首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Induced (traumatic) resin in white spruce (Picea glauca (Moench) Voss) leaders resistant or susceptible to the white pine weevil (Pissodes strobi Peck) was analyzed for volatile terpenes and diterpene resin acids after simulated white pine weevil damage. Leaders from 331 trees were wounded just below the apical bud with a 1-mm diameter drill, coinciding with the natural time of weevil oviposition in the spring. Leaders were removed in the fall, and the bark and xylem from the upper and lower regions of the leader extracted and analyzed by gas chromatography. Unwounded trees had low amounts of resin in xylem compared with bark. In response to wounding, volatile terpenes and diterpene resin acids increased in the upper xylem (area of wounding), with resistant trees showing a greater increase than susceptible trees. Wounding caused monoterpenes in particular to decrease in the lower region of the leader (away from the drilled area) in greater amounts in susceptible trees than in resistant trees. In response to wounding, the proportion of monoterpene to resin acid increased in the upper and lower xylem of resistant trees, and slightly increased in the upper xylem of susceptible trees. Monoterpene-enriched resin is more fluid than constitutive resin, and probably flows more readily into oviposition cavities and larval mines, where it may kill immature weevils. Loss of resin components in the lower xylem suggested catabolism and transport of these materials to the site of wounding; however, energetic and regulatory data are necessary to confirm this hypothesis. This study provides a basis for measuring the ability of a tree to undergo traumatic resinosis that could be used to screen for resistance to white pine weevil.  相似文献   

2.
Damage caused by pine weevil (Hylobius abietus L.) to planted seedlings and cuttings of Norway spruce (Picea abies (L.) Karst.) was studied at five clearcut sites in south-eastern Sweden. The main objective was to compare the two types of stock in terms of attack frequency and mortality due to pine weevil feeding. Cuttings and seedlings with the same initial stem-base diameter (4 mm) were compared. Two sites were harvested and scarified shortly before planting, two were harvested shortly before planting, but were not scarified, and one was harvested 2 years before and scarified the autumn before planting. The total mortality 5 years after planting was highest, greater than 90%, at the new, non-scarified sites, and lowest, 23%, at the old, scarified site. More than 90% of the mortality was caused by pine weevil feeding. Attack frequency and pine weevil induced mortality were significantly higher among seedlings than among cuttings. Mortality due to pine weevil damage was 4–43% higher in seedlings than in cuttings after the fifth year. Of the cuttings and seedlings that were attacked in the first year, a significantly higher frequency of the seedlings were girdled. The higher resistance of cuttings to pine weevil damage may partly explain the more rapid growth of cuttings reported in other studies. However, the causes of their higher resistance need to be further investigated. The thicker bark and needles on the stem base of the cuttings could be important in this respect.  相似文献   

3.
4.
Abstract

Pine weevil (Hylobius abietis L.) damage to seedlings after overstorey removal was investigated in a survey study in six shelterwoods in the south–central part of Sweden. The shelterwoods predominantly consisted of Scots pine, except at one site where the shelter trees mainly consisted of Norway spruce. Before final cutting, 10 plots were laid out at each site and measurements of shelter trees and marked seedlings were taken. The seedlings were examined during the 2 years after final cutting. The study showed that removal of shelter trees increases the risk of severe damage by pine weevil and the variable that was most strongly correlated with the risk was the seedling root collar diameter. Both Scots pine and Norway spruce seedlings were severely damaged by pine weevil, and most of the feeding occurred during the first year after cutting. The amount of debarked area was significantly larger for Scots pine than for Norway spruce seedlings. Vitality (growth of the leading shoot before final cutting) of the seedlings also affected the probability of damage. Seedlings with high vitality were less damaged by pine weevil than seedlings with low vitality. For Scots pine the shelterwood density before final cutting was correlated to the intensity of pine weevil feeding after cutting. In conclusion, after the final cutting of a pine or spruce shelterwood, pine weevils will probably invade the area. To avoid serious damage, Norway spruce and Scots pine seedlings should have reached a diameter of at least 10–12 mm.  相似文献   

