首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
This paper presents the results of irrigated rotation experiment, conducted in the North West Frontier Province (NWFP), Pakistan, during 1999–2002 to evaluate effects of residues retention, fertilizer N and legumes in crop rotation on yield of maize (Zea mays L.) and soil organic fertility. Chickpea (Cicer arietinum L) and wheat (Triticum aestivum L) were grown in the winters and mungbean (Vigna radiata) and maize in the summers. Immediately after grain harvest, above-ground residues of all crops were either completely removed (−residue), or spread across the plots and incorporated by chisel plough by disc harrow and rotavator (+residue). Fertlizer N rates were nil or 120 kg ha−1 for wheat and nil or 160 kg ha−1 for maize. Our results indicated that post-harvest incorporation of crop residues significantly (p < 0.05) increased the grain and stover yields of maize during both 2000 and 2001. On average, grain yield was increased by 23.7% and stover yield by 26.7% due to residue incorporation. Residue retention also enhanced N uptake by 28.3% in grain and 45.1% in stover of maize. The soil N fertility was improved by 29.2% due to residue retention. The maize grain and stover yields also responded significantly to the previous legume (chickpea) compared with the previous cereal (wheat) treatment. The legume treatment boosted grain yield of maize by 112% and stover yield by 133% with 64.4% increase in soil N fertility. Similarly, fertilizer N applied to previous wheat showed considerable carry over effect on grain (8.9%) and stover (40.7%) yields of the following maize. Application of fertilizer N to current maize substantially increased grain yield of maize by 110%, stover yield by 167% and soil N fertility by 9.8% over the nil N fertilizer treatment. We concluded from these experiments that returning of crop residues, application of fertilizer N and involvement of legumes in crop rotation greatly improves the N economy of the cropping systems and enhances crop productivity through additional N and other benefits in low N soils. The farmers who traditionally remove residues for fodder and fuel will require demonstration of the relative benefits of residues return to soil for sustainable crop productivity.  相似文献   

2.
In southwestern region of Punjab in north India, sowing dates of cotton crop in cotton (Gossypium hirsutum L.)–wheat (Triticum aestivum L.) system are staggered from last week of April to mid of May depending upon the surface water supply from canal as ground water is not fit for irrigation. Further, farmers practice intensive cultivation for seedbed preparation and burning of wheat straw before sowing of cotton crop. With the present farmers’ practices, yields have become static and system has become non-profitable. Field experiments were conducted on Entisols for two rotations of cotton–wheat system during the years of 2004–2005 and 2005–2006 in split plot design to study the direct and interactive effects of date of sowing and tillage-plus-wheat residue management practices on growth and yield of cotton and wheat and to increase the profitability by reducing the tillage operations, which costs about 50% of the sowing cost. The pooled analysis showed that in cotton crop, there was a significant interaction between year × dates of sowing. Among different tillage-plus-wheat residue management practices yields were 23–39% higher in tillage treatments than minimum-tillage. In wheat, grain yield in tillage treatments were at par. Water productivity amongst the tillage treatments in cotton was 19–27% less in minimum tillage than others tillage treatments. Similar trend was found in wheat crop. Remunerability of the cotton–wheat system was more with a combination of reduced tillage in cotton and minimum tillage in wheat than conventional tillage.  相似文献   

3.
Since large areas of agricultural fields in the world become compacted every year, much effort has been made to reduce the adverse effects of soil compaction on plant growth. Mechanical methods to control soil compaction may be laborious and expensive; however, biological methods such as using arbuscular mycorrhiza (AM) may be more useful, economically and environmentally. The objectives of this study were: (1) to evaluate the effects of soil compaction on wheat (Triticum aestivum L.) growth, and (2) to evaluate if using AM of different origin can reduce the stressful effects of soil compaction on wheat growth. Unsterilized and sterilized soils, different levels of compaction and three species of arbuscular mycorrhiza were applied in four replicates. The experiments were conducted in the Soil and Water Research Institute, Karaj, Iran. Soil physical and chemical properties were determined. The AM increased wheat growth in both soils at different levels of soil compaction in both experiments. For root, shoot (P=0.1) and grain (P=0.05) dry weights increases were significant. AM enhanced root growth more than shoot growth under compaction (AM resulted in significant increase in root/shoot ratios, P=0.1). Due to its unique characteristics, AM may reduce the stressful effects of soil compaction on wheat growth, though its effectiveness may decrease with increasing compaction.  相似文献   

