatic interactions were not significant at a genome-wise level. In this work we identify genomic regions related with meat quality traits. Improvement by traditional selection methods is complicated, and finer mapping would be required for their application in introgression programs.  相似文献   

16.
The small intestine is a vital organ in animal gastrointestinal system, in which a large variety of nutrients are absorbed. To identify quantitative trait loci (QTL) for the length of porcine small intestine, phenotypic values were measured in 1034 individuals at 240 d from a White Duroc × Chinese Erhualian intercross F2 population. The length of small intestine showed strong correlation with growth traits and carcass length in the F2 population. A whole‐genome scan was performed based on 183 microsatellites covering the pig genome in the F2 population. A total of 10 QTL for this trait were identified on 8 pig chromosomes (SSC), including four 1% genome‐wide significant QTL on SSC2, 4, 7 and 8, one 5% genome‐wide significant QTL on SSC12, and five 5% chromosome‐wide significant QTL on SSC5, 7, 13 and 14. The Erhualian alleles were generally associated with shorter length of the small intestine except the alleles on SSC7 and 13. The QTL on SSC4 overlapped with the previously reported QTL for the length of small intestine. Several significant QTL on SSC2, 8, and 12 were consistent with previous reports. The significant QTL detected on SSC7 was reported for the first time. All QTL identified in this study corresponded to the known region significantly associated with growth traits, supporting the important role of the length of small intestine in pig growth.  相似文献   

17.
Profits for commercial pork producers vary in part because of sow productivity or sow productive life (SPL) and replacement costs. During the last decade, culling rates of sows have increased to more than 50% in the United States. Both SPL and culling rates are influenced by genetic and nongenetic factors. A whole-genome association study was conducted for pig lifetime reproductive traits, including lifetime total number born (LTNB), lifetime number born alive (LNBA), removal parity, and the ratio between lifetime nonproductive days and herd life. The proportion of phenotypic variance explained by markers was 0.15 for LTNB and LNBA, 0.12 for removal parity, and 0.06 for the ratio between lifetime nonproductive days and herd life. Several informative QTL regions (e.g., 14 QTL regions for LTNB) and genes within the regions (e.g., SLC22A18 on SSC2 for LTNB) were associated with lifetime reproductive traits in this study. Genes associated with LTNB and LNBA were similar, reflecting the high genetic correlation (0.99 ± 0.003) between these traits. Functional annotation revealed that many genes at the associated regions are expressed in reproductive tissues. For instance, the SLC22A18 gene on SSC2 associated with LTNB has been shown to be expressed in the placenta of mice. Many of the QTL regions showing associations coincided with previously identified QTL for fat deposition. This reinforces the role of fat regulation for lifetime reproductive traits. Overall, this whole-genome association study provides a list of genomic locations and markers associated with pig lifetime reproductive traits that could be considered for SPL in future studies.  相似文献   

18.
Effects of genetic variation in porcine adipocyte and heart fatty acid-binding protein genes, A-FABP and H-FABP, respectively, on intramuscular fat (IMF) content and backfat thickness (BFT) were examined in F2 crossbreds of Meishan and Western pigs. The involvement of each FABP gene in IMF accretion was studied to confirm previous results for Duroc pigs. The F2 crossbred pigs were genotyped for various markers including microsatellite sequences situated within both FABP genes. Linkage analysis assigned the A-FABP and H-FABP genes to marker intervals S0001-S0217 (20 cM) on SSC4 and Sw316-S0003 (16.6 cM) on SSC6, respectively, refining previous chromosomal assignments. Next, the role of both chromosome regions/genes on genetic variation in IMF content and BFT was studied by 1) screening SSC4 and SSC6 for QTL affecting both traits by performing a line-cross analysis and 2) estimation of the effect of individual A-FABP and H-FABP alleles on both traits. In the first analysis, suggestive and chromosome-wise significant evidence for a QTL affecting IMF was detected on SSC6. The H-FABP gene is a candidate gene for this effect because it resides within the large region containing this putative QTL. The second analysis showed a considerable but nonsignificant effect of H-FABP microsatellite alleles on IMF content. Suggestive evidence for a QTL affecting BFT was found on SSC6, but H-FABP was excluded as a candidate gene. In conclusion, present and previous results support involvement of H-FABP gene polymorphisms in IMF accretion independently from BFT in pigs. Therefore, implementation of these polymorphisms in marker-assisted selection to control IMF content independently from BFT may be considered. In contrast to previous findings for Duroc pigs, no evidence was found for an effect of the A-FABP gene on IMF or BFT in this population.  相似文献   

19.
Impact of MYOD family genes on pork traits in Large White and Landrace pigs   总被引:2,自引:0,他引:2  
Summary Porcine myogenic differentiation genes ( MYOD ) family play a key role in growth and muscle development and are therefore considered as candidate genes for meat production traits. The objective of the study was to investigate the polymorphisms at four loci belonging to the MYOD genes family and analyse their associations with variation in meat production traits in Czech pig breeds. To verify the associations between the polymorphisms and the selected meat traits, altogether 254 pigs, including full- and half-sibs, of Large White and Landrace breeds were tested. The studied meat characteristics were weight of neck, loin, shoulder and ham, lean meat content (LMC), backfat thickness, intramuscular fat (IMF), remission, dry matter content and test daily gain. Statistically significant associations were observed between MYOG gene and fat and neck weight, and between MYF5 gene and IMF and LMC. High significant differences were observed between genotypes AA and AB of MYOD1 in IMF and between genotypes AB and BB of MYF5 in loin weight.  相似文献   

20.
Many QTL analyses related to meat production and meat quality traits have been carried out using an F(2) resource population produced by crossing 2 genetically different breeds. This experiment was intended to investigate whether these QTL were segregating in a purebred Duroc population that had been selected for meat production and meat quality traits during 7 generations. Sus scrofa chromosome 7, for which significant QTL of intramuscular fat and many other traits have already been reported, was studied. The polymorphism of 10 microsatellite markers that were arranged at about 20-cM intervals was investigated on 1,004 pigs. In the selected population, 954 progeny were produced from mating of 99 sires and 286 dams. The QTL analysis for a full-sib family population was examined with the multigeneration pedigree structure of the population. Variance component analysis was used to detect QTL in this population and was examined for the multigeneration pedigree population. In this study, multigenerational pedigree estimated identical by descent coefficients among sibs were produced using Markov chain Monte Carlo methods. The maximum likelihood of odds score was found at the 70-cM position for the LM area, at the 0-cM position for the pork color standard, and at the 120-cM position for the number of thoracic vertebra, but no significant QTL for intramuscular fat were detected on SSC 7. These results indicate that QTL analysis via a variance component method within a purebred population was effective to determine that QTL were segregating in a population of purebred Durocs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号