5.
Abstract

The pine weevil Hylobius abietis L. is major threat to forest regeneration in the Nordic countries. The persistence of the deltamethrin insecticide used against pine weevil on Norway spruce seedlings was studied after the seedlings were dipped or sprayed. Insecticide application was timed to occur either before or after frozen storage. Bioassays with the stems of Norway spruce seedlings were used to determine the effect of the insecticide against feeding by the pine weevil. The measures of the control effect were reduction in area of gnawed bark and the state of health of the pine weevils. The concentration of deltamethrin decreased rapidly in seedlings, especially after spraying treatment, which did not efficiently protect seedlings against the pine weevil 6 weeks after planting. There were no signs of degradation of deltamethrin or of an effect on seedling height after frozen storage. In bioassay, the amount of deltamethrin that efficiently prevented feeding by the pine weevil was 5.5 µg g?1 fresh weight. After one growing season in the field, about 1.76–2.24 µg g?1 (13–15% of the initial level) of dipped deltamethrin remained in the seedlings. In seedlings treated by spraying, 0.93–0.98 µg g?1 (7–8% of the initial level) of the deltamethrin remained. According to bioassays, these amounts were no longer sufficient to protect seedlings from feeding by the pine weevil. Therefore, in the first summer, dipping was a significantly more efficient method of application for control of pine weevils.  相似文献   

6.
We investigated the cellular responses of stem tissues of mature Scots pine (Pinus sylvestris L.) trees to inoculations with two fungal pathogens. The bark beetle vectored fungus, Leptographium wingfieldii Morelet, induced longer lesions in the bark, stronger swelling of polyphenolic parenchyma cells, more polyphenol accumulation and increased ray parenchyma activity compared with the root rot fungus, Heterobasidion annosum (Fr.) Bref., or mechanical wounding. Axial resin ducts in the xylem are a general feature of the preformed defenses of Scots pine, but there was no clear induction of additional traumatic axial resin ducts in response to wounding or fungal infection. The anatomical responses of Scots pine to pathogen infection were localized to the infection site and were attenuated away from bark lesions. The responses observed in Scots pine were compared with published studies on Norway spruce (Picea abies (L.) Karst.) for which anatomically based defense responses have been well characterized.  相似文献   

7.

White spruce (Picea glauca (Moench) Voss) is host to several pests, including the white pine weevil (Pissodes strobi (Peck)) and the green spruce aphid (Elatobium abietinum (Walker)). The larvae of the white pine weevil damage spruce leaders by consuming the cortex while the green spruce aphid is a defoliator. White spruce emblings (seedlings produced by culturing tissues from seed embryos) from 18 families previously ranked for resistance to the white pine weevil were defoliated to varying degrees by the green spruce aphid in a natural outbreak that developed within a holding shadehouse. A strong relationship was shown between damage caused by the aphids and weevil resistance. Emblings ranked as highly weevil - resistant sustained significantly less aphid defoliation.  相似文献   

8.
The traumatic wound response of families of white spruce, Picea glauca (Moench) Voss, resistant or susceptible to the white pine weevil, Pissodes strobi (Peck), were compared after simulated weevil damage. Leaders from 331 trees were wounded just below the apical bud in the spring, coinciding with the natural time of weevil oviposition. A portable 1-mm diameter drill was used to drill 24 holes per leader. Leaders were removed in the fall and examined for evidence of traumatic resin canal formation. Drilled trees had a traumatic wound response 8 times greater than that of undrilled trees; however, undrilled trees also formed some resin canals in response to unknown causes. In the drilled trees, the traumatic wound response extended into the lower part of the leader, where it could possibly affect older larvae. Trees from resistant families responded with greater intensity than trees from susceptible families, by producing multiple rings of traumatic resin canals. Trees from resistant families also responded more rapidly than trees from susceptible families based on number of cells to the first ring of traumatic resin canals. Trees from some resistant families exhibited no traumatic resin canal formation, showing considerable within-family variation and suggesting that other resistance mechanisms might be important. In the year after drilling, there was a reduction in tree diameter growth and trees suffered a reduction in constitutive resin canals in the bark, which suggests some energetic cost of traumatic resin production. There was no indication that the extent of constitutive defenses, as measured by density of cortical resin canals before wounding, was related to the ability to produce traumatic resin canals. Screening trees based on their capacity to produce traumatic resin canals may be useful in selecting genotypes resistant to white pine weevil.  相似文献   

