首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
土壤中反硝化田间原位测定方法的研究进展   总被引:1,自引:0,他引:1  
土壤中的反硝化作用由于直接影响到氮肥氮的利用率和环境问题,仍然是氮素研究领域的热点和难点之一,而反硝化作用研究的进展在很大程度上依赖与土壤反硝化的田间测定方法的建立。文章就目前反硝化研究领域常用的^15N平衡差值法、^15示踪气体通量法、乙炔抑制气室法、乙炔抑制土柱法的原理、气体样的采集、测定和计算作了综述,以期为土壤反硝化的研究提供依据。  相似文献   

2.
土壤熏蒸剂对土壤硝化、反硝化作用的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
采用化学分析和变性梯度凝胶电泳(DGGE)技术,以大田威百亩、棉隆、溴甲烷、硫酰氟熏蒸100 d土壤为研究对象,探究土壤熏蒸对土壤硝化活性、反硝化活性及amoA基因型硝化型细菌、nirS基因型反硝化细菌群落结构影响。研究表明,威百亩、棉隆、硫酰氟熏蒸剂处理下,土壤硝化活性与对照无显著差异;而溴甲烷处理的硝化活性比对照降低13.19%,差异显著(P0.05);熏蒸剂之间土壤硝化活性无显著差异。4种熏蒸剂之间以及与对照之间土壤反硝化活性无显著差异。4种熏蒸剂中溴甲烷处理土样amoA型硝化细菌多样性指数、均匀度显著低于对照土样和其他3种熏蒸剂处理土样;而丰富度指数无显著差异。威百亩、棉隆和硫酰氟熏蒸土样之间及与对照之间amoA型硝化细菌3种生态指数无明显差异。4种熏蒸剂处理土壤nirS型反硝化细菌多样性指数、均匀度与对照无显著差异(P0.05);熏蒸剂之间存在显著差异(P0.05)。研究表明,溴甲烷对土壤硝化活性的抑制是通过抑制amoA型硝化细菌的多样性而实现,其他3种熏蒸剂对土壤硝化活性无显著影响。4种熏蒸剂对土壤反硝化活性无显著影响。  相似文献   

3.
蔡贵信  朱兆良 《土壤》1991,23(2):106-106
已有的研究表明,氮肥施入稻田后,其中约有50%的氮将以气态而损失(包括氨的挥发损失和氮的反硝化损失)。目前,在田间已能用微气象学法测定稻田氨的挥发量。  相似文献   

4.
5.
土壤是产生N2O的最主要来源之一.硝化和反硝化反应是产生N2O的主要机理,由于硝化和反硝化微生物同时存在于土壤中,因而硝化和反硝化作用能同时产生N2O.N2O的来源可通过使用选择性抑制剂,杀菌剂以及加入的标记底物确定.通过对生成N2O反应的每一步分析,主要从抑制反应发生的催化酶和细菌着手,总结了测量区分硝化、反硝化和DNRA反应对N2O产生的贡献方法.并对15N标记底物法,乙炔抑制法和环境因子抑制法作了详细介绍.  相似文献   

6.
土壤是产生N2O的最主要来源之一。硝化和反硝化反应是产生N2O的主要机理,由于硝化和反硝化微生物同时存在于土壤中,因而硝化和反硝化作用能同时产生N2O。N2O的来源可通过使用选择性抑制剂,杀菌剂以及加入的标记底物确定。通过对生成N2O反应的每一步分析,主要从抑制反应发生的催化酶和细菌着手,总结了测量区分硝化、反硝化和DNRA反应对N2O产生的贡献方法。并对15N标记底物法,乙炔抑制法和环境因子抑制法作了详细介绍。  相似文献   

7.
农田土壤硝化—反硝化作用与N2O的排放   总被引:8,自引:0,他引:8  
在北京潮土上研究了冬小麦夏玉米轮作体系下土壤硝化反硝化作用以及N2O排放情况。结果表明,小麦生育期土壤温度及含水量降低,无论是反硝化损失氮量还是土壤的N2O生成排放量均不高。土壤的N2O生成排放量与反硝化氮量相当或低于反硝化氮量。玉米生育期土壤温度升高以及孔隙含水量的较大的改善,反硝化损失氮量、N2O生成排放量有明显上升。通常情况下土壤反硝损失氮量与N2O排放氮量基本处于同一水平。在玉米十叶期追肥后的较短时间内,N2O总排放量明显高于反硝化损失氮量,说明至少在这一阶段中,硝化作用在北方旱地土壤N2O的排放中发挥了主要作用。在评价北方旱地农田土壤氮素硝化反硝化损失中,硝化作用的氮素损失是不可忽视的重要方面。  相似文献   