4.
Crop residues and reduced tillage become current tendency in modifying tillage due to better water management, organic and nutrient supply and increasing crop production. This study was carried out to quantify the effect of fodder radish mulching and different tillage systems in wheat production. In 2004–2006 the field trial was set up on Luvic Chernozems derived from loess. This experiment consisted of two factors: tillage system (conventional or reduced) and mulch (with or without). The air–water properties of soil with particular focus on macropore characteristics were investigated.The tillage system and mulch application significantly influenced physical properties of investigated soil. Reduced tillage, without mouldboard plough, increased the soil density with respect to conventional tillage. However, in the upper soil layer (0–10 cm) with mulch residues the bulk density decreased and reached the similar value as those obtained at conventional tillage (1.25 g cm−3). The macroporosity of soil with conventional tillage (14.79%) was significantly higher in comparison with reduced tillage (6.55%). The mulch of fodder radish added at reduced tillage increased the macroporosity in pore diameter range of 50–500 μm. These changes referred to all shape classes: regular, irregular and elongated pores. The lowest transmission pores content (0.078 cm3 cm−3) was noticed at the reduced tillage without mulch at the 0–10 cm layer. Due to lack of differences in storage pores the tillage and mulching had no effect on both AWC (available water content) and PWC (productive water content) values. The higher value of AWC was noticed in the upper soil layer (0.198 cm3 cm−3 in average), whereas in the 10–20 cm soil layer it was 0.186 cm3 cm−3. Similar relation was recorded in PWC values, 0.165 and 0.154 cm3 cm−3, respectively. The results obtained in physical properties of soil reflected in wheat yields. The yields obtained at reduced tillage system without mulch (5.54 t ha−1) were significant lower with respect to treatment when mulch applied (6.79 t ha−1). The mulch residues did not affect yields at conventional tillage (6.53 t ha−1 without mulch and 7.00 t ha−1 with mulch). The main conclusion is that the mulching can help to avoid yield reduction in wheat production when reduced tillage is used.  相似文献   

5.
Conservation crop residue management increases soil organic carbon (SOC) storage, nutrient cycling and availability and improves soil quality. This study was conducted to evaluate the amount of residue biomass, residue carbon to nitrogen (C:N) ratio, residue carbon (C) and nitrogen (N), and residue N fertilizer deficit (supplemental N fertilizer requirement) from crop residue decomposition in long-term no-till production. Aboveground aged and fresh residues were collected in spring 2011 and fall 2012, respectively. Results showed slightly greater residue dry matter weight in aged residue than fresh residue. C:N ratios were wider in fresh residue than the aged residue. Both aged and fresh residue also showed wider C:N ratio in the corn (Zea mays L.)-soybean (Glycine max L.) rotation (66.6 and 64.4, respectively) and narrower C:N ratio in the spring wheat (Triticum aestivum L.)-winter wheat (Triticum aestivum L.)-alfalfa (Medicago sativa L.)-alfalfa-corn (Zea mays L.)-soybean (Glycine max L.) (45.6 and 35.7, respectively). Individual fresh crop residues showed narrower C:N ratios for legume and cover crops than non-legume crops. Analysis of potential supplemental N fertilizer requirements showed greater potential N requirement for the fresh residue than the aged residue.  相似文献   

