首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulation of the synthesis of membrane-bound and secreted immunoglobulin mu heavy chains at the level of RNA processing is an important element for B cell development. The precursor mu RNA is either polyadenylated at the upstream poly(A) site (for the secreted form) or spliced (for the membrane-bound form) in a mutually exclusive manner. When the mouse mu gene linked to the SV40/HSV-TK hybrid promoter was microinjected into Xenopus oocytes, the mu messenger RNA (mRNA) was altered by coinjection of nuclei of mouse surface IgM-bearing B-lymphoma cells to include the synthesis of the membrane-bound form. An increase in the membrane-bound form was not observed when nuclei of IgM-secreting hybridoma cells or fibroblast cells were coinjected. Deletion of the upstream poly(A) site did not eliminate the effect of B-lymphoma nuclei suggesting that membrane-specific splicing is stimulated. Further, splicing of other mu gene introns was not affected by coinjection of B-lymphoma nuclei. These results suggest that mature B cells contain one or more transacting nuclear factors that stimulate splicing specific for membrane-bound mu mRNA.  相似文献   

2.
The Prader-Willi syndrome is a congenital disease that is caused by the loss of paternal gene expression from a maternally imprinted region on chromosome 15. This region contains a small nucleolar RNA (snoRNA), HBII-52, that exhibits sequence complementarity to the alternatively spliced exon Vb of the serotonin receptor 5-HT(2C)R. We found that HBII-52 regulates alternative splicing of 5-HT(2C)R by binding to a silencing element in exon Vb. Prader-Willi syndrome patients do not express HBII-52. They have different 5-HT(2C)R messenger RNA (mRNA) isoforms than healthy individuals. Our results show that a snoRNA regulates the processing of an mRNA expressed from a gene located on a different chromosome, and the results indicate that a defect in pre-mRNA processing contributes to the Prader-Willi syndrome.  相似文献   

3.
4.
The splicing process, which removes intervening sequences from messenger RNA (mRNA) precursors is essential to gene expression in eukaryotic cells. This site-specific process requires precise sequence recognition at the boundaries of an intervening sequence, but the mechanism of this recognition is not understood. The splicing of mRNA precursors occurs in a multicomponent complex termed the spliceosome. Such an assembly of components is likely to play a key role in specifying those sequences to be spliced. In order to analyze spliceosome structure, a stringent approach was developed to obtain splicing complexes free of cellular contaminants. This approach is a form of affinity chromatography based on the high specificity of the biotin-streptavidin interaction. A minimum of three subunits: U2, U5, and U4 + U6 small nuclear ribonucleoprotein particles were identified in the 35S spliceosome structure, which also contains the bipartite RNA intermediate of splicing. A 25S presplicing complex contained only the U2 particle. The multiple subunit structure of the spliceosome has implications for the regulation of a splicing event and for its possible catalysis by ribozyme or ribozymes.  相似文献   

5.
Nonsense-mediated messenger RNA (mRNA) decay, or NMD, is a critical process of selective degradation of mRNAs that contain premature stop codons. NMD depends on both pre-mRNA splicing and translation, and it requires recognition of the position of stop codons relative to exon-exon junctions. A key factor in NMD is hUpf3, a mostly nuclear protein that shuttles between the nucleus and cytoplasm and interacts specifically with spliced mRNAs. We found that hUpf3 interacts with Y14, a component of post-splicing mRNA-protein (mRNP) complexes, and that hUpf3 is enriched in Y14-containing mRNP complexes. The mRNA export factors Aly/REF and TAP are also associated with nuclear hUpf3, indicating that hUpf3 is in mRNP complexes that are poised for nuclear export. Like Y14 and Aly/REF, hUpf3 binds to spliced mRNAs specifically ( approximately 20 nucleotides) upstream of exon-exon junctions. The splicing-dependent binding of hUpf3 to mRNAs before export, as part of the complex that assembles near exon-exon junctions, allows it to serve as a link between splicing and NMD in the cytoplasm.  相似文献   

6.
7.
Small nuclear RNAs (snRNAs) are essential factors in messenger RNA splicing. By means of homozygosity mapping and deep sequencing, we show that a gene encoding U4atac snRNA, a component of the minor U12-dependent spliceosome, is mutated in individuals with microcephalic osteodysplastic primordial dwarfism type I (MOPD I), a severe developmental disorder characterized by extreme intrauterine growth retardation and multiple organ abnormalities. Functional assays showed that mutations (30G>A, 51G>A, 55G>A, and 111G>A) associated with MOPD I cause defective U12-dependent splicing. Endogenous U12-dependent but not U2-dependent introns were found to be poorly spliced in MOPD I patient fibroblast cells. The introduction of wild-type U4atac snRNA into MOPD I cells enhanced U12-dependent splicing. These results illustrate the critical role of minor intron splicing in human development.  相似文献   

