首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 968 毫秒
1.
【目的】昆虫海藻糖酶能够调控几丁质代谢并控制蜕皮过程。本研究通过TRE表达被抑制后,检测褐飞虱(Nilaparvata lugens)蜕皮状况、几丁质含量及几丁质合成酶(chitin synthase,CHS)和几丁质酶(chitinase,Cht)基因表达情况,探究不同的海藻糖酶(trehalase,TRE)在褐飞虱表皮中对几丁质代谢的调控作用。【方法】采用RNAi技术,以实验室饲养种群褐飞虱为材料,通过向其体内注射双链RNA(dsRNA)分别抑制单个海藻糖酶基因或同时抑制多个海藻糖酶基因,注射48 h后通过Trizol法提取褐飞虱总RNA,反转录试剂盒合成第一链DNA后采用实时荧光定量PCR(qRT-PCR)技术检测该基因的表达情况,确定RNAi效果。氢氧化钾法测定48 h褐飞虱整体几丁质含量变化并对蜕皮困难虫体进行拍照;最后采用qRT-PCR检测褐飞虱CHS和Cht在mRNA水平上的相对表达量变化,分析TRE在调控几丁质代谢中的作用。【结果】与注射dsGFP相比较,其余各注射组褐飞虱整体几丁质含量显著下降,其中dsTRE1混合注射组与Validamycin注射组呈极显著下降,同时褐飞虱出现蜕皮困难等现象。qRT-PCR检测结果显示单个TRE的dsRNA注射后该基因的表达被抑制,但是部分TRE的表达有互补性上升。其中TRE1-2和TRE2在各注射组处理下表达均下降,dsTRE1s对TRE2的表达也有抑制效果,整体上dsTRE1混合注射组和海藻糖酶抑制剂Validamycin抑制效果明显;dsTRE注射组抑制CHS表达效果不明显,Validamycin能够显著降低CHS1和CHS1a在表皮中的表达,且2种dsTRE1注射后CHS1表达在上升,dsTRE1-2注射后表皮中的CHS1a的表达上升;Cht1和Cht8在dsTRE各注射组及Validamycin处理中表达下降或显著下降,dsTRE1-1注射后Cht2和Cht5表达显著上升;dsTRE1-2注射后Cht1、Cht6和Cht8表达下降,Cht2和Cht4表达显著上升;dsTRE2处理组中Cht1、Cht8和Cht10表达下降而Cht9表达显著上升;dsTRE1s注射后,Cht1和Cht5表达显著下降,而Cht9表达显著上升;Validamycin注射组中10个几丁质酶基因表达都显著或者极显著下降。【结论】TRE能够通过调控褐飞虱几丁质代谢途径来控制几丁质的合成,结果可为开展和筛选有效的海藻糖酶抑制剂控制褐飞虱等害虫提供理论依据。  相似文献   

2.
张建珍 《中国农业科学》2014,47(7):1301-1302
正几丁质是昆虫外骨骼和围食膜的重要组成成分,昆虫蜕皮和生长发育依赖于几丁质合成和降解的精细调控。几丁质代谢酶参与昆虫表皮和围食膜几丁质的形成,在昆虫蜕皮发育等生命活动中具有重要的生理功能,利用几丁质代谢酶的调控作用研发分子靶标,在植物保护领域具有潜在的应用价值。RNA干扰(RNAi)技术作为反向遗传学研究的有效工具,在昆虫基因功能研究方面发挥了重要作用,同时在害虫控制方面展示出广阔的应用前景~([1-4])。RNAi技术的发展也推动了昆虫几丁质代谢关键基因生物学功能的解析  相似文献   

3.
几丁质广泛存在于真菌、昆虫和甲壳类动物中,但不存在于植物和脊椎动物中,为昆虫外骨骼、气管及中肠围食膜的重要组分。昆虫蜕皮过程中,富含几丁质的结构需重建以完成虫体扩张,这一过程中需要严格控制几丁质的合成。因此,几丁质生物合成一直是害虫控制的重要靶标。随着昆虫种群耐药性的迅速发展,害虫防控面临新的挑战,需要不断寻找新的害虫防治靶点,以开发新型杀虫剂,实现害虫的有效防控。几丁质合成酶(Chitin synthase,CHS)为昆虫几丁质合成途径的关键酶,在几丁质合成中发挥重要作用。昆虫存在 CHS1 和 CHS2 两类几丁质合成酶,CHS1 在昆虫外骨骼及气管中表达,催化几丁质合成,CHS2 则主要负责中肠围食膜的几丁质合成。昆虫 CHS1 基因受干扰后可导致虫体表皮产生缺陷,背气管干发育异常,而 CHS2 基因受到抑制后则往往会导致虫体中肠变短,体重下降。两类 CHS 基因下调均可引起昆虫大量死亡。昆虫体内具有复杂的 CHS 转录调控机制以保证其正常生长发育和应对外界刺激。根据国内外研究,该文综述了昆虫 CHS 基因转录调控研究进展,包括昆虫激素、转录因子、表皮损伤及进食刺激、几丁质代谢相关基因及物质、microRNA 以及几丁质合成抑制剂等对昆虫 CHS mRNA 水平的影响,为将来开发和利用以 CHS 为靶标的绿色农药防治害虫提供理论依据。  相似文献   