8.
土壤中“接力反硝化”机制的部分证据   总被引:2,自引:0,他引:2       下载免费PDF全文
设想土壤中存在不同类型的不完全反硝化细菌 ;这些细菌可以彼此配合 ,此菌产物作为彼菌的底物 ,共同完成完整的反硝化过程。该机制称之为“接力反硝化”机制 ,有别于传统的反硝化机制。本文为“接力反硝化”机制的存在提供部分证据。以土壤浸提液为培养基、N2 O为电子受体富集土壤微生物 ,获得了 1株仅完成NO-3 →NO-2 反应的细菌 (原始编号 2 1 6 9 2 )、1株仅完成NO-2 →N2 O反应的细菌 (原始编号 1 9 5 3)、1株仅完成NO-2 →N2 O→N2 反应的细菌 (原始编号 2 1 6 3 6 )。把菌株 2 1 6 9 2和 1 9 5 3两菌株以适当的数量比例混合于灭菌的土壤中 ,不添外来碳源 ,仅添加NO-3 ,厌气培养 1周后 ,测得土壤中剩余的NO-3 仅为原添加量的 39 4 %~ 5 3 0 % ,与此同时有 5 2 %~ 13 9%的NO-3 被还原成NO-2 ,有 2 8 6 %~ 30 8%以N2 O形态被回收 ,总回收率为 75 4 %~ 95 5 % ,说明两者可以相互配合 ,菌株 2 1 6 9 2的硝酸根还原产物可以被菌株 1 9 5 3用作底物 ,共同完成反硝化过程 ,从而支持我们设想的“接力反硝化”机制。  相似文献   

9.
一种直接测定硝化—反硝化气体的15N示踪—质谱法   总被引:4,自引:0,他引:4  
本文对15N示踪—质谱法的可靠性进行了检验。结果表明,在不同的15N丰度气体样品的测定中,用两种方法(反硝化作用源的15N丰度法和气样的15N丰度法)计得的反硝化损失量基本一致,故建立起来的15N示踪—质谱法是可靠的。该方法的测定偏差随气样15N丰度的降低而增大。此外,回收率结果表明,(N2+N2O+NOx)-15N累积释放量占加入NO3-15N量的94.1%。因此,这一方法可用于直接测定氮肥的硝化—反硝化损失的研究中。  相似文献   

10.
农田土壤剖面反硝化活性及其影响因素的研究   总被引:6,自引:0,他引:6  
用培育法研究了我国3种农田土壤剖面各层土壤的反硝化活性及其影响因素。结果表明,潮土剖面各层上壤中以0~20cm土壤的反硝化活性为最高,培育20天时的反硝化活性达到49%,而下层土壤的反硝化活性,除52~65cm土层外,则都很低;加葡萄糖或肥土清液,明显地提高了各层土壤的反硝化活性,且以前者的作用更大些,但加磷则无此作用。黄泥土(中等肥力)剖面中各层土壤的反硝化活性,也以0~20cm土壤为最高。培育20天时的反硝化活性达到74%,随剖面深度的加深,反硝化活性逐渐减小。加葡萄糖和肥土清液对表土的反硝化活性没有明显的影响,却明显地提高了40~100cm各层土壤的反硝化活性。但加磷对各层土壤的反硝化活性则都无明显的影响。红壤(花生地)剖面中各层土壤的反硝化活性都极低。加葡萄糖或肥土清液能提高表土的反硝化活性,但对其下各层土壤的反硝化活性却没有影响。加磷未能提高各层土壤的反硝化活性。相关分析表明,培育20天土壤反硝化活性与土壤有机质含量呈极显著的正相关(r=0.827* *),而与土壤速效磷含量和土壤pH无此相关性。  相似文献   

11.
续勇波  蔡祖聪  雷宝坤 《土壤》2008,40(6):914-919
比较了两种土样制备和保存方法对厌氧培养1周内土壤反硝化及矿化的动态影响。试验结果表明,强烈风干后并经长期存放过的土样显著促进了NO3--N浓度降低速率和N2O排放速率的提高,其反硝化速率和矿化速率分别较稍微风干后无存放时间(即立即开始培养试验)的土样提高了47.3%和31.0%。强烈风干土有机C矿化作用的增强以及易矿化有效态C含量的提高是促进反硝化作用增强的主要原因。风干程度和存放时间对反硝化的促进程度取决于其对有机质矿化影响的相对大小,对有机质矿化的影响越大,反硝化强度增加的幅度也越大。由试验结果可推测,利用风干土的实验室培养方法测定得到的土壤反硝化势可能会过高估计田间原位测定的反硝化势。  相似文献   