8.
The chicken beta-tropomyosin pre-messenger RNA (pre-mRNA) is spliced in a tissue-specific manner to yield messenger RNA's (mRNA's) coding for different isoforms of this protein. Exons 6A and 6B are spliced in a mutually exclusive manner; exon 6B was included in skeletal muscle, whereas exon 6A was preferred in all other tissues. The distal portion of the intron upstream of exon 6B was shown to form stable double-stranded regions with part of the intron downstream of exon 6B and with sequences in exon 6B. This structure repressed splicing of exon 6B to exon 7 in a HeLa cell extract. Derepression of splicing occurred on disruption of this structure and repression followed when the structure was re-formed, even if the structure was formed between two different RNA molecules. Repression leads to inhibition of formation of spliceosomes. Disrupting either of the two double-stranded regions could lead to derepression, whereas re-forming the helices by suppressor mutations reestablished repression. These results support a simple model of tissue-specific splicing in this region of the pre-mRNA.  相似文献   

9.
Alternative pre-messenger RNA (pre-mRNA) splicing plays important roles in development, physiology, and disease, and more than half of human genes are alternatively spliced. To understand the biological roles and regulation of alternative splicing across different tissues and stages of development, systematic methods are needed. Here, we demonstrate the use of microarrays to monitor splicing at every exon-exon junction in more than 10,000 multi-exon human genes in 52 tissues and cell lines. These genome-wide data provide experimental evidence and tissue distributions for thousands of known and novel alternative splicing events. Adding to previous studies, the results indicate that at least 74% of human multi-exon genes are alternatively spliced.  相似文献   

10.
In eukaryotic cells alternative splicing of messenger RNA precursors (pre-mRNA's) is a means of regulating gene expression. Although a number of the components that participate in regulating some alternative splicing events have been identified by molecular genetic procedures, the elucidation of the biochemical mechanisms governing alternative splicing requires in vitro reaction systems. The tissue specificity of P element transposition in Drosophila depends on the germline restriction of pre-mRNA splicing of the P element third intron (IVS3). Drosophila P element IVS3 pre-mRNA substrates were spliced accurately in vitro in heterologous human cell extracts but not in Drosophila somatic cell splicing extracts. Components in Drosophila somatic cell extracts that specifically inhibited IVS3 splicing in vitro were detected by a complementation assay. Biochemical assays for Drosophila RNA binding proteins were then used to detect a 97-kilodalton protein that interacts specifically with 5' exon sequences previously implicated in the control of IVS3 splicing in vivo. Inhibition of IVS3 splicing in vitro could be correlated with binding of the 97-kD protein to 5' exon sequences, suggesting that one aspect of IVS3 tissue-specific splicing involves somatic repression by specific RNA-protein interactions.  相似文献   

11.
HTLV x-gene product: requirement for the env methionine initiation codon   总被引:15,自引:0,他引:15  
The human T-cell leukemia viruses (HTLV) are replication-competent retroviruses whose genomes contain gag, pol, and env genes as well as a fourth gene, termed x, which is believed to be the transforming gene of HTLV. The product of the x gene is now shown to be encoded by a 2.1-kilobase messenger RNA derived by splicing of at least two introns. By means of S1 nuclease mapping of this RNA and nucleic acid sequence analysis of a complementary DNA clone, the complete primary structure of the x-gene product has been determined. It is encoded by sequences containing the env initiation codon and one nucleotide of the next codon spliced to the major open reading frame of the HTLV-I and HTLV-II x gene.  相似文献   