4.
[目的]几丁质是昆虫外骨骼和围食膜的主要成分,其合成始于海藻糖酶(trehalase,TRE),终于几丁质合成酶(chitin synthase,CHS),蜕皮与外表皮重塑过程则需要依靠几丁质酶(chitinase,CHT)完成.本研究通过注射3种新型化合物,检测草地贪夜蛾(Spodoptera frugiperda)...  相似文献   

5.
几丁质对昆虫的生长发育至关重要,且不存在于植物和哺乳动物中,因此其合成途径的关键酶是较为理想的杀虫剂靶标。近年来,多种害虫的几丁质合成关键酶基因被克隆和鉴定,通过RNAi技术应用于一些重要害虫的防治研究工作中。本文较为系统的总结了近些年害虫几丁质合成关键酶的基因克隆及功能研究进展,重点阐述了几丁质合成酶、海藻糖酶基因基于RNAi技术应用于害虫防治取得的研究进展,分析了RNAi技术通过转基因植物表达dsRNA(RNAi抗虫作物)以及作为核酸农药(dsRNA)直接进行作物喷施的两种应用途径,文章最后还探讨了RNAi在害虫防治中面临的主要瓶颈问题以及主要应对策略。上述较为系统的归纳和总结,目的是为今后基于几丁质合成关键酶的RNAi技术应用于害虫绿色防控研究提供有价值的理论指导。  相似文献   

6.
背景 昆虫海藻糖合成酶基因是昆虫海藻糖合成的主要基因,大多数昆虫中只拥有一个海藻糖-6-磷酸合成酶(trehalose-6-phosphate synthase,TPS)基因,部分昆虫存在一个海藻糖-6-磷酸酯酶(trehalose-6-phosphate phosphatase,TPP)基因。前期研究发现褐飞虱(Nilaparvata lugens)中拥有两个TPS,对其功能研究发现TPS不仅能够调控海藻糖代谢,还可介导海藻糖酶调控几丁质合成与降解途径,控制昆虫的蜕皮过程。目的 通过对褐飞虱转录组测序分析获得了一个新的TPS,检测该基因在褐飞虱不同发育阶段的表达情况,探究该基因的功能与前期发现的两个TPS的区别。方法 对获得的新TPS基因序列采用克隆技术获得全长cDNA序列,经验证正确后,对其蛋白的一级、二级、三级结构及与其他昆虫的TPS进行比对分析,最后采用实时荧光定量PCR(qRT-PCR)技术测定3个不同TPS在褐飞虱不同发育阶段的表达,并采用RNA干扰(RNAi)技术抑制TPS3的表达。结果 在前期研究的基础上,克隆出一个新的TPS,并命名为TPS3TPS3开放阅读框长度为2 352 bp,编码783个氨基酸,预测蛋白分子量为88.9 kD,等电点为5.47,具有亲水性结构。生物信息学分析表明,褐飞虱3个TPS蛋白具有较高的同源性,都具有TPS和TPP两个保守结构域及其他特征序列,并且α-螺旋、β-折叠和无规则卷曲所占的比例较为接近。褐飞虱不同发育阶段3条TPS的相对表达量不同,TPS1的相对表达量从4龄0 h开始逐渐上升,至成虫阶段达到最高,TPS2的相对表达量从4龄末期开始明显上升且在整个5龄阶段都有较高的表达,TPS3的相对表达量在5龄末期和成虫初期较高。单独干扰褐飞虱TPS3 48 h后被干扰基因的相对表达量下降,dsTPS3能有效抑制TPS3的表达。结论 在褐飞虱中发现一个新的TPSTPS3),其与褐飞虱中已经报道的TPS1和TPS2具有较高的同源性。不同发育阶段表达结果表明,3个TPS在发育过程中行使的功能不同。RNAi能够有效抑制TPS3的表达并导致褐飞虱蜕皮障碍和翅发育畸形。  相似文献   

