首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methane fluxes on agricultural and forested boreal organic soils   总被引:2,自引:0,他引:2  
Abstract. Annual methane fluxes from an organic soil in eastern Finland, originally drained and planted with birch ( Betula pendula ) and then later cultivated, were studied for two years using a chamber technique. The agricultural soils growing grass or barley or without vegetation, generally acted as sinks for CH4. Surprisingly, the agricultural soils emitted CH4 during a warm dry summer. The CH4 oxidation capacity and CH4 uptake rate of the forested site was three times that of agricultural soils. Also, the forest soil better retained its capacity to take up CH4 during a dry summer. Despite periods of CH4 emission, the agricultural soils were annual sinks for CH4, with uptake rate of CH4-C varying from 0.1 to 3.7 kg ha−1 yr−1. The forested soil had a methane uptake rate of 3.9 kg CH4-C ha−1 yr−1. All the soils acted as sinks for CH4 during winter, which contributed up to half of the annual CH4 uptake. The capacity of soils to transport gases did not explain the larger CH4 uptake rate in the forest soil. At the same gas filled porosity, the forest soil had a much larger CH4 uptake rate than the agricultural soil. Neither the soil acidity (pH 4.5 and 6.0) nor high ammonium content appeared to limit CH4 uptake. The results suggest that CH4 oxidation in agricultural organic soil is more sensitive to soil drying than CH4 oxidation in forested organic soil.  相似文献   

2.
Abstract. The main inputs, outputs and transfers of potassium (K) in soils and swards under typical south west England conditions were determined during 1999/00 and 2000/01 to establish soil and field gate K budgets under different fertilizer nitrogen (N) (0 and 280 kg ha−1 yr−1) and drainage (undrained and drained) treatments. Plots receiving fertilizer N also received farmyard manure (FYM). Potassium soil budgets ranged, on average for the two years, from −5 (+N, drained) to +9 (no N and undrained) kg K ha−1 yr−1 and field gate budgets from +23 (+N, drained) to +89 (+N, undrained). The main inputs and outputs to the soil K budgets were fertilizer application (65%) and plant uptake (93%). Animals had a minor effect on K export but a major impact on K recycling. Nitrogen fertilizer application and drainage increased K uptake by the grass and, with it, the efficiency of K used. It also depleted easily available soil K, which could be associated with smaller K losses by leaching.  相似文献   

3.
Abstract. This study was undertaken to test the hypothesis that an improved system of catchment management in combination with appropriate cropping practices can sustain increased crop production and improve soil quality of Vertisols, compared with prevailing traditional farming practices. Initiated in 1976, the improved system consisted of integrated land management to conserve soil and water, with excess rainwater being removed in a controlled manner. This was combined with improved crop rotation (legume based) and integrated nutrient management. In the traditional system, sorghum or chickpea was grown in the post-rainy season with organic fertilizers, and in the rainy season the field was maintained as a cultivated fallow. The average grain yield of the improved system over 24 years was 4.7 t ha−1 yr−1, nearly a five-fold increase over the traditional system (about 1 t ha−1 yr−1). There was also evidence of increased organic C, total N and P, available N, P and K, microbial biomass C and N in the soil of the improved system. A positive relationship between soil available P and soil organic C suggested that application of P to Vertisols increased carbon sequestration by 7.4 t C ha−1 and, in turn, the productivity of the legume-based system, thus ultimately enhancing soil quality.  相似文献   

4.
(pp. 17–24)
A trial calculation was performed of the environmental nitrogen-assimilation capacity and the amount of nitrogen input based on various statistical data, which were compiled from each city, town and village in Hokkaido prefecture. The relationship between the excess quantity of nitrogen, after nitrogen input, and the environmental nitrogen-assimilation capacity and the nitrate-nitrogen concentration of the groundwater was considered.
Environmental nitrogen-assimilation capacity = nitrogen output by the crops + acceptable level of residual nitrate in the soil profile.*
*It is calculated by the amount of nitrate precipitation evapotranspiration ×10 mg L−1.
  • 1) 

    The average value of the environmental nitrogen-assimilation capacity in Hokkaido Prefecture was observed to be 183 kg ha−1. The maximum and minimum values of the environmental nitrogen-assimilation capacity were 308 kg ha−1 and 94 kg ha−1, respectively. When the average value of the environmental nitrogen-assimilation capacity with respect to main agricultural land use was compared across municipalities, it was largely in the following order · grassland (218 kg ha−1), upland (169 kg ha−1), and paddy land (157 kg ha−1).

