首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
以坐果期枣树为研究对象,利用无人机可见光影像,对田间尺度的枣树冠层SPAD值进行监测,基于14种植被指数与枣树冠层实测SPAD值的相关性,优选植被指数构建单变量回归、多元逐步回归和随机森林回归的枣树冠层SPAD值估算模型,以期探讨无人机可见光遥感影像估算枣树冠层SPAD值的可行性。通过相关性分析发现,红绿比值指数(RGRI)、超绿指数(EXG)、改进型绿红植被指数(MGRVI)、可见光波段差异植被指数(VDVI)、可见光大气阻抗植被指数(ARVI)与枣树冠层SPAD值的相关性极显著,其中EXG与枣树冠层SPAD值的相关系数达到-0.578。基于枣树冠层SPAD值的相关性极显著的5种植被指数构建的单变量反演模型的r2在0.111~0.604之间,RMSE在1.936~3.085之间。其中,以EXG构建的线性模型为单变量反演模型中效果最优的模型,r2达到0.604,RMSE为1.936。基于RGRI、MGRVI、EXG协同构建的多元逐步回归模型效果优于任何单一植被指数构建的单变量反演模型,R2达到0.635。与使用单变量构建...  相似文献   

2.
以夏玉米为研究对象,基于无人机高光谱数据和野外玉米冠层叶片实测SPAD值,以0.2阶为步长,计算光谱0~2阶分数阶微分,分析其与玉米冠层实测SPAD值之间相关性,筛选相关系数绝对值前10波段为特征波段组合,构建并比较玉米冠层叶片SPAD值的支持向量回归模型(SVR)、反向传播神经网络模型(BPNN)和麻雀优化算法随机森林模型(SSA-RFR)。结果表明,经分数阶微分变换可显著提高与SPAD值相关性,其中以0.6阶698 nm处相关系数绝对值最大;基于分数阶微分模型整体精度高于整数阶模型,其中基于分数阶微分的SSARFR模型精度最高,R2为0.706,较整数阶提高32.46%,RMSE和MRE分别为2.444和3.579%,较整数阶降低13.46%和12.95%。  相似文献   

3.
为探究冠层图像分析技术在冬小麦长势监测中应用,6个施氮水平的田间试验条件下,在冬小麦拔节期采集冠层图像,并同步测定冬小麦叶面积指数和叶片SPAD值.通过图像分析软件计算了冬小麦冠层覆盖度及红、绿、蓝亮度值等10种色彩指数,分析了叶面积指数及叶片SPAD值与色彩指数和冠层覆盖度的相关性,利用逐步回归方法构建了叶面积指数及叶片SPAD值的估算模型.结果表明:冬小麦拔节期叶面积指数与冠层覆盖度及几个色彩指数呈极显著相关;叶片SPAD值与红光标准化值等几个色彩指数呈极显著相关;利用叶面积指数估算模型计算的预测值与实测值的线性回归方程的决定系数为0.771,相对均方根误差为25.181%;利用叶片SPAD值估算模型计算的预测值与实测值的线性回归方程的决定系数为0.644,相对均方根误差为6.734%.相关分析和估算模型验证结果表明,基于冠层图像分析的冬小麦拔节期叶面积指数和叶片SPAD值的监测是可行的.  相似文献   

4.
叶绿素含量快速、无损监测是评估玉米生长状态有效方式之一.以抽雄期玉米为研究对象,研究原始光谱、普通一阶导数光谱、间隙一阶导数光谱、开平方根光谱以及连续统去除光谱的特征波段以及5个传统植被指数与玉米叶绿素含量之间关系.对比分析不同模型(单因素回归模型、结合连续投影与多元线性回归、支持向量回归模型)对抽雄期玉米叶绿素含量预...  相似文献   

