首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We observe a strong Kondo effect in a semiconductor quantum dot when a small magnetic field is applied. The Coulomb blockade for electron tunneling is overcome completely by the Kondo effect, and the conductance reaches the unitary limit value. We compare the experimental Kondo temperature with the theoretical predictions for the spin- 12 Anderson impurity model. Excellent agreement is found throughout the Kondo regime. Phase coherence is preserved when a Kondo quantum dot is included in one of the arms of an Aharonov-Bohm ring structure, and the phase behavior differs from previous results on a non-Kondo dot.  相似文献   

2.
The Kondo effect arises from the quantum mechanical interplay between the electrons of a host metal and a magnetic impurity and is predicted to result in local charge and spin variations around the magnetic impurity. A cryogenic scanning tunneling microscope was used to spatially resolve the electronic properties of individual magnetic atoms displaying the Kondo effect. Spectroscopic measurements performed on individual cobalt atoms on the surface of gold show an energetically narrow feature that is identified as the Kondo resonance-the predicted response of a Kondo impurity. Unexpected structure in the Kondo resonance is shown to arise from quantum mechanical interference between the d orbital and conduction electron channels for an electron tunneling into a magnetic atom in a metallic host.  相似文献   

3.
The effective interaction between magnetic impurities in metals that can lead to various magnetic ground states often competes with a tendency for electrons near impurities to screen the local moment (known as the Kondo effect). The simplest system exhibiting the richness of this competition, the two-impurity Kondo system, was realized experimentally in the form of two quantum dots coupled through an open conducting region. We demonstrate nonlocal spin control by suppressing and splitting Kondo resonances in one quantum dot by changing the electron number and coupling of the other dot. The results suggest an approach to nonlocal spin control that may be relevant to quantum information processing.  相似文献   

4.
We measure the differential conductance of a single-electron transistor (SET) irradiated with microwaves. The spin-entangled many-electron Kondo state produces a zero-bias peak in the dc differential conductance if the quantum dot in the SET contains an unpaired electron. When the photon energy hf is comparable to the energy width of the Kondo peak and to e (the charge on the electron) times the microwave voltage across the dot, satellites appear in the differential conductance shifted in voltage by +/-hf/e from the zero-bias resonance. We also observe an overall suppression of the Kondo features with increasing microwave voltage.  相似文献   

5.
Double quantum dots provide an ideal model system for studying interactions between localized impurity spins. We report on the transport properties of a series-coupled double quantum dot as electrons are added one by one onto the dots. When the many-body molecular states are formed, we observe a splitting of the Kondo resonance peak in the differential conductance. This splitting reflects the energy difference between the bonding and antibonding states formed by the coherent superposition of the Kondo states of each dot. The occurrence of the Kondo resonance and its magnetic field dependence agree with a simple interpretation of the spin status of a double quantum dot.  相似文献   

6.
A tunable kondo effect in quantum dots   总被引:1,自引:0,他引:1  
A tunable Kondo effect has been realized in small quantum dots. A dot can be switched from a Kondo system to a non-Kondo system as the number of electrons on the dot is changed from odd to even. The Kondo temperature can be tuned by means of a gate voltage as a single-particle energy state nears the Fermi energy. Measurements of the temperature and magnetic field dependence of a Coulomb-blockaded dot show good agreement with predictions of both equilibrium and nonequilibrium Kondo effects.  相似文献   

7.
Fermi liquid theory, the standard theory of metals, has been challenged by a number of observations of anomalous metallic behavior found in the vicinity of a quantum phase transition. The breakdown of the Fermi liquid is accomplished by fine-tuning the material to a quantum critical point by using a control parameter such as the magnetic field, pressure, or chemical composition. Our high-precision magnetization measurements of the ultrapure f-electron-based superconductor β-YbAlB(4) demonstrate a scaling of its free energy that is indicative of zero-field quantum criticality without tuning in a metal. The breakdown of Fermi liquid behavior takes place in a mixed-valence state, which is in sharp contrast with other known examples of quantum critical f-electron systems that are magnetic Kondo lattice systems with integral valence.  相似文献   