      相似文献   

5.
Abstract. The behaviour of potassium (K) in a range of arable soils was examined by plotting the change in exchangeable K of the topsoil (Δ Kex) at the end of a 3–5 year period against the K balance over the same period (fertilizer K applied minus offtake in crops, estimated from farmers' records of yield and straw removal). Based on the assumption that values for offtake per tonne of crop yield used for UK arable crops MAFF 2000) are valid averages, 10–50% of Δ Kex was explained by the balance, relationships being stronger on shallow/stony soils. Excess fertilizer tended to increase Kex and reduced fertilization decreased it, requiring between 1.2 and 5.4 kg K ha−1 for each mg L−1Δ Kex. However, merely to prevent Kex falling required an extra 20 kg K ha−1 yr−1 fertilizer on Chalk soils and soils formed in the overlying Tertiary and Quaternary deposits, despite clay contents >18%. Whereas, on older geological materials, medium soils needed no extra K and clays gained 17 kg K ha−1 yr−1. It is unlikely that the apparent losses on some soil types are anomalies due to greater crop K contents. Theory and the literature suggest leaching from the topsoil as a major factor; accumulation in the subsoil was not measured. Recommendations for K fertilization of UK soils might be improved by including loss or gain corrections for certain soil types.  相似文献   

6.
Abstract. The effect of increasing rates of nitrogen (N) fertilizer on the yield response of 3 or 4 consecutive winter cereal crops after ploughing out grass was investigated at six field sites on commercial farms in England and Wales. Amounts of N required for an economically optimum yield (>3 kg of grain for each kg of fertilizer N applied) ranged from 0 to 265 kg ha−1 and were dependent on soil N supply, but not on crop yield. Optimum N rates were large (mean 197 kg N ha−1) at three sites: two sites where cereals followed 2-year grass leys receiving low N inputs (<200 kg N ha−1), and at one site where a cut and grazed 4-year ley had received c . 315 kg N ha−1 of fertilizer N annually. At the other three sites where 4 and 5-year grass leys had received large regular amounts of organic manures (20–30 t or m3 ha−1) plus fertilizer N ( c . 300 kg ha−1 each year), optimum N rates were low (mean 93 kg N ha−1) and consistently over-estimated by the farmer by an average of 107 kg N ha−1. Optimum N rates generally increased in successive years after ploughing as the N supply from the soil declined. Determination of soil C:N ratio and mineral N (NO3N+NH4N) to 90 cm depth in autumn were helpful in assessing fertilizer N need. The results suggest there is scope to improve current fertilizer recommendations for cereals after grass by removing crop yield as a determinant and including an assessment of soil mineralizable N during the growing season.  相似文献   

7.
Abstract. A long-term lysimeter experiment with undisturbed monoliths studied leaching behaviour and balances of phosphorus (P), potassium (K) and nitrogen (N) during a seven year crop rotation on four types of soil receiving inorganic fertilizers, manure and grass compost respectively. It was shown that application of manure did not lead to any direct change in nutrient leaching, unlike the application of fertilizers to soils of normal fertility. However, soil type considerably affected the nutrient concentrations in the drainage water.
Manure applied in amounts equal to the maximum animal density allowed by Swedish legislation slightly oversupplied P and N (0.5–3.5 and 18–38 kg ha−1 y−1 respectively) compared to the crop requirement and leaching losses for most of the soils. The relationship between lactate-soluble P in the topsoil and the concentrations of dissolved P in the drainage water was very strong. However the strength of this relationship was dependent on just one or two soils. P losses from a fertile sandy soil were large (1–11 kg ha−1 y−1) throughout the crop rotation and average crop removal (13 kg ha−1 y−1) plus the leaching losses were not balanced (average deficit 3–6 kg ha−1 y−1) by the addition of fertilizer, manure or grass compost. No decreasing trend was found in the P losses during seven years. However, the K deficit (average 26 kg ha−1 y−1) led to a significant reduction in the leaching trend from this soil. The other soils that had a smaller K deficit showed no significant reduction in the leaching of K.  相似文献   

