首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The advent of geostatistics and geographical information systems has made it possible to analyze complex spatial patterns of ecological phenomena over large areas in applied insect ecology and pest management. The objective of this study was to use geostatistics to characterize the spatial structure and map the spatial variation of damage caused by the berry borer (Hypothenemus hampei) and leaf miner (Leucoptera coffeella) in a coffee agroecosystem planted with the cultivar Catuai Vermelho IAC-99. Infestations of berry borer and leaf miner were evaluated in fruits and leaves, respectively. The pests were monitored at 67 georeferenced points in an area of 6.6 ha in 2005, 2006 and 2007. Variograms estimated by the method of moments (MoM) and residual maximum likelihood REML were compared. The latter were generally better in terms of the kriging error coefficients. Spherical variograms estimated by REML for berry borer infestation in fruits had ranges of spatial dependence of 34.62–118.4 m and for the leaf miner they were 53.93–133.7 m. For models fitted by weighted ordinary least squares (OLS) to the MoM experimental variogram, the ranges varied between 37.22 and 68.67 m for the berry borer and 100 and 155.4 m for leaf miner infestation. The variogram model parameters were used with the data for ordinary kriging to map the spatial variation of coffee pests for different monitoring periods. If there was no suitable variogram, inverse distance weighting was used to map the variation. The maps enabled visualization of the intensity of infestation of the insect pests for the different periods evaluated.  相似文献   

2.
Sensor-based methods of analysis to assess dry matter yield and quality constituents of crops are time- and labour-saving, and can facilitate site-specific management. Nevertheless, standard nadir measurements of maize (Zea mays cv. Ambrosius), based on top-of-canopy reflectance, are difficult due to plant heights of more than three metres. This study was conducted to explore the potential of off-nadir field spectral measurements for the non-destructive prediction of dry matter yield (DM), metabolisable energy (ME) and crude protein (CP) in total biomass in a maize canopy. Plants were measured at five different heights (0–50, 50–100, 100–50, 150–200 and 200–250 cm above the soil) at three zenith view angles (60°, 75° and 90°, respectively). Modified partial least squares regression was used for analysis of the hyperspectral data (355–2300 nm and 620–1000 nm). Optimum combinations of angle and height as well as an optimum one-sensor-strategy were determined for DM yield, CP and ME in total biomass. Coefficients of determination for off-nadir measurements were compared to nadir measurements; the results showed improved prediction accuracies for DM yield and ME using off-nadir measurements, but not for CP for which nadir measurements were better.  相似文献   

3.
Our aim is to build reliable weed maps to control weeds in patches. Weed sampling is time consuming but there are some shortcuts. If an intensively sampled variable (e.g. soil property) can be used to improve estimation of a sparsely sampled variable (e.g. weed distribution), one can reduce weed sampling. The geostatistical estimation method co-kriging uses two or more sampled variables, which are correlated, to improve the estimation of one of the variables at locations where it was not sampled. We did an experiment on a 2.1ha winter wheat field to compare co-kriging using soil properties, with kriging based only on one variable. The results showed that co-kriging Lamium spp. from 96 0.25m2 sample plots ha–1 with silt content improved the prediction variance by 11 % compared to kriging. With 51 or 18 sample plots ha–1 the prediction variance was improved by 21 and 15 %.  相似文献   

4.
A study was conducted to explore the potential use of a hand-held (proximal) hyperspectral sensor equipped with a canopy pasture probe to assess a number of pasture quality parameters: crude protein (CP), acid detergent fibre (ADF), neutral detergent fibre (NDF), ash, dietary cation–anion difference (DCAD), lignin, lipid, metabolisable energy (ME) and organic matter digestibility (OMD) during the autumn season 2009. Partial least squares regression was used to develop a relationship between each of these pasture quality parameters and spectral reflectance acquired in the 500–2 400 nm range. Overall, satisfactory results were produced with high coefficients of determination (R 2), Nash–Sutcliffe efficiency (NSE) and ratio prediction to deviation (RPD). High accuracy (low root mean square error-RMSE values) for pasture quality parameters such as CP, ADF, NDF, ash, DCAD, lignin, ME and OMD was achieved; although lipid was poorly predicted. These results suggest that in situ canopy reflectance can be used to predict the pasture quality in a timely fashion so as to assist farmers in their decision making.  相似文献   