8.
Delft J 《Science (New York, N.Y.)》2000,289(5487):2064-2065
Advances in mesoscopic physics are enabling fundamental properties of solids to be studied at an unprecedented level of detail. In his Perspective, von Delft highlights the study by van der Wiel et al., who have demonstrated almost complete screening of the local spin of a quantum dot. This behavior mirrors the well-known Kondo effect for magnetic impurities in metals. Because they are tunable, quantum dots allow detailed tests of models for the Kondo effect, but experiments are ahead of theory at this time.  相似文献   

9.
Inelastic light scattering by low-energy spin-excitations reveals three distinct configurations of spin of electron double layers in gallium arsenide quantum wells at even-integer quantum Hall states. The transformations among these spin states appear as quantum phase transitions driven by the interplay between Coulomb interactions and Zeeman splittings. One of the transformations correlates with the emergence of a spin-flip intersubband excitation at vanishingly low energy and provides direct evidence of a link between quantum phase transitions and soft collective excitations in a two-dimensional electron system.  相似文献   

10.
Visible-stimulated emission in a semiconductor quantum dot (QD) laser structure has been demonstrated. Red-emitting, self-assembled QDs of highly strained InAlAs have been grown by molecular beam epitaxy on a GaAs substrate. Carriers injected electrically from the doped regions of a separate confinement heterostructure thermalized efficiently into the zero-dimensional QD states, and stimulated emission at approximately 707 nanometers was observed at 77 kelvin with a threshold current of 175 milliamperes for a 60-micrometer by 400-micrometer broad area laser. An external efficiency of approximately 8.5 percent at low temperature and a peak power greater than 200 milliwatts demonstrate the good size distribution and high gain in these high-quality QDs.  相似文献   

11.
We present a theory of the metal-insulator transition in a disordered two-dimensional electron gas. A quantum critical point, separating the metallic phase, which is stabilized by electronic interactions, from the insulating phase, where disorder prevails over the electronic interactions, has been identified. The existence of the quantum critical point leads to a divergence in the density of states of the underlying collective modes at the transition, causing the thermodynamic properties to behave critically as the transition is approached. We show that the interplay of electron-electron interactions and disorder can explain the observed transport properties and the anomalous enhancement of the spin susceptibility near the metal-insulator transition.  相似文献   

12.
Single-walled carbon nanotubes are ideal systems for investigating fundamental properties and applications of one-dimensional electronic systems. The interaction of magnetic impurities with electrons confined in one dimension has been studied by spatially resolving the local electronic density of states of small cobalt clusters on metallic single-walled nanotubes with a low-temperature scanning tunneling microscope. Spectroscopic measurements performed on and near these clusters exhibit a narrow peak near the Fermi level that has been identified as a Kondo resonance. Using the scanning tunneling microscope to fabricate ultrasmall magnetic nanostructures consisting of small cobalt clusters on short nanotube pieces, spectroscopic studies of this quantum box structure exhibited features characteristic of the bulk Kondo resonance, but also new features due to finite size.  相似文献   

13.
Magnetic and superconducting interactions couple electrons together to form complex states of matter. We show that, at the atomic scale, both types of interactions can coexist and compete to influence the ground state of a localized magnetic moment. Local spectroscopy at 4.5 kelvin shows that the spin-1 system formed by manganese-phthalocyanine (MnPc) adsorbed on Pb(111) can lie in two different magnetic ground states. These are determined by the balance between Kondo screening and superconducting pair-breaking interactions. Both ground states alternate at nanometer length scales to form a Moiré-like superstructure. The quantum phase transition connecting the two (singlet and doublet) ground states is thus tuned by small changes in the molecule-lead interaction.  相似文献   