8.
Abstract. The success of organic cropping systems depends on symbiotic N2 fixation by leguminous crops, and it is important to explore new management systems to improve the nitrogen input through N2 fixation. During two growing seasons the possible advantage of growing fababean ( Vicia faba L.) in ridges was studied in comparison to the traditional method on flat soil. Differences in soil physical parameters resulted in a significantly greater microbial activity and a deeper root system at the flowering stage when grown in the ridge than on the flat. Consequently, the amount of fixed N at flowering was significantly greater in ridges than in flat soil. However, during the period from flowering until harvest, when the major part of the N uptake and N2 fixation took place, the differences between the treatments disappeared. Average values for the growing season of fluorescein diacetate hydrolysis, arylamidase activity and arylsulphatase activity were significantly greater in the ridge than on the flat, and the microbial biomass-C, derived from substrate induced respiration (SIR), was on average 232 and 223 μg C g−1 soil in the ridge and on the flat, respectively. Measured total-N uptake, including root N (0–30 cm depth), ranged from 206 to 247 kg N ha−1, of which 182–201 kg N ha−1 was fixed N. From 154 to 173 kg N ha−1 was removed in grain resulting in a soil-N balance of +28 kg N ha−1 in both years. However, by including estimates of total root N and rhizodeposition-N the soil-N balance ranged from +52 to +62 kg N ha−1.  相似文献   

9.
Abstract. Leaching of calcium (Ca), potassium (K) and magnesium (Mg) from urine patches in grazed grassland represents a significant loss of valuable nutrients. We studied the effect on cation loss of treating the soil with a nitrification inhibitor, dicyandiamide (DCD), which was used to reduce nitrate loss by leaching. The soil was a free-draining Lismore stony silt loam (Udic Haplustept loamy skeletal) and the pasture was a mixture of perennial ryegrass ( Lolium perenne ) and white clover ( Trifolium repens ). The treatment of the soil with DCD reduced Ca2+ leaching by the equivalent of 50%, from 213 to 107 kg Ca ha−1 yr−1 on a field scale. Potassium leaching was reduced by 65%, from 48 to 17 kg K ha−1 yr−1. Magnesium leaching was reduced by 52%, from 17 to 8 kg Mg ha−1 yr−1. We postulate that the reduced leaching loss of these cations was due to the decreased leaching loss of nitrate under the urine patches, and follows from their reduced requirement as counter ions in the drainage water. The treatment of grazed grassland with DCD thus not only decreases nitrate leaching and nitrous oxide emissions as reported previously, but also decreases the leaching loss of cation nutrients such as Ca2+, K+ and Mg2+.  相似文献   