5.
基于高光谱遥感的冬小麦叶水势估算模型   总被引:2,自引:0,他引:2  
【目的】采用高光谱技术,建立快速、无损与准确获取冬小麦叶水势的估算模型,为小麦灌溉的精确管理提供科学依据。【方法】利用不同水分处理的大田试验,于小麦主要生育期同步测定冠层光谱反射率、叶水势、土壤水分等信息,并探讨高光谱植被指数与冬小麦叶水势之间的定量关系。通过相关性分析、回归分析等方法,基于不同水分处理,构建4种植被指数与冬小麦叶水势的估算模型。【结果】不同水分处理和不同生育期的冬小麦,其冠层光谱反射率具有显著的变化特征。在可见光波段,冬小麦冠层反射率随着水分含量的增加而逐渐降低,而在近红外波段,其冠层反射率则随着土壤水分含量的增加而升高。随着小麦生育期的推进,在近红外波段,抽穗期的冠层反射率比拔节期的高,在灌浆期之后,红波段(670 nm)、蓝波段(450 nm)的反射率上升加快;4种植被指数与叶水势显著相关(P0.05),相关系数|r|均在0.711以上,四者均可用于冬小麦叶片水势的定量监测。在充分供水条件下(70%FC),植被指数OSAVI和EVI2与叶水势的相关系数|r|(分别为0.75和0.771)均低于植被指数NDVI和RVI与叶水势的相关系数|r|(分别为0.808和0.896),而在重度水分亏缺条件下(50%FC),植被指数OSAVI和EVI2与叶水势的相关系数|r|(分别为0.857和0.853)均高于植被指数NDVI和RVI与叶水势的相关系数|r|(分别为0.711和0.792);所建模型对45个未知样的预测结果与实测值相似度较高,其回归模型R~2、验证模型MRE、RMSE的范围分别为0.616—0.922、-17.50%—-12.52%、0.102—0.133。在70%FC水分处理下,基于EVI2(enhanced vegetation index)所得叶水势估算模型的R~2最高,为0.922,而在60%FC和50%FC水分处理下,由于考虑了土壤背景的影响,基于OSAVI所建模型的R~2最高,分别为0.922和0.856。【结论】4种植被指数均可用于冬小麦叶水势的定量监测。但是,在构建不同水分处理的叶水势估算模型时,应考虑土壤背景对冠层光谱的影响。研究结果可以为小麦精准灌溉管理提供技术依据,为星载数据的参数反演提供模型支持。  相似文献   

6.
叶片叶绿素含量是评价作物生长状况的重要指标。为实现玉米叶片叶绿素含量的准确、高效高光谱估测,以玉米大田试验为基础,于7月1日(大喇叭口期)、7月19日(灌浆初期)和8月18日(腊熟期)利用ASD高光谱仪和便携式叶绿素仪(SPAD-502)分别测定了玉米叶片高光谱数据和叶绿素含量相对值SPAD;利用连续投影算法提取出玉米叶片光谱的特征波长,再用BP神经网络构建SPAD值的估算模型,并对模型进行验证。结果表明,3个日期的分段监测模型及统一监测模型的R2分别为0.885,0.900,0.675,0.827;RMSE分别为2.156,2.103,3.236,2.651;7月1日模型、7月19日模型和统一监测模型均具有较高的精度,同时检验模型RPD均大于2,具有很好的预测能力;而8月18日的监测模型表现较差(RPD=1.641),但也达到可用水平。表明利用连续投影算法结合BP神经网络可以进行玉米叶片SPAD值的高光谱估算。  相似文献   