14.
目的 利用近红外量子点表皮生长因子单克隆抗体荧光探针对由9,10-二甲基1,2苯并蒽(9,10-dimethylen-1,2-benzanthracene,DMBA)诱导建立的金黄地鼠颊黏膜癌变过程进行动态可视化荧光成像研究。方法 (1)用0.5%DMBA丙酮液诱导建立金黄地鼠颊黏膜癌变各期模型;(2)将水溶性近红外荧光量子点(QD800)表面功能性的修饰藕连表皮生长因子受体单克隆抗体(EGFR mAb)后,形成具有靶向功能性的QD800-EGFR mAb荧光探针;(3)将QD800-EGFR mAb经金黄地鼠各期癌变模型尾静脉注射入血液循环系统以靶向适配原理显示其颊黏膜动态癌变过程荧光图像。结果 (1)QD800-EGFR mAb能够通过血液循环系统与金黄地鼠颊黏膜癌变细胞上的EGFR特异性的靶向适配并荧光显影;(2)QD800-EGFR mAb显示的荧光图像随着金黄地鼠颊黏膜癌变程度的加深而增强,且能准确地显示癌灶的形状及浸润深度。结论 QD800-EGFR mAb通过与口腔癌不同癌变阶段癌细胞表面的EGFR靶向性适配结合来显示个体化荧光图像,可能对以后临床研究口腔癌的发生发展及转移规律发挥巨大的影响。  相似文献   

15.
The wave nature of particles is rarely observed, in part because of their very short de Broglie wavelengths in most situations. However, even with wavelengths close to the size of their surroundings, the particles couple to their environment (for example, by gravity, Coulomb interaction, or thermal radiation). These couplings shift the wave phases, often in an uncontrolled way, and the resulting decoherence, or loss of phase integrity, is thought to be a main cause of the transition from quantum to classical behavior. How much interaction is needed to induce this transition? Here we show that a photoelectron and two protons form a minimum particle/slit system and that a single additional electron constitutes a minimum environment. Interference fringes observed in the angular distribution of a single electron are lost through its Coulomb interaction with a second electron, though the correlated momenta of the entangled electron pair continue to exhibit quantum interference.  相似文献   

16.
Zhao A  Li Q  Chen L  Xiang H  Wang W  Pan S  Wang B  Xiao X  Yang J  Hou JG  Zhu Q 《Science (New York, N.Y.)》2005,309(5740):1542-1544
We report that the Kondo effect exerted by a magnetic ion depends on its chemical environment. A cobalt phthalocyanine molecule adsorbed on an Au111 surface exhibited no Kondo effect. Cutting away eight hydrogen atoms from the molecule with voltage pulses from a scanning tunneling microscope tip allowed the four orbitals of this molecule to chemically bond to the gold substrate. The localized spin was recovered in this artificial molecular structure, and a clear Kondo resonance was observed near the Fermi surface. We attribute the high Kondo temperature (more than 200 kelvin) to the small on-site Coulomb repulsion and the large half-width of the hybridized d-level.  相似文献   

17.
Quantum phase is not directly observable and is usually determined by interferometric methods. We present a method to map complete electron wave functions, including internal quantum phase information, from measured single-state probability densities. We harness the mathematical discovery of drum-like manifolds bearing different shapes but identical resonances, and construct quantum isospectral nanostructures with matching electronic structure but divergent physical structure. Quantum measurement (scanning tunneling microscopy) of these "quantum drums"-degenerate two-dimensional electron states on the copper(111) surface confined by individually positioned carbon monoxide molecules-reveals that isospectrality provides an extra topological degree of freedom enabling robust quantum state transplantation and phase extraction.  相似文献   

18.
An electron hopping on non-coplanar spin sites with spin chirality obtains a complex phase factor (Berry phase) in its quantum mechanical amplitude that acts as an internal magnetic field, and is predicted to manifest itself in the Hall effect when it is not cancelled. The present combined work of transport measurement, neutron scattering, and theoretical calculation provides evidence that the gigantic anomalous Hall effect observed in Nd2Mo2O7, a pyrochlore ferromagnet with geometrically frustrated lattice structure, is mostly due to the spin chirality and the associated Berry phase originating from the Mo spin tilting.  相似文献   

19.
Small changes in an external parameter can often lead to dramatic qualitative changes in the lowest energy quantum mechanical ground state of a correlated electron system. In anisotropic crystals, such as the high-temperature superconductors where electron motion occurs primarily on a two-dimensional square lattice, the quantum critical point between two such lowest energy states has nontrivial emergent excitations that control the physics over a significant portion of the phase diagram. Nonzero temperature dynamic properties near quantum critical points are described, using simple theoretical models. Possible quantum phases and transitions in the two-dimensional electron gas on a square lattice are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号