9.
Alternative methods of protection are required against feeding by the large pine weevil (Hylobius abietis) on the bark of conifer seedlings. Silicon (Si) has been shown to enhance the resistance of plants to insect herbivores. This study investigated the effects of low doses of Si-rich soil amendments on growth, mortality and bark feeding damage of Sitka spruce (Picea sitchensis) seedlings. Two-year old seedlings were grown, individually, in soil taken from a tree nursery treated with coal ash, peat ash, rice husk ash, slag, sodium metasilicate or a commercially available Si fertiliser (Pro-Tekt) and planted out on two reforestation sites in Ireland. Seedlings grew well (about 20% growth in terms of height, 66% in root collar diameter, after two growing seasons), and Si-rich amendments did not have a significant effect on growth or mortality. Bark feeding damage on Si-treated seedlings did not vary significantly from control seedlings. Bark Si concentrations were not significantly larger in treated seedlings than in control seedlings, but control seedlings already had comparatively high bark Si concentrations (560?mg?kg?1 dry tissue). In conclusion, Sitka spruce seedlings grown in the presence of Si-rich soil amendments prior to planting did not show greater resistance to weevil feeding under the present conditions.  相似文献   

10.
唐巍 《林业研究》2003,14(2):171-179
Since the first terpenoid synthase cDNA was obtained by the reverse genetic approach from grand fir, great pro-gress in the molecular genetics of terpenoid formation has been made with angiosperms and genes encoding a monoterpene synthase, a sesquiterpene synthase, and a diterpene synthase. Tree killing bark beetles and their vectored fungal pathogens are the most destructive agents of conifer forests worldwide. Conifers defend against attack by the constitutive and inducible production of oleoresin that accumulates at the wound site to kill invaders and both flush and seal the injury. Although toxic to the bark beetle and fungal pathogen, oleoresin also plays a central role in the chemical ecology of these boring insects. Re-cent advances in the molecular genetics of terpenoid biosynthesis provide evidence for the evolutionary origins of oleoresin and permit consideration of genetic engineering strategies to improve conifer defenses as a component of modern forest bio-technology. This review described enzymes of resin biosynthesis, structural feathers of genes genomic intron and exon or-ganization, pathway organization and evolution, resin production and accumulation, interactions between conifer and bark beetle, and engineering strategies to improve conifer defenses.  相似文献   

11.
Feeding by pine weevil (Hylobius abietis L.) causes severe damage to newly planted conifer seedlings in most parts of Scandinavia. We investigated the effect of planting time and insecticide treatment on pine weevil damage and seedling growth. The main objective was to study if planting in early autumn on fresh clear-cuts would promote seedling establishment and reduce the amount of damage caused by pine weevil the following season. The experiment was conducted in southern Sweden and in south-eastern Norway with an identical experimental design at three sites in each country. On each site, Norway spruce seedlings with or without insecticide treatment were planted at four different planting times: August, September, November and May the following year. In Sweden, the proportion of untreated seedlings that were killed by pine weevils was reduced when seedlings were planted at the earliest time (August/September) compared to late planting in November, or May the following year. This pattern was not found in Norway. The average length of leading shoot, diameter growth and biomass were clearly benefited by planting in August in both countries. Insecticide treatment decreased the number of seedlings killed or severely damaged in both Norway and Sweden.  相似文献   

12.

Pine weevils (Hylobius spp.) feeding on stem bark of young conifer seedlings pose a serious threat to forest regeneration-planting programmes in Nordic countries. This study was designed to determine the threshold diameter for planted, untreated containerized seedlings, above which pine weevils cause little or no damage. The effects of sublethal weevil damage on seedling growth were also assessed. In total, 5320 containerized spruce seedlings were planted on scarified and unscarified plots on three sites in southern Sweden. Seedlings in six size classes, which differed with regard to age (1.5-3.5 yrs) and cultivation density (28-446 seedlings m 2) were grown using the Combicell system. None of the seedlings was treated with insecticides, except for those in the smallest class, where both untreated and treated seedlings were used. Inspections were made periodically during the first 3 yrs and after both 5 and 7 yrs. A statistically significant relationship was found between seedling losses due to pine weevil attack and seedling stem-base diameter at the time of planting out, on both scarified and unscarified plots. For seedlings with a stem-base diameter of around 10 mm, mortality due to pine weevil attack on scarified plots was low enough to be considered negligible. This threshold diameter was several millimetres greater for seedlings planted on unscarified plots. An analysis of the relationship between the extent of weevil damage and seedling growth rate showed that among surviving seedlings, those that grew fast tended to show low levels of damage. On unscarified plots, the mortality rate amongst seedlings treated once with a permethrin insecticide was only one-third that of untreated seedlings. On scarified plots, the corresponding difference was somewhat smaller. Repeated insecticide treatment resulted in a pronounced reduction in seedling mortality on the unscarified plots, whereas the effect was weaker on scarified plots.  相似文献   