7.
[目的]构建水稻叶片SPAD值的高光谱精确估算模型,为进一步提高高光谱对水稻SPAD值反演估算精度提供参考依据.[方法]利用SPAD-502型叶绿素测定仪测量水稻叶片SPAD值,以FieldSpec 4光谱仪采集水稻叶片光谱数据.通过分析光谱植被指数、位置参数与SPAD值的相关性,构建4个水稻叶片SPAD值高光谱估测模型,即逐步多元线性回归(SMLR)模型、支持向量机回归(SVR)模型、基于主成分分析的支持向量机回归(PCA+SVR)模型和以逐步多元线性回归确定最佳参数的支持向量机回归(SMLR+SVR)模型;并采用均方根误差(RMSE)、平方相关系数(R2)、相对分析误差(RPD)和平均相对误差(MRE)等指标对模型进行评价.[结果]在分析的15个光谱特征参数中,除黄边位置(λy)无显著相关外(P>0.01),水稻叶片SPAD值与叶片光谱位置参数及植被指数参数间存在显著相关性,选择相关系数大于0.800的5个植被指数参数(VOG1、VOG2、VOG3、CARI和PRI)和7个光谱位置参数[蓝边面积(SDb)、黄边振幅(Dy)、黄边面积(SDy)、绿峰反射率(Rg)、红谷净深度(Hr)、蓝边振幅(Db)和红边位置(λh)]作为输入变量构建水稻叶片SPAD值的估测模型.R2和RPD值越大,RMSE和MRE值越小,则表明模型的性能越好,估算精度高.比较4个模型训练与测试结果的R2、RMSE、MRE和RPD可知,在模型估算精度上,SMLR+SVR模型高于SMLR模型,PCA+SVR模型高于SVR模型.总体上,SMLR+SVR模型能更好地实现对水稻叶片SPAD值的预测,其模型各项评价指标R2、RMSE、MRE和RPD分别为0.856、2.076、3.984%和2.550.[建议]进一步挖掘分析光谱特征参数与水稻叶片SPAD值间的关系,提出新的光谱特征参数或优化特征参数选择组合方法,增加回归建模算法,提高高光谱对水稻叶片SPAD值的有效估算.采集水稻冠层高光谱图像,反演出高光谱图像中的水稻冠层SPAD值,研究冠层SPAD与水稻长势关系,为水稻科学管理提供技术支持.  相似文献   

8.
生育前期淹水对夏玉米冠层结构和光合特性的影响   总被引:5,自引:2,他引:3  
【目的】本研究旨在探讨大田淹水条件下夏玉米冠层结构和光合特性的变化规律。【方法】供试夏玉米品种为登海605(DH605)和郑单958(ZD958),通过设置3叶期(V3)淹水3 d(V3-3)和6 d(V3-6),拔节期(V6)淹水3 d(V6-3)和6 d(V6-6),以不淹水处理为对照(CK),比较不同淹水时期(V3和V6)和淹水持续时间(3 d和6 d)对夏玉米光合势、叶面积指数、净光合速率、冠层透光率及其半球灰度图像和产量的影响。【结果】淹水后夏玉米叶面积指数显著下降,群体透光率提高,群体光能截获率显著降低。V3淹水后夏玉米穗位层和底层透光率的提高幅度大于V6淹水,且其提高幅度随淹水持续时间的延长而增加。DH605和ZD958的V3-6处理的穗位层透光率较CK分别提高96.0%和70.2%,底层透光率分别提高了68.9%和71.9%。在淹水胁迫条件下夏玉米光合势和叶片净光合速率随淹水持续时间的延长而显著降低,V3淹水后净光合速率和光合势的下降幅度大于V6淹水。DH605和ZD958的V3-6处理在开花期的叶片净光合速率较CK分别下降23.5%和20.3%。DH605的V3-6处理在播种—拔节期、拔节期—大喇叭口期、大喇叭口期—开花期、开花期—乳熟期和乳熟期—成熟期各生育阶段的光合势较CK分别下降68.5%、45.0%、31.6%、25.0%和37.5%,ZD958分别下降62.4%、37.1%、25.8%、21.7%和38.5%。淹水后夏玉米光合势和叶片净光合速率的下降导致夏玉米光合同化物的积累与分配受到抑制,干物质积累量显著下降,成熟期DH605的V3-3、V3-6、V6-3和V6-6处理的干物质重较CK分别下降12.4%、24.8%、9.3%和21.1%,ZD958分别下降17.3%、26.7%、12.5%和23.9%。此外,淹水后夏玉米收获指数显著下降,3叶期淹水对其影响大于V6淹水,且影响随淹水持续时间的延长而加剧,DH605和ZD958的V3-6处理的收获指数较CK分别下降13.3%和13.8%。淹水后夏玉米冠层结构劣化与光合性能降低导致夏玉米产量显著下降。DH605的V3-3、V3-6、V6-3和V6-6处理的产量较CK分别下降23.2%、35.9%、17.0%和22.7%,ZD958分别下降20.0%、35.7%、15.0%和27.1%。【结论】淹水导致夏玉米群体光合势和叶面积指数显著降低,透光率提高,进而显著降低群体光能有效截获率和净光合速率,最终导致夏玉米产量显著下降。3叶期淹水对夏玉米冠层结构和光合特性的影响大于拔节期淹水,且其影响随淹水持续时间的延长而加剧。  相似文献   

