首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long chain omega-3 polyunsaturated fatty acids (LC n-3 PUFAs) are recommended for management of patients with wide-ranging chronic diseases, including coronary heart disease, rheumatoid arthritis, dementia, and depression. Increased consumption of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is recommended by many health authorities to prevent (up to 0.5 g/day) or treat chronic disease (1.0 g/day for coronary heart disease; 1.2–4 g/day for elevated triglyceride levels). Recommendations for dietary intake of LC n-3 PUFAs are often provided for α-linolenic acid, and for the combination of EPA and DHA. However, many studies have also reported differential effects of EPA, DHA and their metabolites in the clinic and at the laboratory bench. The aim of this article is to review studies that have identified divergent responses to EPA and DHA, and to explore reasons for these differences. In particular, we review potential contributing factors such as differential membrane incorporation, modulation of gene expression, activation of signaling pathways and metabolite formation. We suggest that there may be future opportunity to refine recommendations for intake of individual LC n-3 PUFAs.  相似文献   

2.
We have created via metabolic engineering a heterotrophic strain of Phaeodactylum tricornutum that accumulates enhanced levels of the high value omega-3 long chain polyunsaturated fatty acid (LC-PUFAs) docosahexaenoic acid (DHA). This was achieved by generation of transgenic strains in which the Δ5-elongase from Ostreococcus tauri was co-expressed with a glucose transporter from the moss Physcomitrella patens. This double transformant has the capacity to grow in the dark in liquid medium supplemented with glucose and accumulate substantial levels of omega-3 LC-PUFAs. The effects of glucose concentrations on growth and LC-PUFA production of wild type and transformed strains cultivated in the light and dark were studied. The highest omega-3 LC-PUFAs accumulation was observed in cultures grown under mixotrophic conditions in the presence of 1% glucose (up to 32.2% of total fatty acids, TFA). Both DHA and EPA are detected at high levels in the neutral lipids of transgenic cells grown under phototrophic conditions, averaging 36.5% and 23.6% of TFA, respectively. This study demonstrates the potential for P. tricornutum to be developed as a viable commercial strain for both EPA and DHA production under mixo- and heterotrophic conditions.  相似文献   

3.
Bacterial endotoxin lipopolysaccharide (LPS)-induced sepsis is a critical medical condition, characterized by a severe systemic inflammation and rapid loss of muscle mass. Preventive and therapeutic strategies for this complex disease are still lacking. Here, we evaluated the effect of omega-3 (n-3) polyunsaturated fatty acid (PUFA) intervention on LPS-challenged mice with respect to inflammation, body weight and the expression of Toll-like receptor 4 (TLR4) pathway components. LPS administration induced a dramatic loss of body weight within two days. Treatment with n-3 PUFA not only stopped loss of body weight but also gradually reversed it back to baseline levels within one week. Accordingly, the animals treated with n-3 PUFA exhibited markedly lower levels of inflammatory cytokines or markers in plasma and tissues, as well as down-regulation of TLR4 pathway components compared to animals without n-3 PUFA treatment or those treated with omega-6 PUFA. Our data demonstrate that n-3 PUFA intervention can suppress LPS-induced inflammation and weight loss via, at least in part, down-regulation of pro-inflammatory targets of the TLR4 signaling pathway, and highlight the therapeutic potential of n-3 PUFA in the management of sepsis.  相似文献   

4.
5.
In order to identify novel genes encoding enzymes involved in the biosynthesis of nutritionally important omega-3 long chain polyunsaturated fatty acids, a database search was carried out in the genomes of the unicellular photoautotrophic green alga Ostreococcus RCC809 and cold-water diatom Fragilariopsis cylindrus. The search led to the identification of two putative “front-end” desaturases (Δ6 and Δ4) from Ostreococcus RCC809 and one Δ6-elongase from F. cylindrus. Heterologous expression of putative open reading frames (ORFs) in yeast revealed that the encoded enzyme activities efficiently convert their respective substrates: 54.1% conversion of α-linolenic acid for Δ6-desaturase, 15.1% conversion of 22:5n-3 for Δ4-desaturase and 38.1% conversion of γ-linolenic acid for Δ6-elongase. The Δ6-desaturase from Ostreococcus RCC809 displays a very strong substrate preference resulting in the predominant synthesis of stearidonic acid (C18:4Δ6,9,12,15). These data confirm the functional characterization of omega-3 long chain polyunsaturated fatty acid biosynthetic genes from these two species which have until now not been investigated for such activities. The identification of these new genes will also serve to expand the repertoire of activities available for metabolically engineering the omega-3 trait in heterologous hosts as well as providing better insights into the synthesis of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in marine microalgae.  相似文献   