6.
温度对盐胁迫小麦抗氧化机制的影响   总被引:3,自引:0,他引:3  
本研究以耐盐性不同的8个冬小麦品种为材料,分别在室温(20℃/25℃)和接近小麦生产的低温(10℃/15℃)条件下采用溶液培养,并在苗期进行盐胁迫处理(150 mmol·L-1 Na Cl),研究温度和盐胁迫交互作用对耐盐性不同的小麦抗氧化机制的影响。结果表明,对室温培养的幼苗进行盐胁迫后,耐盐强的小麦幼苗超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)和抗坏血酸过氧化酶(APX)活性均显著升高,并且高于2个耐盐性弱的品种;而耐盐性弱的小麦幼苗盐处理后仅APX活性显著升高,其活性氧(ROS)累积量和叶片相对电导率均高于耐盐小麦;抗旱小麦以上指标介于耐盐品种和耐盐性弱的品种中间。低温培养下进行盐胁迫,谷胱甘肽还原酶(GR)在所有供试品种中均显著升高2~3倍;耐盐品种仅CAT和APX活性升高,抗旱品种SOD、POD和APX以及耐盐性弱的品种SOD和POD活性显著提高。由此得出与室温盐胁迫下小麦抗氧化机制的响应不同,低温盐胁迫条件下,耐盐小麦SOD和POD酶活性受到抑制,主要通过提高抗坏血酸-谷胱甘肽循环的两个关键酶APX和GR活性增加对ROS的清除能力,而抗旱品种和耐盐性弱的品种除GR酶活性显著提高外,SOD和POD对ROS的清除能力均显著增强。在各种抗氧化酶的共同作用下,耐盐性不同的小麦品种之间ROS累积量和叶片电导率等受伤害指标的差异程度与室温盐胁迫相比减弱。  相似文献   

7.
We have investigated the effect of two nitrification inhibitors, 3,4-dimethylpyrazole phosphate (DMPP) and dicyandiamide (DCD), on the accumulation of and after incorporation of cauliflower residues in incubation experiments. Cauliflower leaves were incubated with soil and DCD or DMPP at two application rates [8.93 and 17.9 mg active component (ac) kg−1 for DCD; 0.89 and 1.79 mg ac kg−1 for DMPP]. Both doses of DCD and DMPP increased on average by 18.9 and 26.0 mg N kg−1 for DCD1 (during 30 days) and DCD2 (during 45 days), respectively, and on average by 14.4 mg N kg−1 for DMPP1 and DMPP2 during a period of at least 95 days. In DCD-treated soils, data followed an S-shaped curve, indicating that nitrification restarted during the experiment: inhibition was on average 24% during 35 days for DCD1 and on average 45% during 49 days for DCD2. Thereafter, amount in DCD-treated soils exceeded that of the cauliflower-only treatment by 31% for DCD1 and 78% for DCD2, probably due to a nitrogen release from DCD itself and a priming effect induced by DCD. In DMPP-treated soils, data followed a linear pattern since nitrification was inhibited during the complete incubation (95 days): inhibition was on average 56 and 64% for DMPP1 and DMPP2, respectively. DMPP did not affect the N mineralization of the crop residues. Under favourable conditions, DCD is able to inhibit the nitrification from crop residues for 50 days and DMPP for at least 95 days. Hence, especially DMPP shows a potential to reduce leaching after incorporation of crop residues.  相似文献   

8.
为探讨小麦化感作用机理,以强化感小麦‘115/青海麦’、‘92L89’和弱化感小麦‘抗10103’材料,设置小麦根水提液浓度为0%、0.2%、1.0%和5.0%的水培试验,测定了看麦娘根系对小麦根水提液化感作用的生理响应。结果表明,小麦根水提液处理显著抑制了看麦娘根的生长,根鲜重抑制率随处理浓度的升高而增大,强化感小麦的抑制率高于弱化感小麦。当处理浓度达5.0%时,不同化感小麦间无显著差异。‘115/青海麦’、‘92L89’和‘抗10103’根水提液处理后,看麦娘的根系活力的抑制率分别为52.0%~59.6%、46.5%~55.0%和27.2%~44.7%,但前二者间无显著差异;看麦娘根系中可溶蛋白含量、SOD、POD、CAT活性及MDA含量显著升高;SOD和POD活性大小均表现为‘115/青海麦’‘92L89’≈‘抗10103’;CAT活性随处理浓度的升高显著增大,但不同品种小麦间无显著差异。‘115/青海麦’、‘92L89’和‘抗10103’根水提液处理的看麦娘根系MDA含量依次是对照的10.9~25.5倍、5.9~24.2倍和1.2~6.8倍。小麦化感作用引起看麦娘根系细胞膜脂氧化胁迫,并诱导看麦娘根系抗氧化物质类黄酮和总酚含量的合成。可见,降低根系活力、增强保护酶系统活性及抗氧化物质代谢是看麦娘应答小麦化感作用的生理响应。  相似文献   