9.
【目的】以广州市增城试验基地为例,探索国产高分卫星影像数据在反演华南地区亚热带典型作物冠层叶绿素相对含量(SPAD)的应用.【方法】根据2013年10月1日“高分一号”影像数据和相应的亚热带典型作物的实测数据,建立植被指数与典型作物冠层SPAD之间的关系模型,并分别探讨9种植被指数与SPAD之间线性和非线性关系,以便获得最佳的植被指数和相应的回归模型反演华南地区亚热带作物冠层叶绿素相对含量.【结果和结论】7种植被指数均与亚热带典型作物冠层SPAD有极显著的相关性,其中比值植被指数(RVI)相关性最好,其次是差值植被指数(DVI).经分析,RVI的指数回归模型Y=31.445e0.141XR2 =0.889)是反演亚热带典型作物冠层SPAD的最佳回归模型,实际拟合精度达92.75%,故使用该回归模型估测研究区内大范围亚热带典型作物冠层SPAD是可行的.  相似文献   

10.
以湖南省为研究区,探索不同栽培因子条件下油菜的高光谱特征,建立基于高光谱特征的叶绿素预测模型,并将其应用于田间生产实践,以期为油菜营养诊断、高产栽培和生产管理的信息化提供一定的理论依据和技术支撑。使用便携式地物光谱仪和SPAD-502叶绿素仪分别对油菜冠层反射光谱和SPAD值进行实测,分析不同栽培因子条件下角果期的油菜冠层光谱特征,并得到其相应的红边参数(包括红边位置、红边振幅与红边面积),最后运用多种方法对红边参数与角果期的油菜SPAD值进行相关性分析,以期建立SPAD值的最佳反演模型。结果表明,在红光波段(680~760 nm),油菜角果期的冠层反射光谱趋于稳定,冠层的三峰两谷现象比较明显,而且在整个角果期,红边位置都稳定在760 nm这个点,不随栽培因子的改变而改变。但是栽培因子对红边振幅和红边面积有着明显影响,因此可用红边参数来预测油菜的SPAD值。经过5种不同的建模比较分析可以得出,基于支持向量机(SVM)的预测模型最好,R~2为0.912 6,均方误差为0.326 6。  相似文献   

11.
光谱技术实现了桃树叶片SPAD(soil and plant analyzer development)值的监测,使用基于主成分分析(principal component analysis,PCA)的BP神经网络算法建立桃树叶片SPAD值光谱估算模型。分析各生育期桃树叶片SPAD值的变化及其与叶片光谱的相关关系,分析5种红边参数与SPAD值的相关性,选取相关性较高的3种红边参数,分别与SPAD值进行单因素建模;然后把红边参数和SPAD值用主成分分析、基于PCA-BP神经网络算法建模,并对估算模型进行验证,结果表明:1)5-9月,桃树叶片SPAD值呈先上升后下降的变化特征,8月达到最大;2)4个生育期所建立的3种模型均通过0.01显著性检验,其中6月估算SPAD值的模型,建模精度和验证精度均最高, R 2≥0.814;3)各生育期桃树叶片SPAD值在单因素模型中,以红边位置建立的模型估算和预测精度最高;4)各个生育期中,基于PCA-BP神经网络模型的估算效果最好,建模精度和预测精度最高, R 2最高分别为0.938和0.974;主成分分析模型次之,单因素模型最低。因此,基于红边参数建立的PCA-BP神经网络反演模型能进行桃树叶片SPAD值的准确估算,为桃树叶片叶绿素含量监测提供理论依据。  相似文献   