12.
【目的】烟草(Nicotiana tabacum L.)碱性几丁质酶基因PR3b在低烟碱突变体(nic1nic2)中存在转录后mRNA可变剪切现象,但其可变剪切的发生机制仍不清楚。将PR3b的可变剪切元件NRSE1(nicotine- synthesis related splicing element 1)与GUS融合表达,分析NRSE1元件的独立可变剪切特性,以揭示其作用机制。【方法】利用PCR扩增方法获得PR3b cDNA序列中的NRSE1元件片段,并利用基因重组技术构建了烟草PR3b可变剪切元件NRSE1与GUS的融合表达载体。将融合表达载体导入农杆菌LBA4404后,通过农杆菌介导的叶盘转化法培育了表达NRSE1与GUS融合子的低烟碱突变体nic1nic2及野生型烟草转基因植株;通过RT-PCR检测及GUS染色鉴定出阳性植株后,利用RT-PCR分析NRSE1与GUS融合表达后在低烟碱突变体和野生型烟草中的可变剪切特性;对转基因植株的幼苗进行乙烯(ET)和茉莉酸(JA)处理,通过GUS染色方法分析ET和JA处理对转基因植株中GUS活性的影响,并通过RT-PCR方法分析ET和JA处理对转基因植株中NRSE1与GUS融合子的可变剪切特性影响,以及对转基因植株中NRSE1与GUS融合子表达水平的影响。【结果】通过RT-PCR检测及GUS染色鉴定出表达NRSE1元件与GUS融合子的低烟碱突变体和野生型烟草转基因植株;RT-PCR检测及测序分析证明,NRSE1元件与GUS融合表达后仍能在低烟碱突变体发生高水平的可变剪切,剪切修饰区段的序列变化与烟草中PR3b的mRNA可变剪切修饰一致;利用ET和JA处理转基因植株进行的GUS染色表明,ET和JA处理对转基因植株的GUS活性有不同程度的影响;但利用ET和JA处理转基因植株进行的RT-PCR分析表明,ET和JA处理不改变NRSE1元件原有的诱导剪切特性,也不影响转基因植株中NRSE1元件与GUS融合子的表达水平。【结论】PR3b的可变剪切元件NRSE1与GUS在烟草中融合表达后,仍能在低烟碱突变体nic1nic2中发生高水平的可变剪切;NRSE1在烟草中的可变剪切不依赖PR3b的其他mRNA区段,是烟草PR3b发生可变剪切的独立元件;ET和JA处理对NRSE1元件与GUS融合表达植株的GUS活性具有一定影响,可能存在翻译水平的调控作用。  相似文献   

13.
14.
Major structural changes occur in the spliceosome during its activation just before catalyzing the splicing of pre-messenger RNAs (pre-mRNAs). Whereas changes in small nuclear RNA (snRNA) conformation are well documented, little is known about remodeling of small nuclear ribonucleoprotein (snRNP) structures during spliceosome activation. Here, human 45S activated spliceosomes and a previously unknown 35S U5 snRNP were isolated by immunoaffinity selection and were characterized by mass spectrometry. Comparison of their protein components with those of other snRNP and spliceosomal complexes revealed a major change in protein composition during spliceosome activation. Our data also suggest that the U5 snRNP is dramatically remodeled at this stage, with the Prp19 complex and other factors tightly associating, possibly in exchange for other U5 proteins, and suggest that after catalysis the remodeled U5 is eventually released from the postsplicing complex as a 35S snRNP particle.  相似文献   

15.
为研究剪接受体位点变异对剪接方式与效率的影响,对大白菜材料He2进行重测序,发现BrSPS1Fb-He2第6个内含子(I6)的剪接受体位点由AG突变为AC。对大白菜材料He2花瓣进行转录组测序并分析BrSPS1Fb-He2 read数据,结果显示,BrSPS1Fb-He2在pre-mRNA加工过程中发生了选择性剪接。BrSPS1Fb-He2可选择3个位置(A1、A2和A3)作为受体进行剪接,产生3种剪接异构体(S1、S2和S3),或者保留I6整个内含子,形成S4剪接异构体。大白菜BrSPS1Fb-He2的成熟mRNA中保留部分I6(S1和S2)或全部I6(S4),或者缺失部分E7外显子序列(S3)。综上,BrSPS1Fb剪接受体位点的单核苷酸多态性(single nucleotide polymorphisms,SNP)变异对其转录后剪接产生了显著影响。  相似文献   

16.
17.
The pre-mRNA processing factor Prp6 is an essential component of the U4/U6.U5 tri-small nuclear ribonucleoprotein(snRNP).In a previous study,mutations were identified in the PRP6 ortholog in four suppressors of Fgprp4 that was deleted of the only kinase FgPrp4 among the spliceosome components in the plant pathogenic fungus Fusarium graminearum.In this study,we identified additional suppressor mutations in FgPrp6 and determined the suppressive effects of selected mutations.In total,12 mutations o...  相似文献   

18.
19.
植物功能基因选择性剪接研究进展   总被引:1,自引:0,他引:1  
选择性剪接是基因表达调控的重要机制,在植物发育、抗病和应对环境胁迫等方面起着重要的作用。近年来,新一代测序技术在植物基因组和转录组测序领域得到广泛应用,植物选择性剪接研究取得了一些新进展。本文就此进行了综述,包括选择性剪接占植物功能基因的比例、选择性剪接的类型及其调控机制等内容,并提出了今后植物上的研究重点应放在选择性剪接的功能方面。  相似文献   

20.
克隆并分析猪FeRn基因;十二指肠组织提取总RNA,利用设计的引物进行RT-PCR,PCR产物与pMD-19T载体连接后转化JM109感受态细胞.筛选阳性克隆并测序;FeRn阳性克隆两条序列在NCBI上比较,显示序列同猪FcRn(AY740682.1)同源性都为99%.克隆了猪FcRn基因的序列和其剪接变体序列,其剪接变体序列已在GenBank上注册(Accession.EU852582)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号