6.
Long chain polyunsaturated fatty acids (LC-PUFAs) are important mediators in improving and maintaining human health over the total lifespan. One topic we especially focus on in this review is omega-3 LC-PUFA docosahexaenoic acid (DHA). Adequate DHA levels are essential during neurodevelopment and, in addition, beneficial in cognitive processes throughout life. We review the impact of DHA on societal relevant metabolic diseases such as cardiovascular diseases, obesity, and diabetes mellitus type 2 (T2DM). All of these are risk factors for cognitive decline and dementia in later life. DHA supplementation is associated with a reduced incidence of both stroke and atherosclerosis, lower bodyweight and decreased T2DM prevalence. These findings are discussed in the light of different stages in the human life cycle: childhood, adolescence, adulthood and in later life. From this review, it can be concluded that DHA supplementation is able to inhibit pathologies like obesity and cardiovascular disease. DHA could be a dietary protector against these metabolic diseases during a person’s entire lifespan. However, supplementation of DHA in combination with other dietary factors is also effective. The efficacy of DHA depends on its dose as well as on the duration of supplementation, sex, and age.  相似文献   

7.
N-3 polyunsaturated fatty acids (n-3 PUFAs), and especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are essential compounds for human health. They have been proven to act positively on a panel of diseases and have interesting anti-oxidative, anti-inflammatory or anti-cancer properties. For these reasons, they are receiving more and more attention in recent years, especially future food or feed development. EPA and DHA come mainly from marine sources like fish or seaweed. Unfortunately, due to global warming, these compounds are becoming scarce for humans because of overfishing and stock reduction. Although increasing in recent years, aquaculture appears insufficient to meet the increasing requirements of these healthy molecules for humans. One alternative resides in the cultivation of microalgae, the initial producers of EPA and DHA. They are also rich in biochemicals with interesting properties. After defining macro and microalgae, this review synthesizes the current knowledge on n-3 PUFAs regarding health benefits and the challenges surrounding their supply within the environmental context. Microalgae n-3 PUFA production is examined and its synthesis pathways are discussed. Finally, the use of EPA and DHA in food and feed is investigated. This work aims to define better the issues surrounding n-3 PUFA production and supply and the potential of microalgae as a sustainable source of compounds to enhance the food and feed of the future.  相似文献   

8.
Omega-3 polyunsaturated fatty acids are associated with a lower risk of cardiometabolic diseases. However, docosahexaenoic acid (DHA) is easily oxidized, leading to cellular damage. The present study examined the effects of an increased concentration of DHA in fish oil (80% of total fatty acids) on cardiometabolic risk factors and oxidative stress compared to coconut oil, soybean oil, and fish oil containing eicosapentaenoic acid (EPA) and DHA in a balanced ratio. Forty healthy male Sprague–Dawley rats were supplemented with corresponding oil for 10 weeks. Supplementation with the fish oil containing 80% DHA decreased plasma fat, plasma total cholesterol and muscle fat compared to the coconut oil and the soybean oil. Increasing concentrations of DHA induced incorporation of DHA and EPA in cell membranes and tissues along with a decrease in ω-6 arachidonic acid. The increase in DHA promoted lipid peroxidation, protein carbonylation and antioxidant response. Taken together, the increased concentration of DHA in fish oil reduced fat accumulation compared to the coconut oil and the soybean oil. This benefit was accompanied by high lipid peroxidation and subsequent protein carbonylation in plasma and in liver. In our healthy framework, the slightly higher carbonylation found after receiving fish oil containing 80% DHA might be a protecting mechanism, which fit with the general improvement of antioxidant defense observed in those rats.  相似文献   

9.
Eggs, though a very nutritious food, also have high amounts of cholesterol and hence are not recommended to be consumed regularly by persons having hypercholesterolemia and associated cardiovascular diseases (CVD). In this context, an attempt was made in this study to reduce the cholesterol content of eggs by diet manipulation, using two naturally available and already proved hypocholesteromic agents [Red Palm Oil (RPO) and Grain Amaranth]. Thirteen experimental rations using raw and popped grain Amaranth and RPO were fed to 24 weeks old hens for a period of 6 weeks, singularly and in combinations. Total lipids, cholesterol and PUFA contents were analyzed in the experimental and control eggs. The results showed that RPO and RPO + Popped Amaranth feeding resulted in a maximum reduction in total lipids and cholesterol contents. Significant increase was observed in linoleic acid content in RPO + popped Amaranth; raw Amaranth and RPO fed groups. Acceptability studies showed that the products made from lower cholesterol eggs were well accepted.  相似文献   