10.
Abstract. This paper reports the growth and yield of grain and the utilization of fertilizer nitrogen applied on either one or two occasions in spring to a crop of winter barley established by direct drilling on a chalk soil in southern England. Nitrogen, as ammonium nitrate, was applied at rates of 0 to 140 kg N ha−1 in a range of proportions on two occasions (March and April 1981); nitrogen-15 was used to facilitate study of the nitrogen utilization by the crop.
When sampled before the second top-dressing in April, the greatest number of tillers were found on plants treated with 70 and 100 kg N ha−1 in March. The total above ground dry matter production at harvest was greatest when the split nitrogen dressing totalled more than 100 kg N ha−1, although the apparent efficiency of nitrogen usage (kg DM per kg N applied) was greatest when 60 kg N ha−1 was divided equally between the two application dates. Grain yield was heaviest (6.471 ha−1) at the largest rate of nitrogen applied (140 kg N ha−1); the lightest yield from the nitrogen treated crops was recorded from 100 kg N ha−1 applied as a single dressing in April that stimulated shoot production and decreased individual grain weight. The recovery in grain and straw of labelled fertilizer nitrogen applied only in March averaged 42.2% and was 49.8% when the nitrogen was applied only in April. The recovery of nitrogen applied in both March and April at the total rate of 100 kg N ha−1 but split 30/70 or 70/30 was 44.5% and 42.5% respectively. Non-fertilizer sources of nitrogen contributed 60.7–71.7% of the total nitrogen uptake by the crop at harvest.  相似文献   

11.
The origin of highly acidic (pH<4.5) barren soils in the Klamath Mountains of northern California was examined. Soil parent material was mica schist that contained an average of 2,700 mg N kg−1, which corresponds to 7.1 Mg N ha−1 contained in a 10-cm thickness of bedrock. In situ soil solutions were dominated by H+, labile-monomeric Al3+ and NO3, indicating that the barren area soils were nitrogen saturated—more mineral nitrogen available than required by biota. Leaching of excess NO3 has resulted in removal of nutrient cations and soil acidification. Nitrogen release rates from organic matter free soil ranged from 0.0163 to 0.0321 mg N kg−1 d−1. Nitrogen release rate from fresh ground rock was 0.0465 mg N kg−1 d−1. This study demonstrates that geologic nitrogen may represent a large and reactive nitrogen pool that can contribute significantly to soil acidification.  相似文献   

12.
Abstract. Nitrate nitrogen (NO3-N) leaching from animal production systems in the northeast USA is a major non-point source of pollution in the Chesapeake Bay. We conducted a study to measure NO3-N leaching from dairy slurry applied to orchardgrass ( Dactylis glomerata L., cv. Pennlate) using large drainage lysimeters to measure the direct impact of four rates of slurry (urine and faeces) N application (0, 168, 336, 672 kg N ha−1 yr−1) on NO3-N leaching on three soil types. We then used experimentally-based relationships developed earlier between stocking density and NO3-N leaching loss and leachate NO3-N concentration to estimate the added impact of animal grazing. Nitrate N leaching losses from only dairy slurry applied at the 0, 158, 336, and 672 kg N ha−1 yr−1 rates were 5.85, 8.26, 8.83, and 12.1 kg N ha−1 yr−1, respectively with corresponding NO3-N concentrations of 1.60, 2.30, 2.46, and 3.48 mg l−1. These NO3-N concentrations met the 10 mg l−1 US EPA drinking water standard. However, when a scenario was constructed to include the effect of NO3-N leaching caused by animal grazing, the NO3-N drinking water standard was calculated to be exceeded.  相似文献   

13.
The effects of burning on the levels of soil organic matter, soil nitrogen, and soil microbial biomass were studied by carrying out experimental shifting cultivation at two sites, Niah and Bakam in Sarawak, Malaysia. Vegetation biomass was burned in plots (10 × 10 m2) at the rates of 0 (control), 100, 200, and 300 Mg ha−1 at the Niah site and 0, 20, and 100 Mg ha−1 at the Bakam site. At the Niah site, the levels of total C and N of the soils did not change throughout the experiment in spite of enhanced soil respiration until 2 months after burning. Although burning induced an increase in the amount of NH4-N of the soils, the readily available pool of N (the sum of the NH4-N, NO3-N, microbial biomass N, and extractable organic N pools) in the burned plots was depleted appreciably at the end of rice cultivation. The effects of burning on these properties tended to be substantial with increasing amounts of the vegetation biomass burned. On the other hand, the levels of total C and N and the readily available N pool at the Bakam site were low before burning compared with those at the Niah site, and the burning treatments did not affect them appreciably. While the rice yield at the Niah site reached the average value obtained in traditional shifting cultivation in Sarawak, that at the Bakam site was much lower. It was suggested that the flush of NH4-N induced by burning was one of the major factors for rice growth.  相似文献   