7.
8.
【背景】 海藻糖合成酶(trehalose-6-phosphate synthase,TPS)在海藻糖合成中起着重要作用,其能够介导海藻糖代谢调控几丁质合成及昆虫发育。【目的】 本研究通过抑制白背飞虱(Sogatella furciferaTPS的表达,检测RNAi沉默SfTPS效果,观察白背飞虱蜕皮状况,测定几丁质含量及几丁质合成酶(chitin synthase,CHS)基因的定量表达,探究SfTPS在白背飞虱几丁质合成中的潜在调控作用。【方法】 利用注射法RNAi技术,以实验室饲养多年的白背飞虱种群为试验材料,体外合成两个SfTPSSfTPS1SfTPS2)与GFP的双链RNA(dsRNA)后,分别注射到白背飞虱体内抑制TPS。首先,在dsRNA注射后48 h采用Trizol法提取白背飞虱的总RNA,反转录并合成第一链DNA后,采用实时荧光定量PCR(qRT-PCR)技术检测TPS表达沉默情况,以确定RNAi的效果;其次,测定dsRNA注射后48 h和72 h白背飞虱整体几丁质含量并对翅发育畸形虫体进行拍照;最后,采用qRT-PCR技术检测白背飞虱SfCHS在mRNA水平上的相对表达量变化,分析SfTPS1SfTPS2在几丁质合成调控中的作用。【结果】 与注射dsGFP相比较,dsSfTPS1和dsSfTPS2的RNA注射后,能够促进SfCHS表达量上升,几丁质含量增加,白背飞虱成虫翅出现畸形。qRT-PCR结果显示,单个SfTPS dsRNA注射后本基因的表达能够被极显著抑制,与注射dsGFP相比,不足对照组表达量的30%,且单个SfTPS的dsRNA注射后,另外一个SfTPS表达同样显著下降;dsSfTPS1和dsSfTPS2注射后,白背飞虱成虫翅均为长翅,出现一定比例的翅卷曲等畸形情况,其后48 h和72 h产生一定的死亡率;几丁质含量检测发现,SfTPS1SfTPS2的dsRNA注射后72 h,几丁质含量显著上升。与注射dsGFP对照组相比较,SfCHS1SfCHS1a表达量在dsSfTPS1注射后72 h极显著上升,在dsSfTPS2注射后48 h和72 h时极显著上升,且dsSfTPS1和dsSfTPS2注射后SfCHS1b的表达极显著增加。【结论】 SfTPS能够通过调控白背飞虱几丁质合成酶基因的表达来控制几丁质的合成,研究结果有助于评价SfTPS在白背飞虱等昆虫中的调控作用并作为潜在控害靶标,为进一步开展和筛选有效的海藻糖合成酶抑制剂控制白背飞虱等害虫提供理论依据。  相似文献   

9.
几丁质是昆虫的主要组成成分,由于几丁质不存在于植物和无脊椎动物中,被认为是环境友好型农药的设计靶标。几丁质合成酶B是几丁质合成路径中的最后一个关键酶,近些年已成为国内外研究的热点内容。根据国内外对昆虫几丁质合成酶B基因功能的研究,综述了几丁质合成酶B对几丁质合成的调控研究进展,包括时空表达特性、基因功能、基因在害虫防治中的研究、并对RNA干扰技术应用存在的问题及解决途径进行了展望。  相似文献   