10.
The high incidence of cardiovascular disease and vitamin D deficiency in chronic kidney disease patients is well known. Vitamin D activation by omega-3 fatty acid (FA) supplementation may explain the cardioprotective effects exerted by omega-3 FA. We hypothesized that omega-3 FA and 25-hydroxyvitamin D (25(OH)D) supplementation may increase 1,25-dihydroxyvitamin D (1,25(OH)2D) levels compared to 25(OH)D supplementation alone in hemodialysis (HD) patients that have insufficient or deficient 25(OH)D levels. We enrolled patients that were treated for at least six months with 25(OH)D < 30 ng/mL (NCT01596842). Patients were randomized to treatment for 12 weeks with cholecalciferol supplemented with omega-3 FA or a placebo. Levels of 25(OH)D and 1,25(OH)2D were measured after 12 weeks. The erythrocyte membrane FA contents were also measured. Levels of 25(OH)D were increased in both groups at 12 weeks compared to baseline. The 1,25(OH)2D levels at 12 weeks compared to baseline showed a tendency to increase in the omega-3 FA group. The oleic acid and monounsaturated FA content decreased, while the omega-3 index increased in the omega-3 FA group. Omega-3 FA supplementation may be partly associated with vitamin D activation, although increased 25(OH)D levels caused by short-term cholecalciferol supplementation were not associated with vitamin D activation in HD patients.  相似文献   

11.
12.
福建茶树种质资源的茶籽油脂肪酸组成分析   总被引:1,自引:1,他引:1  
采用气相色谱法(GC)分析了福建42份茶树〔Camellia sinensis (L.) O. Kuntze〕种质资源的茶籽油脂肪酸组成,结果表明,饱和脂肪酸(SFA)的平均含量为20.59%,单不饱和脂肪酸(MUFA)为50.57%,多不饱和脂肪酸(PUFA)为28.11%;发现茶籽油中含有二十二碳六烯酸(DHA),平均含量为0.11%;参试材料中优良品种茶籽油的脂肪酸组成优于地方品种。选取了11种含量较高或特异成分进行主成分分析,其中硬脂酸、花生酸、棕榈酸和DHA等是构成茶籽油的重要或特征脂肪酸。茶籽油是富含油酸、亚油酸,低芥酸和反式脂肪酸的高品质油脂,具有开发高级食用油脂的潜在价值。  相似文献   

13.
Eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and carotenoids are needed as human dietary supplements and are essential components in commercial feeds for the production of aquacultured seafood. Microorganisms such as thraustochytrids are potential natural sources of these compounds. This research reports on the lipid and carotenoid production capacity of thraustochytrids that were isolated from coastal waters of Antarctica. Of the 22 isolates, 21 produced lipids containing EPA+DHA, and the amount of these fatty acids exceeded 20% of the total fatty acids in 12 isolates. Ten isolates were shown to produce carotenoids (27.4–63.9 μg/g dry biomass). The isolate RT2316-16, identified as Thraustochytrium sp., was the best producer of biomass (7.2 g/L in five days) rich in carotenoids (63.9 μg/g) and, therefore, became the focus of this investigation. The main carotenoids in RT2316-16 were β-carotene and canthaxanthin. The content of EPA+DHA in the total lipids (34 ± 3% w/w in dry biomass) depended on the stage of growth of RT2316-16. Lipid and carotenoid content of the biomass and its concentration could be enhanced by modifying the composition of the culture medium. The estimated genome size of RT2316-16 was 44 Mb. Of the 5656 genes predicted from the genome, 4559 were annotated. These included genes of most of the enzymes in the elongation and desaturation pathway of synthesis of ω-3 polyunsaturated fatty acids. Carotenoid precursors in RT2316-16 were synthesized through the mevalonate pathway. A β-carotene synthase gene, with a different domain organization compared to the gene in other thraustochytrids, explained the carotenoid profile of RT2316-16.  相似文献   

14.
15.
This study is evaluating the seasonal lipid and fatty acid composition of the brown seaweed Saccharina latissima. Biomass was sampled throughout the year (bi-monthly) at the commercial cultivation site near a fish farm in an integrated multi-trophic aquaculture (IMTA) and at a reference site in Denmark (2013–2014). Generally, there was no difference in the biomass composition between sites; however, significant seasonal changes were found. The lipid concentration varied from 0.62%–0.88% dry weight (DW) in July to 3.33%–3.35% DW in November (p < 0.05) in both sites. The fatty acid composition in January was significantly different from all the other sampling months. The dissimilarities were mainly explained by changes in the relative abundance of 20:5n-3 (13.12%–33.35%), 14:0 (11.07%–29.37%) and 18:1n-9 (10.15%–16.94%). Polyunsaturated fatty acids (PUFA’s) made up more than half of the fatty acids with a maximum in July (52.3%–54.0% fatty acid methyl esters; FAME). This including the most appreciated health beneficial PUFA’s, eicosapentaenoic (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3), but also arachidonic (ARA) and stearidonic acid (SDA), which are not found in land vegetables such as cabbage and lettuce. Compared to fat (salmon) and lean fish (cod) this seaweed species contains higher proportions of ARA and SDA, but lower EPA (only cod) and DHA. Conclusively, the season of harvest is important for the choice of lipid quantity and quality, but the marine vegetables provide better sources of EPA, DHA and long-chain (LC)-PUFA’s in general compared to traditional vegetables.  相似文献   