9.
A field study conducted for two crop cycles of five cropping systems supplied with six nutrient combinations at the Indian Agricultural Research Institute, New Delhi indicated that the cropping systems having a legume increased organic C content over initial level by 0.02?–?0.05%, available N by 3.5?–?14.1?kg ha???1, whereas the rice-wheat cropping system resulted in a reduction in organic C and available N over initial level by 0.05% and 1.5?kg ha???1, respectively after 2 years of study. Rice-potato-mungbean cropping system resulted in a negative balance of available P and rice-clover cropping system had a negative balance of both available P and available K content in soil and thus call for adequate P and K fertilization. Application of P and K helped in building up their content in soil; NPK?+?FYM showed the highest increase in organic C, available N, available P and available K content in soil. These results suggest the inclusion of a legume in a cropping system for maintaining organic C and available N in soil and adequate P and K fertilization for arresting the depletion of available P and K content in soil. Integrated nutrient management is one of the best methods for resilience of soil fertility under rice-wheat cropping system.  相似文献   

10.
Agriculture intensification has resulted in severe soil nutrient depletion in Africa. Alternative agricultural practices have been promoted to reduce the use of expensive mineral fertilizers and to restore and sustain soil fertility. The use of mineral fertilizer combined with organic inputs (such as crop residues) and different cropping systems (cereal–legume association or rotation) have been particularly promising. Impacts of these agricultural practices on soil communities have been widely studied, yet little is known on the effect on more specific groups such as rhizobia. A field trial was set up in Chuka (Kenya) to assess the impact of different cropping systems (maize and soybean in intercropping, rotation or monocropping) combined with N fertilization and residues application on the genetic diversity of promiscuous soybean rhizobia during two seasons. Soybean yields were severely reduced by moisture stress and the association with maize compared to mono-legume and rotation systems. Nodulation was generally low but was positively affected by residues application. Diversity of native rhizobia was very low (Shannon indices H′ < 0.8) across the experiment and was not affected by the treatments. Only 5 IGS profiles were obtained after RFLP analysis and all isolated rhizobia were identified as Bradyrhizobium elkanii. The distribution of the different IGS groups within the experiment was more affected by season and residues application than by cropping system and nitrogen fertilizer application. These results suggest a limited population and a low diversity of indigenous rhizobia, and emphasize the need of alternative managements to increase and sustain soybean yields in Central Kenya.  相似文献   

11.
A 12-year field experiment was conducted to investigate the effect of different tillage methods and fertil-ization systems on microbial biomass C,N and P of a gray fluvo-aguic soil in rice-based cropping system .Five fertilization treatments were designed under conventional tillae(CT) or on tillage(NT) system:no fertilizer(CK) ; chemical fertilizer only(CF) ; combining chemical fertilizer with pig manure(PM); combining chemical fertilizer with crop straw (CS) and fallow (F). The results showed that biomass C,N and P were enriched in the surface layer of no-tilled soil,whereas they distributed relatively evenly in the tilled soil,which might result from enrichment of crop resdue,organic manure and mineral fertilzer,and surficial developent of root systems under NT.Under the cultivation system NT had slightly greater biomass C,N and P at 0-5 cm depth ,significantly less biomass C,N and P at 5-15 cm depth ,less microbial biomass C,N and equivalent biomass P at 15-30 cm depth as compared to CT,indicating hat tillage was beneficial for the multiplication of organims in the plowed layer of soil.Under the fallow system,biomass C,N and P in the surface layer were significantly greater for NT than CT while their differences between the two tillage methods were neligible in the deeper layers.In the surface layer,biomass C,N and P in the soils amended with oranic manure combined with mineral fertilizers were significantly greater than those of the treatments only with mineral fertilizers and the control.Soils without fertilzer had the least biomass nutrient contents among the five fertilization treatments.Obviously,the long-term application of organic manure could maintain the higher activity of microorganisms in soils.The amounts of biomass C,N and P in the fallowed soils varied with the tillage methods;they were much greater under NT than under CT,especially in the surface layer,suggesting that the frequent plowing could decrease the content of organic matter in the surface layer of the fallowed soil.  相似文献   