12.
【目的】明确华南地区籼稻主栽品种冠层光谱特征与氮素营养关系,为专家决策系统和精准施肥 提供理论基础。【方法】以美香占 2 号(MXZ2H)和吉丰优 1002(JFY1002)为试材,设置施氮 0 kg/hm2 (N0)、 150 kg/hm2 (N150)、210 kg/hm2 (N210)等 3 个处理,采用习惯施肥法,在 JFY1002 中增设施氮 180 kg/hm2 (N180+) 的水稻“三控”施肥法,研究不同施肥方式下水稻叶片光谱特征与氮素营养的关系。【结果】与 N0 相比,N150 处理下 MXZ2H 和 JFY1002 叶片氮含量分别增加 16.05% 和 13.76%,N210 处理分别增加 24.29% 和 25.00%。 N180+ 处 理 下 JFY1002 叶 片 氮 含 量 与 N210 处 理 相 比 增 加 18.03%。 随 着 叶 片 氮 含 量 的 增 加, 蓝 光 到 红 光 (450~650 nm)波段的叶片反射率逐渐下降,红边到近红外(730~840 nm)波段的叶片反射率逐渐增加,红光 650 nm、近红外 840 nm 处的 MXZ2H 和 JFY1002 叶片反射率差异达显著水平。相关性分析结果表明,MXZ2H 叶 片氮含量与归一化植被指数(NDVI)、绿波段归一化植被指数(GNDVI)、比值植被指数(RVI)、差值植被 指数(DVI)和增强型植被指数(EVI)呈正相关;JFY1002 叶片氮含量与 RVI、EVI、改进非线性植被指数(MNLI)、 DVI 和 NDVI 呈正相关。采用多元线性回归建立了 MXZ2H 和 JFY1002 叶片氮含量反演模型,R2 分别为 0.817 和 0.973,RE 分别为 8.35% 和 3.48%。【结论】建立了华南籼稻品种叶片氮含量反演模型,可为精准施肥作业提供 理论依据和技术指导。  相似文献   

13.
为探索利用无人飞行器获取遥感影像并将之用于建立测区数字高程模型(DEM)的可行性,以南水北调山东省境内济平干渠部分区段为试验对象,进行了无人飞行器的遥感数据采集,并利用全数字摄影测量处理软件VirtuoZo对所得数据进行处理,生成测区数字高程模型.结果表明,数据处理过程中相对定向中误差较小,由于部分试验材料不能满足试验标准,绝对定向的中误差偏大,利用现有材料生成的数字高程模型精度不高.  相似文献   