16.
Ten postmenopausal women (age 55.6?±?0.8 years, BMI 24.6?±?1.1 kg/m2) ingested 25 g/day milled chia seed during a 7-week period, with six plasma samples collected for measurement of α-linolenic acid (ALA), eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA). Subjects operated as their own controls with overnight fasted blood samples taken at baseline (average of two samples), and then after 1, 2, 3, 5, and 7 weeks supplementation. Plasma ALA increased significantly after one week supplementation and was 138 % above baseline levels by the end of the study (overall time effect, P?相似文献   

17.
Different sources of DHA and/or n-3 (omega-3) rich oils, oil emulsions and microencapsulated (ME) powders were tested at two different concentrations with the aim of producing fortified pan bread. Three oils (S-algae, fish and flax), two emulsified algae oils (Emulsion-P and Emulsion-L) and two ME oils (ME-S algae and ME-C algae) were compared. The DHA and n-3 oils replaced part of the shortening in order to obtain 32 g slices enriched with 25 or 50 mg DHA, 35 or 70 mg total n-3 from fish oil and 90 or 180 mg linolenic from flax oil. Addition of oils did not significantly affect water absorption but reduced mix time whereas addition of the ME oils decreased both water absorption and mix time. Breads enriched with flax or ME-C oils had lower volume and higher density than the control, ME-S algae, Emulsion-P and Emulsion-L breads. All breads lost texture throughout 14 d storage, the major changes occurred after 3 d. The ME-S algae oil bread had the best softness after 14 d storage whereas breads produced from ME-S algae or ME-C algae oils had the poorest texture. Sensory evaluations indicated that the color of the ME-S algae oil fortified bread was significantly less preferred than the other loaves. After 6 d the control bread had higher acceptability compared with the rest of the breads enriched with high levels of DHA or omega-3 oils. The high-enriched fish oil bread was well accepted during the first days of storage but had the least preferred acceptability after 13 d. The best fortified breads were those supplemented with S-algae oil, Emulsion-P and Emulsion-L oils.  相似文献   

18.
As mammals are unable to synthesize essential polyunsaturated fatty acids (PUFA), these compounds need to be taken in through diet. Nowadays, obtaining essential PUFA in diet is becoming increasingly difficult; therefore this work investigated the suitability of using macroalgae as novel dietary sources of PUFA. Hence, 17 macroalgal species from three different phyla (Chlorophyta, Phaeophyta and Rhodophyta) were analyzed and their fatty acid methyl esters (FAME) profile was assessed. Each phylum presented a characteristic fatty acid signature as evidenced by clustering of PUFA profiles of algae belonging to the same phylum in a Principal Components Analysis. The major PUFA detected in all phyla were C18 and C20, namely linoleic, arachidonic and eicosapentaenoic acids. The obtained data showed that rhodophytes and phaeophytes have higher concentrations of PUFA, particularly from the n-3 series, thereby being a better source of these compounds. Moreover, rhodophytes and phaeophytes presented “healthier” ∑n-6/∑n-3 and PUFA/saturated fatty acid ratios than chlorophytes. Ulva was an exception within the Chlorophyta, as it presented high concentrations of n-3 PUFA, α-linolenic acid in particular. In conclusion, macroalgae can be considered as a potential source for large-scale production of essential PUFA with wide applications in the nutraceutical and pharmacological industries.  相似文献   

19.
CD36 is a scavenger receptor involved in lipid uptake and inflammation. Recently, non-cell-bound CD36 (sCD36) was identified in plasma and suggested to be a marker of lipid accumulation in the vessel wall. Marine n-3 polyunsaturated fatty acids (PUFA) may have cardioprotective effects. This study evaluated the effect of marine n-3 PUFA on sCD36 levels in overweight subjects. Fifty overweight subjects were randomized to 1.1 g of n-3 PUFA or 2 g of olive oil daily for six weeks. Neutrophils were isolated at baseline and after six weeks of treatment while an adipose tissue biopsy was obtained at baseline. The content of n-3 PUFA in adipose tissue and neutrophils was analyzed by gas chromatography, while plasma levels of sCD36 were determined using an enzyme-linked immunosorbent assay (ELISA). After six weeks of supplement plasma sCD36 did not differ between supplements (P = 0.18). There was no significant correlation between plasma sCD36 levels and n-3 PUFA in neutrophils at baseline (r = −0.02, P = 0.88), after six weeks supplement (r = −0.03, P = 0.85) or in adipose tissue (r = 0.14, P = 0.34). This study therefore does not provide evidence for a cardioprotective effect of n-3 PUFA acting through a CD36-dependent mechanism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号