12.
为阐明小麦化感抑草的生理机制,选择强化感小麦‘115/青海麦’、‘92L89’和弱化感小麦‘抗10103’,通过添加浓度为0.2%、0.5%和1.0%的小麦根水提液进行水培试验3周后,测定了各处理看麦娘的鲜重,分析叶片中叶绿素(SPAD值)、可溶蛋白、MDA、类黄酮、总酚的含量以及SOD、POD、CAT活性。结果表明,水提液处理显著抑制了看麦娘的生长,抑制率在不同处理浓度及小麦品种间均存在显著差异,强化感小麦的抑制率显著高于弱化感小麦。在处理浓度范围内,不同小麦根水提液的抑制率大小依次为‘115/青海麦’(24.7%~74.3%)‘92L89’(15.7%~71.6%)‘抗10103’(13.8%~61.4%);0.2%、1.0%和5.0%水提液处理的抑制率大小依次为13.8%~24.7%、41.7%~66.4%和61.4%~74.2%。看麦娘叶绿素含量(SPAD值)随处理浓度增大显著降低,可溶蛋白含量,SOD、POD、CAT活性,MDA、类黄酮含量随处理浓度增大显著升高,强化感小麦对看麦娘的生理刺激作用高于弱化感小麦。1.0%‘115/青海麦’及5.0%各小麦水提液处理的看麦娘总酚含量高于对照。可见,小麦化感胁迫提高了看麦娘的保护酶系统活性,增强了抗氧化物质代谢,但显著增强了细胞膜脂质过氧化和叶绿素降解,不利于靶标植物看麦娘的生长。  相似文献   

13.
Salinity is one of the most important growth-limiting factors for most crops in arid and semi-arid regions;however,the use of plant growth-promoting rhizobacteria isolated from saline soils could reduce the effects of saline stress in crops.This study aimed to evaluate the efficiency of plant growth-promoting rhizobacteria(PGPRs),isolated from the rhizosphere of halophile plants,for the growth,Na+/K+ balance,ethylene emission,and gene expression of wheat seedlings(Triticum ...  相似文献   

14.
[目的]探讨肥料施用方式和施钾量对土壤不同形态钾含量及小麦根系活力的影响,以期为提高土壤钾素利用效率提供技术支持.[方法]2018—2020年连续两年,采用裂裂区设计,主区为肥料(A):设20% 有机肥(鸡粪)+80% 氮肥(A1),100% 氮肥(A2)2个水平;副区为施钾量(B):设不施钾(B1)、减量施钾80 k...  相似文献   