12.
土壤是产生N2O的最主要来源之一。硝化和反硝化反应是产生N2O的主要机理,由于硝化和反硝化微生物同时存在于土壤中,因而硝化和反硝化作用能同时产生N2O。N2O的来源可通过使用选择性抑制剂,杀菌剂以及加入的标记底物确定。通过对生成N2O反应的每一步分析,主要从抑制反应发生的催化酶和细菌着手,总结了测量区分硝化、反硝化和DNRA反应对N2O产生的贡献方法。并对15N标记底物法,乙炔抑制法和环境因子抑制法作了详细介绍。  相似文献   

13.
华北平原几种主要类型土壤的硝化及反硝化活性   总被引:22,自引:0,他引:22  
《农业环境保护》2001,20(6):390-393
  相似文献   

14.
测定土壤氧化铁方法的某些改进   总被引:4,自引:0,他引:4  
  相似文献   

15.
16.
一种测定土壤崩解动态的方法   总被引:4,自引:0,他引:4  
陈东  王道杰  陈晓艳  陈舜 《土壤》2013,45(6):1137-1141
土壤崩解性是土壤抗侵蚀能力研究的重要内容。蒋定生设计的土壤崩解仪,极大地促进了土壤崩解研究进程,但在实际应用中,存在浮筒校正难、不能完全反映土壤崩解的动态过程等问题。针对原有测试方法中存在的局限性,本文在北川震裂带土壤抗侵蚀能力测试研究中,提出了一种改进的土壤崩解性测试方法,改进后的测试方法操作简单、应用范围广,且能比较准确地反映整个崩解动态过程,崩解系数计算物理意义明确,并且可以根据实验需求设置相应的测试精度。  相似文献   

17.
采用田间试验方法研究了半干旱半干旱地区小麦田不同土层土壤理、化、生等因素与土壤反硝化酶活性、N2O排放通量的相关性。结果表明,在冬小麦生育期内,0-5cm土层土壤硝酸还原酶活性与相应土层土壤亚硝酸还原酶活性呈显正相关,0-5cm,5-10cm土层土壤的温度与相应土层土壤硝酸还原酶活性呈显负相关,土壤硝态氮含量和pH与土壤反硝化还原酶活性的相关性因土壤的不同土层而有差异;0-5cm,5-10cm土层土壤含水量,0-5cm,10-20pH土层土壤脲酶活性,5-10cm有机碳含量,硝酸还原酶活性与土壤中N2O排放通量呈显正相关;5-10cm土层土壤温度、pH和10-20cm土层土壤磷酸酶活性、pH与之呈显负相关。土壤N2O的排放主要是土壤反硝化作用的结果。  相似文献   

18.
硝态氮浓度对亚热带土壤反硝化潜力和产物组成的影响   总被引:1,自引:0,他引:1  
刘阳  张金波  蔡祖聪 《土壤》2013,45(5):815-820
在实验室条件下,采用密闭、淹水、充 N2 的严格厌氧培养方法研究了NO3--N?浓度对亚热带土壤反硝化潜力和产物组成的影响。研究表明,在NO3-?-N?浓度为 10 ~ 200 mg /kg 范围内,该土壤的反硝化势变化于 0.024 ~ 0.224 mg/(kg×h) 之间,随着NO3--N?浓度的增加而呈显著线性增加(R2 = 0.94,P<0.01)。N2O 始终是反硝化的主要产物,占反硝化产物的 56% ~ 92%;NO 是次要产物,占 6% ~ 40%。在野外原位状态下,土壤的还原条件难以达到供试实验室条件,由此估计,亚热带森林土壤反硝化的主要产物并非 N2,而是 N2O 和 NO,这可能是该类土壤虽反硝化作用弱,但 N2O 排放量大的主要原因。  相似文献   

19.
玉米地土壤反硝化速率与N2O排放通量的动态变化   总被引:14,自引:0,他引:14  
应用乙炔抑制原状土柱培育法测定了4种施肥处理的玉米地N素反硝化损失速率和氧化亚氮(N2O)排放通量,并分析了它们与土壤湿度、土壤温度以及硝态氮(NO3^--N)含量之间的关系,计算了因反硝化和N2O排放造成的N肥损失率。结果表明,玉米生育期内土壤N素的反硝化损失量为0.67-3.85kg/hm^2,N肥的反硝化损失率为0.5%-1.5%;土壤N2O排放总量为0.55-1.42kg/hm^2,N肥的N2O排放系数为0.2%-0.5%。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号