首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
张建华  朱春华 《安徽农业科学》2010,38(17):8833-8834
建立支持向量机(SVM)模型,用遗传算法自动选择最优的核函数参数,利用该SVM与遗传算法相结合的新型算法对储粮害虫图像进行分类识别。结果表明,该方法所确定的SVM对储粮害虫具有较优的识别率,其整体性能优良。  相似文献   

2.
杨秋霞  罗传文 《安徽农业科学》2014,(34):12342-12346
为了实现森林火灾的智能识别,提出一种基于局部二值模式和稀疏表示的林火烟雾自动识别方法.选取森林火灾烟雾视频和干扰视频,经运动区域检测提取疑似林火烟雾图像样本.首先对疑似林火烟雾样本图像采用不同的LBP算子进行纹理特征提取,然后选取350幅林火烟雾样本构建林火烟雾特征字典,另外选取343幅林火烟雾图像样本和331幅干扰图像样本进行测试,对每个测试样本利用11最小化范数计算其在训练字典上的稀疏表示系数和重构误差,最后根据经验阈值进行分类识别.结果表明,LBP特征提取结合稀疏表示方法可以有效地实现林火烟雾的自动识别,识别率可达92.88%,为林火烟雾的模式识别提供了一种有效的解决方案.  相似文献   

3.
针对掌纹识别过程中,采集图象易受到外界光照等物理因素的影响,传统重构方法中稀疏表示算法计算复杂度高等缺陷,提出基于稀疏表示(SR)和梯度方向直方图(HOG)特征的掌纹识别方法,将分类正交匹配追踪算法(COMP)稀疏表示方法与HOG特征相融合,以降低复杂度。该算法首先利用HOG算法提取掌纹训练与测试样本图像的特征矩阵,将训练样本图像的HOG特征矩阵作为稀疏表示的过完备字典;然后运用COMP算法求解掌纹图像在过完备字典上的稀疏表示,将所得的最佳稀疏表示系数对测试图像进行重构;最后通过计算测试样本图像HOG特征矩阵与得到的每类重构图像最小残差的数值确定图像的类别。实验结果表明,该方法有效地降低了计算的复杂度,具有良好的掌纹识别性能。  相似文献   

4.
胡全  王霓虹  邱兆文 《安徽农业科学》2014,(12):3688-3689,3699
针对森林火场采用了新的颜色特征提取方法,融合图像的颜色和纹理特征作为图像的特征向量,并用支持向量机作为学习工具,充分利用已有森林火场的数据进行学习,提高森林火场的自动识别的准确率.结果表明,新的颜色特征提取方法适用于森林火场的识别,采用支持向量机融合多特征可成功用于森林火场的自动识别.  相似文献   

5.
采用了新的颜色特征提取方法,融合图像的颜色和纹理特征作为图像的特征向量,用支持向量机实现图像语义信息的标注.实验结果表明,多特征图像检索要比单一特征检索效果好,在颜色特征的基础上引入纹理特征和形状特征后可有效提高检索效率,而且采用支持向量机融合多特征可成功用于图像语义的标注.  相似文献   

6.
杨秋霞  罗传文 《安徽农业科学》2014,(30):10777-10779
为了实现森林火灾的智能识别,提出一种基于稀疏表示的林火火焰自动识别方法.以林火火焰和5类干扰物体为研究对象,每类对象从视频图像中随机选取50帧作为训练样本,150帧作为测试样本.对每幅图像提取疑似火焰区域,求取面积变化率、颜色、纹理和形状特征参数.所有训练样本的特征向量构建训练样本特征字典,对每个测试样本利用l1最小化范数计算其在训练字典上的投影系数,根据最小重构残差进行分类识别.结果表明,稀疏表示方法的识别率可达到93.56%,为林火火焰识别提供了一个有效的解决方案.  相似文献   

7.
基于多特征融合的花卉种类识别研究   总被引:1,自引:1,他引:1  
花卉种类识别作为植物自动分类识别的重要分支,有着很高的研究和应用价值。针对当前花卉特征描述存在的局限和花卉识别准确率较低的实际情况,以花卉图像为研究对象,首先对复杂背景图像采用基于显著性检测的Grab Cut分割算法进行预处理,得到单一背景图像;然后在提取花卉图像花冠(所有花瓣)颜色和形状特征的基础上,创新性地提取花蕊区域的颜色和形状所包含的特征信息,并将提取到的18个特征融合成单一特征向量。以支持向量机(SVM)算法为基础构建分类器,通过实验确定核函数与最佳参数;对360幅自建花卉样本库(24个种类,每个种类15幅)进行训练和测试,其中240幅作为训练样本,120幅作为测试样本,并与基于不同特征组合的识别方法进行比较。结果表明:本文提出的基于多特征融合的识别方法具有较高的识别准确率,识别率可以达到92.50%。对通用花卉样本库Oxford 17 flower进行训练与测试,选取其中340幅作为训练样本,170幅作为测试样本,取得了较好的识别效果,验证了本文方法的有效性。   相似文献   