13.
The sawmilling industry stores and measures logs in bark in order to maximize efficiency, quality conservation and preservation. However, billing is based on the diameter under bark, which it is necessary to estimate based on manual or automatic bark detection. Recently, an approach for automatic determination of diameter under bark based on a multi-sensor approach, including shape data, colour image data and tracheid effect data has been presented, including promising results for logs of the species Norway spruce (Picea abies (L.) H. Karst) and Silver fir (Abies alba Mill.). This paper extends this approach to Scots pine (Pinus sylvestris L.). The comparison of the estimated diameters under bark of 270 pine logs with the respective diameters after debarking shows that the method works well and reliably. Estimation errors are in general close to zero and are below ±10?mm for 98% of the logs. In comparison with manual bark detection, the automatic approach is clearly an improvement. Influences of season or characteristics like discolouration are mostly small. Applying a bark detection algorithm trained on spruce to the pine logs leads to acceptable results, but using a separate algorithm for pine leads to an even better performance.  相似文献   

14.
When conifers such as Picea abies Karst. (Norway spruce) are attacked by insects or pathogens, they often respond by producing increased quantities of terpenoid oleoresin. This response can be mimicked in young P. abies seedlings by treatment with methyl jasmonate (MJ). In this study, we determined the effects of MJ on terpenoids and other chemical defenses of mature P. abies, and investigated whether this treatment protected trees against attack by the blue-stain fungus Ceratocystis polonica (Siem.) C. Moreau, the most important fungal associate of the spruce bark beetle Ips typographus L. Methyl jasmonate treatment induced the formation of traumatic resin ducts in the developing xylem, enhanced resin flow and stimulated increased accumulation of monoterpenes, sesquiterpenes and diterpene resin acids. However, only minor changes were detected in terpene composition in response to MJ treatment and no changes in soluble phenolic concentration were measured. There was much variability in the timing and degree of response to MJ among clones. The observed chemical and anatomical changes in response to MJ treatment were correlated with increased resistance to C. polonica, suggesting that terpenoid oleoresin may function in defense against this pathogen.  相似文献   

15.
Inspection of Norway spruce and Silver fir on experimental plots in south-western Germany showed that Silver fir had suffered significantly less bark injuries than Norway spruce. Data from both federal forest inventories (1987, 2002) showed a similar species-specific vulnerability. Additional visual inspections of the basal cross-sections of trees removed from the experimental plots showed rather high proportions of butt rot in uninjured Norway spruce (51%). The proportion further increased to 93% in trees, which had sustained bark injuries. In contrast, decay symptoms were almost absent in uninjured Silver fir and less enhanced in trees with bark injuries (27%). Management implications for risk rating of tree species, as well as the necessity of implementing low-damage harvesting regimes, are discussed.  相似文献   

16.
Abstract

This study investigated the role of monoterpenes, a group of chemicals known to be involved in plant defence, in the susceptibility of Sitka spruce [Picea sitchensis (Bong.) Carr.] plants derived from both cuttings and seedlings to attack by the large pine weevil Hylobius abietis (L.). Results showed that, given the choice, weevils prefer to feed on the shoots of seedlings than of cuttings and that this preference continued over a period of 6 days, although the overall level of feeding declined. This observation was associated with a higher level of monoterpenes in the shoots from cuttings than in those from seedlings. When the weevils were restricted to the stems and given no choice, levels of damage to the bark were similar in both plant types.  相似文献   

17.
Relationships between nutrition and heart rot attack of Norway spruce (Picea abies Karst.) and the fungistatic effect of its inner bark . The fresh inner bark of Norway spruce stems and roots inhibits mycelium growth of Fomes annosus on malt agar. Nearly all fungistatic substances of the inner bark can be extracted with chloroform and acetone. The acetone-soluble fraction, which amounts to 13–27% of bark dry matter, was analysed. Up to now 12 phenolic substances have been identified, 5 of them have proved to inhibit Fomes annosus in vitro. Open-air-experiments showed, that desiccation of the root-zone, manganese deficiency and nitrogen hypertrophy decrease the inhibitory effect of the inner bark as well as its content of fungistatic substances. The degree of heart rot attack in older spruce stands was found to be negatively correlated with the N-, Fe- and Mn-concentrations in needles.  相似文献   