5.
Bare soil reflectance from airborne imagery or laboratory spectrometers has been used to infer soil properties such as soil texture, organic matter, water content, salinity and crop residue cover. However, the relation of soil properties to reflectance data often varies with soil type and conditions and surface reflectance may not be representative of the conditions in the root zone. The objectives of this study were to assess the soil reflectance data obtained by ground-based sensors and to model soil properties in the root zone as a function of surface soil reflectance and plant response. Ground-based sensors were used to simultaneously monitor soil and canopy reflectance in the visible and near-infrared (VNIR) along six rows and in two growth stages in a 7 ha cotton field. The reflectance data were compared to soil properties, leaf nutrients and biomass measured at 33 sampling positions along the rows. Brightness values of the blue and green bands of soil reflectance were better correlated to soil water content, particulate organic matter and extractable potassium and phosphorus, while those in the red and NIR bands were correlated to soil carbonate content, total nitrogen, electrical conductivity and foliar nutrients. The correlation of red soil reflectance with canopy reflectance was significant and indicated an indirect inverse relationship between soil fertility and plant stress. The integration of surface soil reflectance and plant response variables in a multiple regression model did not substantially improve the prediction of soil properties in the root zone. However, crop nutrient status explained a significant portion of the spatial variability of soil properties related to nitrification processes when soil reflectance did not. The implication of these findings to agricultural management is discussed.  相似文献   

6.
基于随机森林的农耕区土壤有机质空间分布预测   总被引:3,自引:0,他引:3  
以陕西省周至县农耕区为研究区,采集192个土壤样品,通过随机森林模型(random forest, RF)对土壤有机质含量进行回归预测,通过29个(15%)独立验证点对预测结果进行精度验证,并与普通克里格(ordinary kriging,OK)和协同克里格(cokriging,COK)插值结果进行对比分析。结果表明,研究区土壤有机质含量在训练集和验证集中均属于中等变异性,含量处于中等偏低水平,大致表现为中、南部黑河东岸土壤有机质含量相对较高,东北部渭河沿岸含量较低。对变量重要性进行排序,影响研究区土壤有机质的主要因素为数字高程(DEM)和降水量。与OK、COK相比, RF对土壤有机质的预测值和实测值的相关系数(0.782)更高,而平均绝对误差(0.618 g·kg-1)和均方根误差(2.062 g·kg-1)更低,说明RF能够更精确地反映局部土壤有机质含量的空间变化信息。  相似文献   

7.
A field experiment of 18 wheat cultivars of erectophile, planophile and horizontal canopy architectures was conducted during the 2004–2005 growing seasons in Beijing (40°10.6′ N, 116°26.3′ E), China. Canopy reflectance (350–2500 nm) at different growth stages was measured and leaf area index (LAI) and leaf chlorophyll concentration (Chl) were determined at booting. The main objective of the study was to evaluate the ability of various vegetative indices (VIs) to detect canopy architectures in wheat genotypes. The chlorophyll-sensitive spectral indices, the modified chlorophyll absorption reflectance index (MCARI) and the transformed chlorophyll absorption reflectance index (TCARI), were very sensitive to canopy architectures in the wheat plants. The MCARI values were significantly (p < 0.05) larger for the horizontal genotypes than for the planophile ones, and also larger for the planophile genotypes than for the erectophile ones for the six growth stages. The TCARI had a similar power to MCARI for discriminating between different wheat canopy architectures. At booting, both MCARI and TCARI were only weakly related to Chl in the upper, middle and lower leaves. The results emphasized the difficulties of determining crop Chl from canopy reflectance. The mechanisms that cause the differences in MCARI and TCARI among the canopy architectures are discussed.  相似文献   