15.
秸秆的质量,特别是C/N是影响秸秆分解速率和养分释放的重要因素。在秸秆还田条件下,如何科学合理地施用氮肥是秸秆利用和优化施肥研究的关键问题。本研究以秸秆还田施入碳氮的C/N为切入点,于2012—2013年通过田间试验(设秸秆不还田不施肥、秸秆还田不施氮、秸秆还田施用无机氮肥调节C/N为10∶1、16∶1和25∶1以及秸秆还田施用有机氮肥调节C/N为25∶1处理),研究秸秆还田不同氮输入对小麦-玉米轮作田土壤无机氮、土壤微生物量氮、酶活性以及作物产量的影响。结果表明:1)在C/N为25∶1下,施用有机氮肥和无机氮肥对土壤无机氮含量无显著影响;在施用无机氮肥的情况下,C/N越低土壤无机氮含量越高。2)秸秆还田施氮提高了土壤微生物量氮含量,但是各秸秆还田施氮处理之间差异不显著;秸秆还田不同施氮处理对脲酶活性无显著影响;秸秆还田施氮提高了FDA水解酶活性,并随C/N降低呈升高趋势,施用无机氮肥的效果强于施用有机氮肥的。3)秸秆还田施用无机氮肥显著提高了小麦和玉米地上部生物量,施用无机氮肥调节C/N为10∶1和16∶1相比于C/N为25∶1提高了小麦和玉米的苗期和成熟期地上部生物量;施用有机氮肥调节C/N为25∶1相比秸秆还田不施氮对地上部生物量无显著影响。秸秆还田施用无机氮肥提高了作物产量,施用无机氮肥调节C/N为16∶1产量最高,而施用有机氮肥调节C/N为25∶1有降低作物产量的趋势。综合以上结果来看,施用无机氮肥调节C/N为16∶1较为合理。  相似文献   

16.
采用室内模拟试验与盆栽试验相结合的方法,研究了不同C、N比肥料组合(玉米秸秆 尿素)对肥料N生物固定、释放及小麦生长的影响。结果表明:肥料组合的C、N比越高,土壤微生物对肥料N的固定量越大。但其释放率逐渐降低;肥料组合的C、N比越高,对土壤NO3--N的抑制作用越大;麦田玉米秸秆还田时,调整其C/N≤20为宜。  相似文献   

17.
Azam  F.  Ashraf  M.  Lodhi  Asma  Sajjad  M. I. 《Biology and Fertility of Soils》1990,10(2):134-138
Summary A pot experiment was conducted to study the N availability to wheat and the loss of 15N-labelled fertilizer N as affected by the rate of rice-straw applied. The availability of soil N was also studied. The straw was incorporated in the soil 2 or 4 weeks before a sowing of wheat and allowed to decompose at a moisture content of 60% or 200% of the water-holding capacity. The wheat plants were harvested at maturity and the roots, straw, and grains were analysed for total N and 15N. The soil was analysed for total N and 15N after the harvest to determine the recovery of fertilizer N in the soil-plant system and assess its loss. The dry matter and N yields of wheat were significantly retarded in the soil amended with rice straw. The availability of soil N to wheat was significantly reduced due to the straw application, particularly at high moisture levels during pre-incubation, and was assumed to cause a reduction in the dry matter and N yields of wheat. A significant correlation (r=0.89) was observed between the uptake of soil N and the dry matter yield of wheat with different treatments. In unamended soil 31.44% of the fertilizer N was taken up by the wheat plants while 41.08% of fertilizer N was lost. The plant recovery of fertilizer N from the amended soil averaged 30.78% and the losses averaged 45.55%  相似文献   

18.
稀土镧对镉胁迫小麦遗传学防护效应的研究   总被引:2,自引:0,他引:2  
以有丝分裂指数和染色体畸变率为指标,应用水培法研究了重金属Cd对小麦幼苗的毒害及稀土La的防护效应。结果表明:Cd胁迫降低根尖细胞有丝分裂指数,增加染色体畸形率,且毒害效应与剂量和处理时间正相关。Cd胁迫下小麦根外观上呈现大量褐色斑块并伴有不同程度的扭曲,生长延缓或停滞;细胞分裂过程中表现为高频率出现的微核及染色体滞留。La对小麦幼苗Cd污染具有防护效应,可使小麦细胞有丝分裂指数升高、染色体畸变率下降,且对微核的防护效应尤其显著。  相似文献   