14.
Abstract. The potential for soil organic carbon sequestration, energy savings and the reduction of the emission of greenhouse gases were investigated for a range of changes in the management of tilled land and managed grassland. These parameters were modelled on a regional basis, according to local soils and crop rotations in England, and avoided the use of soil related indices. The largest carbon sequestration and saving contribution possible comes from an increase in the proportion of permanent woodland, such that a 10% change in land use could amount to 9 Mt C yr−1 in the initial years (arable and grassland). Changes in arable management could make a significant contribution to an abatement strategy if carried out in concert with greater use of permanent conservation field margins, increased returns of crop residues and reduced tillage systems, contributing 1.3 Mt C yr−1 in the initial years. It should be noted, however, that true soil carbon sequestration would be only a minor component of this (125 kt C yr−1), the main part being savings on CO2 emissions from reduced energy use, and lower N2O emissions from reduced use of inorganic nitrogen fertilizer.  相似文献   

15.
Abstract. Three different management systems were compared in an olive grove on a Vertic soil, near the city of Cordoba, Spain. Rainfall, runoff and soil loss were recorded from experimental plots of 6×12 m for three years. Results indicated that the no-tillage system, which was kept weed-free with herbicides, gave the largest soil loss (8.5 t ha−1 yr−1) and average annual runoff coefficient (21.5%), due to increased soil compaction, particularly outside the canopy projection area. A system that used a grass cover gave the lowest soil losses (1.2 t ha−1 yr−1) and average annual runoff coefficient (2.5%) due to the protective effects of the cover and increased soil aggregate stability. The third system, conventional tillage, gave intermediate results, with a soil loss of 4.0 t ha−1 yr−1 and an average runoff coefficient of 7.4%. The search for alternative soil management to conventional tillage should consider occasional light tillage to establish a grass cover that would keep both soil erosion and runoff losses to a minimum.  相似文献   

16.
Abstract. We examined the effect on soil nutrient status and sustainability of water percolation through an irrigated paddy field in Japan, to the depth of drainage (40 cm). The difference between amounts of nutrients leached by percolation and those supplied by irrigation indicated that 25–130 kg ha−1 Ca, 8–24 kg ha−1 Mg, from −1 to 9 kg ha−1 K, and 8–17 kg ha−1 Fe, respectively, were lost each year from the 0–40 cm soil layer during rice cultivation, when the supply from fertilization and rainfall and the loss in grain harvest were not accounted for. When the supply of K from rainfall and the loss in grain harvest were taken into account, a total K loss of about 10 kg ha−1 was estimated. The electrical neutrality of inorganic ions in the percolating water was always maintained. From these results we estimate that the amounts of exchangeable Ca and Mg in the soil to a depth of 40 cm would decrease by 50% within 50–260 and 30–100 years, respectively, if similar management were continued without fertilization. The total amount of carbon dioxide (ΣCO2) leached in percolating water during the period of rice cultivation was 120–325 kg C ha−1, which corresponded to 0.47–0.94% of the soil organic carbon to 40 cm depth.  相似文献   

17.
Abstract. In organic farming, potassium (K) deficiency may become a significant problem due to nutrient import restrictions. Knowledge about potential K leaching in systems with different K budgets is therefore important for effective agricultural management. We investigated the effect of four organic farming systems (two livestock densities in combination with two types of organic manure) on crop yields, K leaching and K balances in a six course crop rotation from 1993/94 to 1997/98. Average K concentrations in soil water extracted by means of ceramic suction cups at 1 m depth were 0.6 mg K l−1 corresponding to a K leaching loss of 1.5 kg ha−1 yr−1 which was less than expected from values reported in the literature. Variation in K budgets from −12 to +30 kg ha−1 yr−1 did not affect K leaching. In an additional experiment with application of 988 kg K ha−1 as KCl, K leaching accounted for only 0.2% of the applied K although 40% of the accompanying Cl was leached. The main part of the applied K was retained in the topsoil. It was concluded that K leaching was a result of the fertilizer history rather than of the current K budget.  相似文献   