8.
One approach to the application of site-specific techniques and technologies in precision agriculture is to subdivide a field into a few contiguous homogenous zones, often referred to as management zones (MZs). Delineating MZs can be based on some sort of clustering, however there is no widely accepted method. The application of fuzzy set theory to clustering has enabled researchers to account better for the continuous variation in natural phenomena. Moreover, the methods based on non-parametric density estimation can detect clusters of unequal size and dispersion. The objectives of this paper were to: (1) compare different procedures for creating management zones and (2) determine the relation of the MZs delineated with potential yield. One hundred georeferenced point measurements of soil and crop properties were obtained from a 12 ha field cropped with durum wheat for two seasons. The trial was carried out at the experimental farm of CRA-CER in Foggia (Italy). All variables were interpolated on a 1 × 1 m grid using the geostatistical techniques of kriging and cokriging. The techniques compared to identify MZs were: (1) the ISODATA method, (2) the fuzzy c-means algorithm and (3) a non-parametric density algorithm. The ISODATA method, which was the simplest, subdivided the field into three distinct classes of suitable size for uniform management, whereas the other two methods created two classes. The non-parametric density algorithm characterized the edge properties between adjacent clusters more efficiently than the fuzzy method. The clusters from the non-parametric density algorithm and yield maps for three seasons (2005–2006, 2006–2007 and 2007–2008) were compared and agreement measures were computed. The kappa coefficients for the three seasons were negative or small positive values which indicate only slight agreement. These results illustrate the importance of temporal variation in spatial variation of yield in rainfed conditions, which limits the use of the MZ approach.  相似文献   

9.
The objective of this article was to study the spatial distribution pattern of rainfall erosivity. The precipitation data at each climatological station in Hebei Province, China were collected and analyzed and modeled with SPSS and ArcGIS. A simple model of estimating rainfall erosivity was developed based on the weather station data. Also, the annual average rainfall erosivity was calculated with this model. The predicted errors, statistical feature values and prediction maps obtained by using different interpolation methods were compared. The result indicated that second-order ordinary Kriging method performed better than both zero and first-order ordinary Kriging methods. Within the method of secondorder trend, Gaussian semi-variogram model performed better than other interpolation methods with the spherical or exponential models. Applying geostatistics to study rainfall erosivity spatial pattern will help to accurately and quantitatively evaluate soil erosion risk. Our research also provides digital maps that can assist in policy making in the regional soil and water conservation planning and management strategies. __________ Translated from Scientia Agricultura Sinica, 2006, 39(11): 2270–2277 [译自: 中国农业科学]  相似文献   

10.
The assessment and mapping of the risk of soil salinization can contribute to sustainable land planning aimed at mitigating soil degradation and increasing crop production. A probabilistic approach, based on multivariate geostatistics was used to model the spatial variation of soil salinization risk at the landscape scale and to delineate the areas at high risk. The study site is a citrus growing area in south-eastern Sardinia (Italy). Electrical conductivity (ECe), exchangeable sodium percentage (ESP), pH and ‘total clay + fine silt content’ (FIN), were measured in the topsoil (0–40 cm). The method requires indicator coding, which transforms measured data values into a binary variable according to critical thresholds. These latter were set to: 4 dS m?1 for ECe, 10% for ESP, 8 for pH, and 40% for ‘total clay + fine silt content’. To determine the probability of exceeding these critical values, multi-collocated indicator cokriging was used. Factorial kriging was also applied to identify one regionalized factor that summarizes the effects of the selected variables on soil salinization. Maps of each soil indicator and regionalized factor were produced to show the areas at risk of salinization. The results are valuable for planning the management of salinity.  相似文献   