10.
【目的】昆虫胰岛素信号途径能够介导糖原合成酶激酶3(glycogen synthase kinase 3,简称GSK-3或GSK3)调控体内糖原及海藻糖等糖代谢过程,从而控制昆虫的各项生命活动。论文旨在探究糖原合成酶激酶在褐飞虱(Nilaparvata lugens)体内对糖原与海藻糖代谢的调控作用。【方法】首先,基于GSK-3的cDNA编码序列,利用ExPASy工具翻译GSK-3氨基酸序列,预测蛋白分子量大小及等电点(pI);然后利用SignaIP4.1Server对其信号肽进行分析。其次,以笔者实验室饲养的褐飞虱为研究对象,从4龄开始,每12 h取材,取至成虫48 h。利用Trizol法提取褐飞虱总RNA,根据反转录试剂盒合成第一链DNA,以18S作为内参基因,通过实时荧光定量PCR(qRT-PCR)检测褐飞虱GSK-3在不同龄期mRNA水平上的相对表达量。然后利用RNAi技术,向褐飞虱体内显微注射双链RNA(dsRNA)抑制GSK-3,以注射dsGFP的褐飞虱作为对照组。注射后48 h利用qRT-PCR技术检测GSK-3的表达情况,确定抑制效果。另外,取注射后48 h虫体,分别测定褐飞虱体内海藻糖、葡萄糖、糖原含量及海藻糖酶(trehalase,TRE)活性变化。最后采用qRT-PCR检测胰岛素信号通路胰岛素受体基因(insulin receptor,InR)、类胰岛素多肽基因(insulin-like peptides,Ilps)及海藻糖代谢途径TRE、海藻糖合成酶基因(trehalose-6-phophate synthase,TPS)、糖原磷酸化酶基因(glycogen phosphorylase,GP)、糖原合成酶基因(glycogen synthase,GS)中相关基因的表达,分析GSK-3在胰岛素信号通路及海藻糖代谢途径中的调控作用。【结果】褐飞虱GSK-3开放阅读框为1 914 bp,编码637个氨基酸;预测蛋白分子量为69.25 kD,等电点为9.15,为偏碱性蛋白,无信号肽结构,序列高度保守。发育表达模式结果显示GSK-3在不同发育阶段表达不一致,5龄若虫蜕皮前后低表达。GSK-3的dsRNA注射后48 h,与对照组dsGFP相比,GSK-3表达极显著下降,表明RNA干扰效果明显。糖原含量和两类海藻糖酶活性显著下降,而海藻糖含量显著上升,推测糖原和葡萄糖转化为海藻糖,作为其生理活动的能量来源。qRT-PCR检测发现,当GSK-3表达抑制后48 h,TRE1-2的表达量显著下降,而TRE1-1TRE2的表达量极显著下降。另外,2个TPS基因、GS以及GP的表达量均极显著下降;胰岛素信号通路的2个InR基因和4个Ilps基因的表达同样被抑制,间接表明InR能够调控GSK-3的表达。【结论】褐飞虱GSK-3低表达后能够通过调控胰岛素信号通路及海藻糖代谢途径相关基因表达来调控糖原及海藻糖代谢。相关研究结果有助于更加全面地探索褐飞虱等昆虫糖原合成酶激酶调控海藻糖及糖类物质平衡的潜在分子机理。  相似文献   

11.
昆虫中海藻糖代谢的研究进展   总被引:1,自引:0,他引:1  
海藻糖是由2个葡萄糖分子组成的非还原性双糖,存在于大量生物如细菌、真菌、植物和昆虫等中。作为昆虫血液中的主要成分,海藻糖是由脂肪体中的海藻糖合成酶和海藻糖磷酸化酶合成的。海藻糖必须被海藻糖分解酶分解成葡萄糖才能用于糖酵解,以提供昆虫能量的需求。脂肪体的海藻糖合成是受激素调控的,而血液中海藻糖的主要来源是脂肪体中的糖原。昆虫的海藻糖分解酶已经得到了很好的研究,但是它的活性控制机制还不清楚。  相似文献   

12.
昆虫海藻糖酶的研究进展   总被引:1,自引:0,他引:1  
为了解海藻糖酶的研究进展,从对昆虫海藻糖与海藻糖酶、昆虫海藻糖酶的酶学性质与海藻糖酶基因、昆虫海藻糖酶抑制剂等方面进行了综述,并对其作为杀虫靶标进行了展望.  相似文献   

13.
肺形侧耳高温后恢复期间海藻糖代谢途径研究   总被引:1,自引:0,他引:1  
【目的】探索食用菌对高温胁迫后恢复响应差异的机制,为食用菌的高温育种研究提供理论基础。【方法】以肺形侧耳热敏感型菌株CCMSSC 00494和耐热型菌株CCMSSC 00499为材料,通过测定高温胁迫后恢复培养期间菌丝体内海藻糖代谢相关酶活性和基因相对表达量的变化,研究海藻糖代谢途径的应激响应。【结果】高温胁迫后恢复培养期间,两株肺形侧耳菌株海藻糖含量迅速降至对照水平,CCMSSC 00494中海藻糖含量降低速率高于CCMSSC 00499。CCMSSC 00494中海藻糖-6-磷酸合成酶(TPS)活性随着处理时间的延长增加,而CCMSSC 00499中的TPS活性缓慢下降。两菌株中合成海藻糖反应方向海藻糖磷酸化酶(TP)活性急剧下降。降解海藻糖反应方向TP活性和中性海藻糖酶(NTH)活性分别在恢复前期和后期被激活,参与海藻糖水解。tps和tp基因的表达量变化与各自酶活性变化一致,但nth基因的高效表达与其在恢复初期的NTH活性下降不一致。【结论】高温胁迫后恢复培养期间,热敏感型菌株中TPS活性和tps基因表达量显著高于耐热型菌株,是两者海藻糖代谢途径中的最主要差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号