18.
Abstract. Physical, chemical and environmental consequences of land use change from cultivated land to desert grassland and vice-versa were monitored in the middle reaches of the Heihe River basin, which is one of the largest inland basins of arid northwest China. Levels of N and P in soils and surface waters and soil organic carbon were measured. After the first 3–5 years of cultivation the N and P contents of various former grassland soils, including mountain-meadow and plains-meadow grasslands, decreased significantly. After some 13 years of cultivation, soil nutrient content in former mountain meadow grasslands gradually stabilized, whereas those of desertified grassland, where cultivation had simply been abandoned, showed a notable decrease. Under these latter conditions, soil N and P were lost at a rate of 276 kg ha−1 and 360 kg ha−1, respectively, over the 13-year period. The transformation of grassland into cultivated land and that of cultivated land into desert grassland resulted in organic carbon emissions of 1.68 Tg C and 0.55 Tg C, respectively, over 13 years. Land use changes in the arid inland region clearly have a significant influence on the soil organic carbon pool and carbon cycle. Falls in soil N and P led to 63% and 34% mean enrichment of N and P, respectively, in downstream waters, thus posing a future environmental problem for the arid region of northwest China.  相似文献   

19.
(pp. 825–831)
This study was carried out to clarify the effects of soil nitrate before cultivation and amounts of basal-dressed nitrogen on additional N application rate and yields of semi-forced tomato for three years from 1998 to 2000. The amounts and timing of additional N dressing were determined based on diagnosis of petiole sap nitrate. The top-dressing was carried out with a liquid fertilizer when the nitrate concentration of a leaflet's petiole sap of leaf beneath fruit which is 2–4 cm declined below 2000 mg L−1.
For standard yield by the method of fertilizer application based on this condition, no basal-dressed nitrogen was required when soil nitrate before cultivation was 150 mg kg−1 dry soil or higher in the 0–30 cm layer; 38 kg ha−1 of basal-dressed nitrogen, which corresponds to 25% of the standard rate of fertilizer application of Chiba Prefecture, was optimum when soil nitrate before cultivation was 100150 mg kg−1 dry soil; 75 kg ha−1 of basal-dressed nitrogen, which corresponds to 50% of the standard, was optimum when soil nitrate before cultivation was under 100 mg kg−1 dry soil. A standard yield was secured and the rate of nitrogen fertilizer application decreased by 49–76% of the standard by keeping the nitrate concentration of tomato petiole sap between 1000–2000 mg L−1 from early harvest time to topping time under these conditions.  相似文献   

20.
Two field experiments commencing in winter (December) and spring (April) were conducted to determine the fate of nitrogen (N) in cattle slurry following application to grassland. In each experiment three methods of application were used: surface application, and injection ± the nitrification inhibitor, nitrapyrin. Slurry was applied at 80t ha−1, (≡248 kg total N ha−1 in the winter experiment, and 262 kg N ha−1 in the spring experiment). From slurry applied to the surface, total losses of N through NH3 volatilization, measured using a system of wind tunnels, were 77 and 53 kg N ha−1 respectively for the winter and spring experiments. Injection reduced the total NH3 volatilization loss to ∼2 kg N ha −1. Following surface application, loss by denitrification, measured using an adaptation of the acetylene-inhibition technique, was 30 and 5 kg N ha−1 for the two experiments. Larger denitrification losses were observed for the injected treatments; in the winter experiment the loss from the injected slurry without nitrapyrin was 53 kgN ha −1, and with nitrapyrin 23 kgN ha−1. Total denitrification losses for the corresponding injected treatments in the spring experiment were 18 and 14 kg N ha −1. Apparent recoveries of N in grass herbage in both experiments broadly reflected the differences between treatments in total gaseous loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号