11.
Soil organic matter (SOM) is a key indicator of soil quality although, usually, detailed data for a given area is difficult to obtain at low cost. This study was conducted to evaluate the usefulness of soil apparent electrical conductivity (ECa), measured with an electromagnetic induction sensor, to improve the spatial estimation of SOM for site-specific soil management purposes. Apparent electrical conductivity was measured in a 10-ha prairie in NW Spain in November 2011. The ECa measurements were used to design a sampling scheme of 80 locations, at which soil samples were collected from 0 to 20 cm depth and from 20 cm to the boundary of the A horizon (ranging from 25 to 48 cm). The SOM values determined at the two depths considered were weighted to obtain the results for the entire A Horizon. SOM distribution maps were obtained by inverse distance weighting and geostatistical techniques: ordinary kriging (OK), cokriging (COK), regression kriging either with linear models (LM-RK) or with random forest (RF-RK). SOM ranged from 46.3 to 78.0 g kg?1, whereas ECa varied from 6.7 to 14.7 mS m?1. These two variables were significantly correlated (r = ?0.6, p < 0.05); hence, ECa was used as an ancillary variable for interpolating SOM. A strong spatial dependence was found for both SOM and ECa. The maps obtained exhibited a similar spatial pattern for SOM; COK maps did not show a significant improvement from OK predictions. However, RF-RK maps provided more accurate spatial estimates of SOM (error of predictions was between four and five times less than the other interpolators). This information is helpful for site-specific management purposes at this field.  相似文献   

12.
Recent studies have demonstrated the potential importance of using soil texture to modify fertilizer N recommendations. The objective of this study was to determine (i) if surface clay content can be used as an auxiliary variable for estimating spatial variability of soil NO3–N, and (ii) if this information is useful for variable rate N fertilization of non-irrigated corn [Zea mays (L.)] in south central Texas, USA across years. A 64 ha corn field with variable soil type and N fertility level was used for this study during 2004–2007. Plant and surface and sub-surface soil samples were collected at different grid points and analyzed for yield, soil N parameters and texture. A uniform rate (UR) of 120 kg N ha−1 in 2004 and variable rates (VAR) of 0, 60, 120, and 180 kg N ha−1 in 2005 through 2007 were applied to different sites in the field. Distinct yield variation was observed over this time period. Yield and soil surface clay content and soil N parameters were strongly spatially structured. Corn grain yield was positively related to residual NO3–N with depth and either negatively or positively related to clay content depending on precipitation. Residual NO3–N to 0.60 and 0.90 m depths was more related to corn yield than from shallower depths. The relationship of clay content with soil NO3–N was weak and not temporally stable. Yield response to N rate also varied temporally. Supply of available N with depth, soil texture and growing season precipitation determined proper N management for this field.  相似文献   

13.
Active canopy sensors are currently being studied as a tool to assess crop N status and direct in-season N applications. The objective of this study was to use a variety of strategies to evaluate the capability of an active sensor and a wide-band aerial image to estimate surface soil organic matter (OM). Grid soil samples, active sensor reflectance and bare soil aerial images were obtained from six fields in central Nebraska before the 2007 and 2008 growing seasons. Six different strategies to predict OM were developed and tested by dividing samples randomly into calibration and validation datasets. Strategies included uniform, interpolation, universal, field-specific, intercept-adjusted and multiple-layer prediction models. By adjusting regression intercept values for each field, OM was predicted using a single sensor or image data layer. Across all fields, the uniform and universal prediction models resulted in less accurate predictions of OM than any of the other methods tested. The most accurate predictions of OM were obtained using interpolation, field-specific and intercept-adjusted strategies. Increased accuracy in mapping soil OM using an active sensor or aerial image may be achieved by acquiring the data when there is minimal surface residue or where it has been excluded from the sensor’s field-of-view. Alternatively, accuracy could be increased by accounting for soil moisture content with supplementary sensors at the time of data collection, by focusing on the relationship between soil reflectance and soil OM content in the 0–1 cm soil depth or through the use of a subsurface active optical sensor.  相似文献   