19.
In this study, we investigated crop yield and various chemical and microbiological properties in rhizosphere of wheat, maize, and faba bean grown in the field solely and intercropped (wheat/faba bean, wheat/maize, and maize/faba bean) in the second and third year after establishment of the cropping systems. In both years, intercropping increased crop yield, changed N and P availability, and affected the microbiological properties in rhizosphere of the three species compared to sole cropping. Generally, intercropping increased microbial biomass C, N, and P availability, whereas it reduced microbial biomass N in rhizosphere of wheat. The rhizosphere bacterial community composition was studied by denaturing gradient gel electrophoresis of 16S rRNA. In the third year of different cropping systems, intercropping significantly changed bacterial community composition in rhizosphere compared with sole cropping, and the effects were most pronounced in the wheat/faba bean intercropping system. The effects were less pronounced in the second year. The results show that intercropping has significant effects on microbiological and chemical properties in the rhizosphere, which may contribute to the yield enhancement by intercropping.  相似文献   

20.
An 8-yr (1998–2005) field experiment was conducted on a Gray Luvisol (Boralf) soil near Star City, Saskatchewan, Canada, to determine the effects of tillage (no-tillage – NT and conventional tillage – CT), straw management (straw retained – R and straw not retained – NR) and N fertilizer (0, 40, 80 and 120 kg N ha−1, except no N to pea (Pisum sativum L.) phase of the rotation) on seed and straw yield, mass of N and C in crop, organic C and N, inorganic N and aggregation in soil, and nitrous oxide (N2O) emissions for a second 4-yr rotation cycle (2002–2005). The plots were seeded to barley (Hordeum vulgare L.) in 2002, pea in 2003, wheat (Triticum aestivum L.) in 2004 and canola (Brassica napus L.) in 2005. Seed, straw and chaff yield, root mass, and mass of N and C in crop increased with increasing N rate for barley in 2002, wheat in 2004 and canola in 2005. No-till produced greater seed (by 51%), straw (23%) and chaff (13%) yield of barley than CT in 2002, but seed yield for wheat in 2004, and seed and straw yield for canola in 2005 were greater under CT than NT. Straw retention increased seed (by 62%), straw (by 43%) and chaff (by 12%) yield, and root mass (by 11%) compared to straw removal for barley in 2002, wheat in 2004, and seed and straw yield for pea in 2003. No-till resulted in greater mass of N in seed, and mass of C in seed, straw, chaff and root than CT for barley in 2002, but mass of N and C were greater under CT than NT for wheat in 2004 and for canola in 2005 in many cases. Straw retention had greater mass of N and C in seed, straw, chaff and root in most cases compared to straw removal for barley in 2002, pea in 2003 and wheat in 2004. Soil moisture content in spring was higher under NT than CT and with R than NR in the 0–15 cm depth, with the highest moisture content in the NT + R treatment in many cases. After eight crop seasons, tillage and straw management had no effect on total organic C (TOC) and N (TON) in the 0–15 cm soil, but light fraction organic C (LFOC) and N (LFON), respectively, were greater by 1.275 Mg C ha−1 and 0.031 Mg N ha−1 with R than NR, and also greater by 0.563 Mg C ha−1 and 0.044 Mg N ha−1 under NT than CT. There was no effect of tillage, straw and N fertilization on the NH4-N in soil in most cases, but R treatment had higher NO3-N concentration in the 0–15 cm soil than NR. The NO3-N concentration in the 0–15, 15–30 and 30–60 cm soil layers increased (though small) with increasing N rate. The R treatment had 6.7% lower proportion of fine (<0.83 mm diameter) and 8.6% greater proportion of large (>38.0 mm) dry aggregates, and 4.5 mm larger mean weight diameter (MWD) compared to NR treatment. This suggests a lower potential for soil erosion when crop residues are retained. There was no beneficial effect of elimination of tillage on soil aggregation. The amount of N lost as N2O was higher from N-fertilized (580 g N ha−1) than from zero-N (155 g N ha−1) plots, and also higher in CT (398 g N ha−1) than NT (340 g N ha−1) in some cases. In conclusion, retaining crop residues along with no-tillage improved some soil properties and may also be better for the environment and the sustainability of high crop production. Nitrogen fertilization improved crop production and some soil quality attributes, but also increased the potential for NO3-N leaching and N2O-N emissions, especially when applied in excess of crop requirements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号