8.
基于农业技术与信息化技术的不断发展与融合,针对当前河北省农作物害虫识别准确率和效率低等问题,提出了一种基于Asp.NET Core MVC架构的残差神经网络害虫图像识别系统。该系统首先通过移动采集终端和网络图片爬虫收集目标分类图片信息,再使用数据增强技术扩充样本库,得到神经网络训练模型的数据集;然后通过搭建机器学习框架,分别引入ResNet-50、ResNet-101、ResNet-152残差网络模型,对数据集执行训练并验证其准确度;最后将准确度最高的训练结果模型运用至农作物害虫分类服务系统。经验证,该识别模型具有良好的适用性和鲁棒性,可为河北省主要农作物虫害提供识别及诊断功能。  相似文献   

9.
姚青  姚波  吕军  唐健  冯晋  朱旭华 《中国农业科学》2021,54(21):4562-4572
【目的】智能虫情测报灯诱捕到的农业害虫因种类繁多、虫体姿态多样、鳞片脱落等原因造成有些害虫图像存在种间相似和种内差异的现象。为了提高农业灯诱害虫识别率,针对YOLOv4检测模型检测到且容易混淆的19种灯诱害虫,本文提出了基于双线性注意力网络的农业灯诱害虫细粒度图像识别模型。【方法】首先,根据灯诱害虫外观图像的相似性和检测误检的情况,将19种害虫分为6类;将所有害虫图像通过补边操作使得长宽相等,并缩放至统一尺寸224×224像素。为了提高模型的鲁棒性和泛化能力,对害虫图像进行镜像翻转、旋转180度、高斯噪声和均值滤波的数据增强,训练集、验证集和测试集样本量按照8:1:1比例划分。然后,针对6类19种农业灯诱害虫细粒度图像,建立了基于双线性注意力网络的农业灯诱害虫识别模型(bilinear-attention pest net,BAPest-net),模型包括双线性特征提取、注意力机制和分类识别3个模块;通过修改特征提取模块的下采样方式提高特征提取能力;添加注意力机制模块让整个模型更关注于局部细节的特征,将双线性结构中的上下两个注意力机制的输出进行外积运算增加细粒度特征的权重,提高识别的准确性和学习效率;模型优化器使用随机梯度下降法SGD,分类模块中使用全局平均池化,旨在对整个网络从结构上做正则化防止过拟合。最后,在同一个训练集训练VGG19、Densenet、ResNet50、BCNN和BAPest-net 5个模型,对6类相似的19种农业灯诱害虫进行识别,以精准率、Precision-Recall(PR)曲线和平均识别率作为模型的评价指标。【结果】BAPest-net对6类相似的19种农业灯诱害虫平均识别率最高,达到94.9%;BCNN次之,为90.2%;VGG19模型最低,为82.1%。BAPest-net识别的6类害虫中4类鳞翅目害虫的平均识别率均大于95%,表明该模型能较好地识别出鳞翅目害虫。测试结果中仍存在少数相似度较高的害虫误判,特别当害虫腹部朝上或侧身,种类特征不够明显的时候容易引起相似害虫的误判。对于区分度较低的相似害虫需要更多的训练样本以获取更多的特征,提高模型的识别率和泛化能力。【结论】基于双线性注意力网络的农业灯诱害虫细粒度图像识别模型可以自动识别6类相似的19种农业灯诱害虫,提高了农业灯诱害虫自动识别的准确率。  相似文献   

10.
针对我国林火监测现状,为加强近地面监测中的早期林火发现,提出采用多传感器数据融合算法对早期林火进行识别的方法。通过设计林火仿真试验,采集CO2浓度、CO浓度、烟雾浓度与空气温湿度等多传感器数据,并通过初步分析从中选取关键贡献率传感器数据。然后分别采用BP神经网络算法、神经模糊系统算法与支持向量机算法对数据进行识别与分析, 并在每个算法中均设置三输入与九输入2种不同输入向量数以进行比较。最后通过定义的识别性能评价参数对识别效果进行比较,得出支持向量机算法在一定范围内能较好地实现对早期林火的识别。  相似文献   

11.
针对农资物流需求预测指标体系,结合粗糙集(RS)和支持向量机(SVM)方法的优点,建立了基于RS-SVM的农资物流需求预测模型,设计并实现了农资物流需求预测子系统,为农资物流需求预测提供了有效方法,为企业提供了有力的决策支持。  相似文献   

12.
基于双编码遗传算法的支持向量机作物病害图像识别方法   总被引:1,自引:0,他引:1  
为了实现作物病害的计算机识别,采用基于双编码遗传特征选择的支持向量机和病害图像多特征参数识别病害的方法,对病害图像增强处理,彩色病斑分割,特征参数提取,构建双编码遗传算法优化特征子集,并赋予权重的一对一投票策略支持向量机来分类识别作物病害进行研究.结果表明:在同等条件下,该方法与没有采用遗传算法的支持向量机相比,特征向量减少了38%,正确率提高了6.29%.  相似文献   