14.
15.
Soil water status mapping and two variable-rate irrigation scenarios   总被引:1,自引:0,他引:1  
Irrigation is the major user of allocated global freshwaters, and scarcity of freshwater threatens to limit global food supply and ecosystem function—hence the need for decision tools to optimize use of irrigation water. This research shows that variable alluvial soil ideally requires variable placement of water to make the best use of irrigation water during crop growth. Further savings can be made by withholding irrigation during certain growth stages. The spatial variation of soil water supplied to (1) pasture and (2) a maize crop was modelled and mapped by relating high resolution apparent electrical conductivity maps to soil available water holding capacity (AWC) at two contrasting field sites. One field site, a 156-ha pastoral farm, has soil with wide ranging AWCs (116–230 mm m−1); the second field site, a 53-ha maize field, has soil with similar AWCs (161–164 mm m−1). The derived AWC maps were adjusted on a daily basis using a soil water balance prediction model. In addition, real-time hourly logging of soil moisture in the maize field showed a zone where poorly drained soil remained wetter than predicted. Variable-rate irrigation (VRI) scenarios are presented and compared with uniform-rate irrigation scenarios for 3 years of climate data at these two sites. The results show that implementation of VRI would enable significant potential mean annual water saving (21.8% at Site 1; 26.3% at Site 2). Daily soil water status mapping could be used to control a variable rate irrigator.  相似文献   

16.
Site-specific soil management can improve profitability and environmental protection of citrus groves having large spatial variation in soil and tree characteristics. The objectives of this study were to identify soil factors causing tree performance decline in a variable citrus grove, and to develop soil-specific management zones based on easily measured soil/tree parameters for variable rate applications of appropriate soil amendments. Selected soil properties at six profile depths (0–1.5 m), water table depth, ground conductivity, leaf chlorophyll index, leaf nutrients and normalized difference vegetation index were compared at 50 control points in a highly variable 45-ha citrus grove. Regression analysis indicated that 90% of spatial variation in tree growth, assessed by NDVI, was explained by average soil profile properties of organic matter, color, near-infrared reflectance, soil solution electrical conductivity, ground conductivity and water table depth. Regression results also showed that soil samples at the surface only (0–150 mm) explained 78% of NDVI variability with NIR and DTPA-extractable Fe. Excessive available copper in low soil organic matter areas of the grove apparently induced Fe deficiency, causing chlorotic foliage disorders and stunted tree growth. The semivariograms of selected variables showed a strong spatial dependence with large ranges (varied from 230 m to 255 m). This grove can be divided into different management zones on the basis of easily measured NDVI and/or soil organic matter for variable rate application of dolomite and chelated iron to improve tree performance.  相似文献   

17.
Recent advances in optical designs and electronic circuits have allowed the transition from passive to active proximal sensors. Instead of relying on the reflectance of natural sunlight, the active sensors measure the reflectance of modulated light from the crop and so they can operate under all lighting conditions. This study compared the potential of active and passive canopy sensors for predicting biomass production in 25–32 randomly selected positions of a Merlot vineyard. Both sensors provided estimates of the normalized difference vegetation index (NDVI) from a nadir view of the canopy at veraison that were good predictors of pruning weight. Although the red NDVI of the passive sensors explained more of the variation in biomass (R 2 = 0.82), its relationship to pruning weight was nonlinear and was best described by a quadratic regression (NDVI = 0.55 + 0.50 wt−0.21 wt2). The theoretically greater linearity of the amber NDVI-biomass relationship could not be verified under conditions of high biomass. The linear correlation to stable isotope content in leaves (13C and 15N) provided evidence that canopy reflectance detected plant stresses as a result of water shortage and limited fertilizer N uptake. Thus, the canopy reflectance data provided by these mobile sensors can be used to improve site-specific management practices of vineyards.  相似文献   