18.
Planting exotic conifers offers indigenous forest insects an opportunity to extend their host range and eventually to become significant pests. Knowing the ecological and evolutionary modalities driving the colonisation of exotic tree species by indigenous insects is thus of primary importance. We compared the bark beetle communities (Coleoptera: Curculionidae, Scolytinae) associated with both native and introduced conifers in France. The aim of our study was to estimate the influence of both host- and insect-related factors on the beetles’ likelihood to shift onto new hosts. We considered the influence of host origin (i.e. native vs. exotic), host tree species identity, tree bark thickness and tree taxonomic proximity, as well as insects’ host specificity. A field inventory using trap trees was carried out in two regions in France (Limousin and Jura) during two consecutive years (2006 and 2007) on three European native conifer species [Norway spruce (Picea abies); Scots pine (Pinus sylvestris) and European Silver-fir (Abies alba)] and five North American [Sitka spruce (Picea sitchensis); Eastern white pine (Pinus strobus); Grand fir (Abies grandis); Douglas fir (Pseudotsuga menziesii) and Western red cedar (Thuja plicata)]. A total of 18 indigenous and 2 exotic bark beetle species were collected. All exotic conifer species were colonised by indigenous bark beetle species and no significant difference was observed of the cumulated species richness of the latter between native and exotic tree species (13 vs. 14, P < 0.05). The ability of indigenous bark beetles to shift onto exotic conifers appeared to strongly depend on host species (significantly structuring bark beetle assemblages), the presence of phylogenetically related native conifer species and that of similar resources, in combination with insect host specificity. Host tree species status (native or exotic) also seemed to be involved, but its effect did not seem as essential as that of the previous factors. These findings are discussed in terms of adaptation, plasticity and practical aspects of forest management.  相似文献   

19.
Damage by the large pine weevil, Hylobius abietis (L.), is a major threat to conifer plantations throughout Eurasia, but damage is usually less severe in northern areas. However, pine weevil damage seems to increase if the sites are burnt. The aim of this study was to determine the effects of variations in the time of planting (with respect to the total age of the clear-cut and the time since burning) on pine weevil damage to seedlings on burnt sites in northern Sweden. The study also explored whether there is an optimal time for planting at which damage levels are reduced to acceptable levels. Ten sites were selected in an inland area of northern Sweden where pine weevils are normally scarce. The sites were dry–mesic and represented a range of times since clear-cutting and since burning. The sites were planted in June 1998, 1999 and 2000 with 1-year-old container-grown seedlings of Norway spruce [Picea abies (L.) Karst.]. Pine weevil damage was reduced if planting was done no earlier than 3 years after clear-cutting and no earlier than 2 years after burning. Planting too soon after burning, irrespective of the age of the clear-cut, resulted in unacceptably high damage levels.  相似文献   

20.
The nature of interference of bracken with Scots pine and Norway spruce seedling establishment was considered in three field experiments. In a seeding experiment, it was found that Scots pine germination was highest on exposed mineral soil and lowest when intact bracken litter and humus were present, suggesting adverse effects of litter and humus on pine regeneration probably due to phytotoxicity. In a second experiment, smothering by bracken caused high mortality of Scots pine seedlings while Norway spruce seedlings were relatively unaffected. Mortality for both Scots pine and Norway spruce seedlings was low when planted in a adjacent Scots pine-bilberry stand with no bracken. Annual shoot growth of Norway spruce was higher in bracken than in Scots pine-bilberry vegetation while no differences in shoot growth between these two vegetation types occurred for Scots pine. In a third experiment, activated carbon was added to the ground under Norway spruce seedlings planted in bracken to adsorb possible phytotoxic compounds released by bracken. The addition of carbon had no effect on seedling mortality or growth rate, indicating that the seedlings were not susceptible to allelochemicals released by bracken. Since large Norway spruce seedlings were relatively unaffected by bracken interference in this study, artificial regeneration with containerized Norway spruce seedlings is suggested to achieve an acceptable conifer tree establishment on clear-cuts invaded by bracken.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号