14.
基于SPAD值的水稻施氮叶值模型构建及应用效果   总被引:4,自引:1,他引:4  
【目的】研究分析不同地力条件、施氮量、SPAD值衍生指标、产量之间的关系,实现简便、快速、无损地推荐水稻施氮量,构建基于SPAD值的水稻施氮叶值模型。【方法】2015年和2016年以杂交籼稻Q优6号为试验材料,设4种施氮水平(0、75、150、225 kg·hm~(-2)),探讨产量、SPAD值衍生指标与田块表观供氮量之间的关系,并对初步构建的叶值模型进行变量施氮应用效果研究。【结果】产量与抽穗期田块表观供氮量之间具有极显著的曲线关系,两年拟合度R2分别为0.5523,0.7148。在其拟合关系下2年度最高产量分别为9 264.93 kg·hm~(-2)、11 167.97 kg·hm~(-2),相差1 903.14 kg·hm~(-2),2016年产量相比2015年增加20.54%;达到最高产量的表观总吸氮量较为接近,分别为575.27 kg·hm~(-2),546.71 kg·hm~(-2),仅相差28.56 kg·hm~(-2),2016年表观总吸氮量相比2015年减少4.96%。不同年度的拔节期和抽穗期,SPAD值衍生指标中SPADL3(顶3叶SPAD值)、SPADL4(顶4叶SPAD值)、SPADmean(顶部4张叶片的平均SPAD值)、SPADL3×L4/mean(顶3叶SPAD值×顶4叶SPAD值/顶部4张叶片的平均SPAD值)与田块表观供氮量之间具有显著或极显著的线性关系。单张叶片中,SPADL3与拔节期田块表观供氮量,SPADL1与抽穗期田块表观供氮量线性拟合的系数在年份间变化均较小,分别为0.0156,0.0154;0.0172,0.0173。年份间,2016年SPADL3×L4/mean与田块表观供氮量线性拟合的系数和b值比2015年的拔节期依次增加了-28.70%,17.41%;抽穗期依次增加了-15.34%,56.11%。叶值模型施氮总量为表观总吸氮量与土壤表观供氮量之差,通过SPAD值衍生指标可以估测土壤表观供氮量,且抽穗期时SPAD值衍生指标与田块表观供氮量的线性拟合度较拔节期时的高。拔节期时,SPADL4与SPADL3×L4/mean,SPADL3与SPADmean之间估测推荐的施氮总量较为接近,且SPADL4、SPADL3×L4/mean估测的施氮量高出SPADL3、SPADmean50%左右。基于叶值模型的变量施氮效果表明,变量区产量高出对照区产量820.68kg·hm~(-2),变量区的氮素偏生产力、农学利用率和贡献率均明显高于对照区,分别高出13.74%,103.45%,104.12%。确定叶值模型的一般表达式为:Nw=Nz-[(Ys-b)/k-Ng],式中Nw表示施氮总量(kg·hm~(-2)),Nz表示水稻品种表观总吸氮量(kg·hm~(-2)),Ys表示叶片SPAD值衍生指标,Ng表示追肥之前已经施入的氮量(kg·hm~(-2)),k、b是田块表观供氮量(Nx)与叶片SPAD值衍生指标线性关系中的斜率和截距,而田块表观供氮量等于土壤表观供氮量(Nt)与人工已施氮量(Ng)之和。【结论】应用叶值模型的变量施氮减少了产量差,提高了产量以及氮素农学利用率、偏生产力和贡献率。  相似文献   

15.
【目的】为提高棉花叶片叶绿素含量的反演精度,并掌握其在山东省夏津县的空间分布特征。【方法】本研究以山东省德州市夏津县为研究区,以夏津县大李庄棉田为试验区,通过SPAD(soil and plant analyzer development,SPAD)仪实地测定试验区棉花叶片叶绿素含量的相对值(SPAD值),并获取同期试验区无人机(unmanned aerial vehicle,UAV)近地多光谱图像和研究区Sentinel-2A MSI(MSI)卫星影像;然后分别基于UAV和MSI的光谱反射率,构建并筛选最优光谱参量,采用多元线性回归(multiple linear regression,MLR)建立SPAD值定量反演模型;最后采用二次多项式拟合法融合UAV和Sentinel-2A MSI对应的最优光谱参量,对比分析融合前后模型效果,优选最佳反演模型,实现研究区SPAD值反演。【结果】研究表明,(REG-R)/(REG+R)、R/G、CL(red edge)、NDVI可作为SPAD值的最优光谱参量;基于UAV图像的定量反演模型精度优于基于MSI影像的模型;基于二次多项式拟合后建模R 2提高了0.015—0.057,RMSE降低了0.457—0.638,验证R 2提高了0.040—0.085,RMSE降低了0.387—0.397,RPD提高了0.020—0.139;将融合后的MSI光谱参量代入基于UAV图像的反演模型(Fused MSI-ModUAV),也可获得较高的反演精度,建模R 2达0.672,RMSE为3.982,验证R 2达0.713,RMSE为3.859,RPD为1.685;基于上述模型进行研究区棉花叶片SPAD值反演分析,试验区整体呈南高北低的分布趋势,研究区呈中间低、四周高的分布趋势,均与实地情况一致,具有较好的预测效果。【结论】采用二次多项式拟合法融合无人机和卫星影像数据,可较好地实现区域高精度作物生长指标的定量反演,研究结果可丰富多源遥感融合理论与技术,为后续棉花长势监测与精准生产提供技术参考和数据支持。  相似文献   