18.
We examined the spatial structure of fruit yield, tree size, vigor, and soil properties for an established pear orchard using Moran’s I, geographically weighted regression (GWR) and variogram analysis to determine potential scales of the factors affecting spatial variation. The spatial structure differed somewhat between the tree-based measurements (yield, size and vigor) and the soil properties. Yield, trunk cross-sectional area (TCSA) and normalized difference vegetation index (NDVI, used as a surrogate for vigor) were strongly spatially clustered as indicated by the global Moran’s I for these measurements. The autocorrelation between trees (determined by applying a localized Moran’s I) was greater in some areas than others, suggesting possible management by zones. The variogram ranges for TCSA and yield were 30–45 m, respectively, but large nugget variances indicated considerable variability from tree to tree. The variogram ranges of NDVI varied from about 14–27 m. The soil properties copper, iron, organic matter and total exchange capacity (TEC) were spatially structured, with longer variogram ranges than those of the tree characteristics: 31–95 m. Boron, pH and zinc were not spatially correlated. The GWR analyses supported the results from the other analyses indicating that assumptions of strict stationarity might be violated, so regression models fitted to the entire dataset might not be fitted optimally to spatial clusters of the data.  相似文献   

19.
Productivity and botanical composition of legume-grass swards in rotation systems are important factors for successful arable farming in both organic and conventional farming systems. As these attributes vary considerably within a field, a non-destructive method of detection while doing other tasks would facilitate more targeted management of crops and nutrients in the soil–plant–animal system. Two pot experiments were conducted to examine the potential of field spectroscopy to assess total biomass and the proportions of legume, using binary mixtures and pure swards of grass and legumes. The spectral reflectance of swards was measured under artificial light conditions at a sward age ranging from 21 to 70 days. Total biomass was determined by modified partial least squares (MPLS) regression, stepwise multiple linear regression (SMLR) and the vegetation indices (VIs) simple ratio (SR), normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and red edge position (REP). Modified partial least squares and SMLR gave the largest R 2 values ranging from 0.85 to 0.99. Total biomass prediction by VIs resulted in R 2 values of 0.87–0.90 for swards with large leaf to stem ratios; the greatest accuracy was for EVI. For more mature and open swards VI-based detection of biomass was not possible. The contribution of legumes to the sward could be determined at a constant biomass level by the VIs, but this was not possible when the level of biomass varied.  相似文献   

20.
Vegetation indices (VIs) derived from remote sensing imagery are commonly used to quantify crop growth and yield variations. As hyperspectral imagery is becoming more available, the number of possible VIs that can be calculated is overwhelmingly large. The objectives of this study were to examine spectral distance, spectral angle and plant abundance (crop fractional cover estimated with spectral unmixing) derived from all the bands in hyperspectral imagery and compare them with eight widely used two-band and three-band VIs based on selected wavelengths for quantifying crop yield variability. Airborne 102-band hyperspectral images acquired at the peak development stage and yield monitor data collected from two grain sorghum fields were used. A total of 64 VI images were generated based on the eight VIs and selected wavelengths for each field in this study. Two spectral distance images, two spectral angle images and two abundance images were also created based on a pair of pure plant and soil reference spectra for each field. Correlation analysis with yield showed that the eight VIs with the selected wavelengths had r values of 0.73–0.79 for field 1 and 0.82–0.86 for field 2. Although all VIs provided similar correlations with yield, the modified soil-adjusted vegetation index (MSAVI) produced more consistent r values (0.77–0.79 for field 1 and 0.85–0.86 for field 2) among the selected bands. Spectral distance, spectral angle and plant abundance produced similar r values (0.76–0.78 for field 1 and 0.83–0.85 for field 2) to the best VIs. The results from this study suggest that either a VI (MSAVI) image based on one near-infrared band (800 or 825 nm) and one visible band (550 or 670 nm) or a plant abundance image based on a pair of pure plant and soil spectra can be used to estimate relative yield variation from a hyperspectral image.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号