13.
害虫的发生是非线性动态系统,影响害虫发生的预测因子众多,且存在一定相关性,用神经网络进行预测时,不利于设计与计算。结合因子分析与神经网络的原理,建立基于因子分析与神经网络组合的害虫预测模型,通过因子分析对预测因子进行降维处理,然后将降维后的数据作为网络的输入,经训练后仿真输出预测结果。通过对山东郓城县二代棉铃虫预测的实例分析,证明新模型的预测精度没有降低,网络的收敛速度加快,预测值的误差减小。说明这一模型在农作物的病虫害预测方面有着广阔的应用前景。  相似文献   

14.
虫害防治系统是针对作物不同时期和不同环境条件下出现的各种症状,诊断可能出现的虫害,提出有效的防治方法.虫害诊断系统是农业专家系统的重要应用领域,到目前为止已经开发出了很多相应的系统,取得了可喜的成果,但是或多或少都存在一定的局限性;而通过在移动终端Android平台开发虫害指认诊断系统可以将诊断规则、推理过程、预测结果、病害信息以“典型图像+通俗文字”描述的直观形式呈现给用户,解决农户的实际应用问题,提高系统的操作性与实用性.  相似文献   

15.
农业产业结构的调整、全球气候的异常变化以及世界经济一体化进程的加快,给水稻的安全生产带来了许多新的挑战。水稻病虫害是影响水稻安全生产的重要因素。论述了种植业结构调整、全球气候异常、产品质量要求提高、农村就业结构的改变以及杂交水稻国际化推广带来的水稻病虫害发生的变化。提出了狠抓规模化经营和专业化生产;加强植保基础设施和监测手段建设;加强高新技术成果开发提供优良的后备技术;完善农业社会化服务体系;强化病虫防治责任机制建设和法制化管理水平;加强国际合作做好区域治理以实现水稻病虫害持续治理的策略。  相似文献   

16.
采用支持向量机的组合预测方法,对黑龙江垦区农机装备水平进行预测。在确定单一预测模型的基础上,运用自组织神经网络方法,将权系数确定问题转化为粗糙集理论中属性重要性评价的问题;计算各单一预测方法对组合模型的依赖度、重要度和权系数;利用建立的基于支持向量机非线性农机装备水平组合预测模型,对黑龙江垦区2002—2012年农机装备水平的历史数据进行检验。误差分析表明:该模型对农机总动力、大中型拖拉机、小型拖拉机、大中型拖拉机配套机具和小型拖拉机配套机具的预测平均相对误差为0.471%、1.328%、3.738%、1.193%、3.574%,均低于各单一预测模型的平均相对误差;利用该模型对黑龙江垦区农机装备水平进行预测,到2020年拥有农机总动力999.33万kW、大中型拖拉机88 921台、小型拖拉机38 453台,大中型拖拉机与配套农机具台数比为1.51∶1,小型拖拉机与配套农机具台数比为1.68∶1。所建模型适用于黑龙江垦区农机装备水平的预测。  相似文献   

17.
张峰  赵忠国  李刚  陈刚 《新疆农业科学》2019,56(8):1560-1568
目的】分析Landsat 8 OLI卫星遥感影像数据面向农用地分类的实际应用方法和效果,以新疆奇台县南部为研究对象。【方法】使用随机森林(RF)、支持向量机(SVM)和神经网络(Neural Net)三种分类器进行研究区农用地分类对比。【结果】通过对三种分类器参数设置参数精度检验,利用上述三种算法对农用地地物分类进行精度评价,在整体分类精度中,支持向量机算法(SVM)<随机森林算法(RF)<神经网络算法(Neural Net),分类精度分别为:90.75%,94.30%和94.84%。【结论】神经网络方法(Neural Net)在该地区的农用地物整体分类上,比支持向量机(SVM)和随机森林法(RF)相比具有一定的优势,并获得较好的分类精度。  相似文献   

18.
以亚热带林业实验中心年珠实验林场为研究区,以无人机可见光和LiDAR数据为数据源进行树种识别。基于CHM和可见光数据进行单木分割,对可见光数据和LiDAR数据进行特征提取,构建多特征集合;基于单木对象选择随机森林和支持向量机2种分类器进行分类识别,并利用混淆矩阵对不同数据源不同特征组合的12种方案进行精度评价,比较不同特征组合和分类器对树种分类精度的影响。结果表明:将基于CHM分割和多尺度分割结合的单木分割效果较好,满足单木树种识别需求。支持向量机的精度高于随机森林分类器,经过随机森林特征筛选之后精度优于未进行特征筛选的结果,总体平均精度提高1.45%,可见光和LiDAR数据结合较仅使用单一数据源平均精度提高了6.01%。特征筛选能减少维度灾难,有效难避免过多特征造成的冗余现象,进一步提高分类器的性能和效率。相对于随机森林分类器,支持向量机在对于多维的样本集以及训练样本有限的情况下,能够表现出更好的性能。多源数据结合能将不同数据源优势有效结合,提高分类精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号