16.
以亚热带林业实验中心年珠实验林场为研究区,以无人机可见光和LiDAR数据为数据源进行树种识别。基于CHM和可见光数据进行单木分割,对可见光数据和LiDAR数据进行特征提取,构建多特征集合;基于单木对象选择随机森林和支持向量机2种分类器进行分类识别,并利用混淆矩阵对不同数据源不同特征组合的12种方案进行精度评价,比较不同特征组合和分类器对树种分类精度的影响。结果表明:将基于CHM分割和多尺度分割结合的单木分割效果较好,满足单木树种识别需求。支持向量机的精度高于随机森林分类器,经过随机森林特征筛选之后精度优于未进行特征筛选的结果,总体平均精度提高1.45%,可见光和LiDAR数据结合较仅使用单一数据源平均精度提高了6.01%。特征筛选能减少维度灾难,有效难避免过多特征造成的冗余现象,进一步提高分类器的性能和效率。相对于随机森林分类器,支持向量机在对于多维的样本集以及训练样本有限的情况下,能够表现出更好的性能。多源数据结合能将不同数据源优势有效结合,提高分类精度。  相似文献   

17.
以福建平潭岛木麻黄人工林为研究对象,对比研究基于无人机可见光遥感数据的株数提取方法,探讨多种方法在不同林龄木麻黄人工林株数提取的适用性。通过轻型旋翼无人机获取研究区可见光相片,经预处理生成无人机可见光正射影像(DOM)和冠层高度模型(CHM);分别选取成熟林、幼龄林6块标准地区域,使用基于冠层高度模型的局部最大值方法(LMC)、基于正射影像的局部最大值方法(LMD)、基于正射影像的多尺度分割方法(MST)提取标准地株数;最后通过3种方法提取的株数和实测数据进行对比分析。结果表明: 3种方法中LMC总体提取精度最高,Fscore为0.97,而LMD和MST总体提取精度明显降低,Fscore分别为0.90、0.78; LMC方法对幼龄林和成熟林的株数提取精度相近,幼龄林和成熟林的Fscore皆为0.97。 LMD方法在成熟林的株树提取精度略高于幼龄林,尤其2种林龄类型的P值相差较大,幼龄林RE:0.97、P:0.81、Fscore:0.88;成熟林RE:0.94、P:0.89、Fscore:0.91。 MST方法在成熟林的株树提取精度明显高于幼龄林,幼龄林 RE:0.88、P:0.67、Fscore:0.76;成熟林RE:0.88、P:0.74、Fscore:0.81。因此,3种方法中,LMC总体株数提取精度最高,且适用于不同林龄的木麻黄人工林株数提取,可以满足实时、快速提取木麻黄人工林株数的需求。  相似文献   

18.
荒漠植被分布稀疏且叶面普遍较小,导致影像中植被光谱特征较弱,分类难度较大.为提高荒漠植被分类精度,选取古尔班通古特沙漠为研究区,以无人机遥感影像和数字表面模型为数据源,采用面向对象的随机森林算法,在去相关拉伸光谱信息增强基础上对荒漠植被进行分类,分析去相关拉伸前后分类精度的变化.结果 表明:基于去相关拉伸并结合面向对象...  相似文献   

19.
基于冠层高光谱遥感对加工番茄产量的估算模型   总被引:1,自引:0,他引:1  
[目的]对加工番茄的产量进行遥感估测。[方法]以ASD FieldSpec光谱仪实测大田中不同生育期加工番茄的冠层高光谱及其产量,采用单时相线性逐步回归和复合回归,首次建立了加工番茄高光谱与产量的估算模型。[结果]在坐果期光谱参量与产量相关性最大,而其他时期的光谱参量与产量相关性均达到了显著水平(P<0.05);多时相复合回归模型以4个生育期与产量的复合回归最为理想。[结论]利用高光谱遥感来监测加工番茄的生长状况,可以最终对加工番茄的产量进行遥感估测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号