首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Assisted phytoremediation procedures have been widely employed as soil removal instrument of heavy metals from contaminated soils. Rhizosphere processes have a major impact on pb and Zn availability and its fractions in soils. The present study evaluates the effects of EDTA, citric acid (CA) and poultry manure extract (PME) on bioavailability and fractionation of pb, Zn in both the rhizosphere of sunflower (Helianthus annuus L.) and bulk soil. EDTA and CA were added to soils at the rates of 0, 0.5 and 1 mmol kg?1 soil and PME at 0, 0.5 and 1 g kg?1 soil as factorial in a completely randomized pattern with three replicates in greenhouse condition. Results showed that chelator application had a significant impact (p < 0.05) on pb, Zn extraction by different extractants and its fractions in soils. The order of concentrations of pb, Zn present in different fractions in soil treated by chelators was: oxides-bounded fraction > residual fraction > OM-bounded fraction > carbonate-bounded fraction > exchangeable fraction. Biochemical soil characteristics in the sunflower rhizosphere change resulting from its roots contributing to pb, Zn decline in mobile soil fractions, and change in soil pb, Zn fractions that are generally regarded as more stable.  相似文献   

2.

Purpose

In this study, a soil-washing process was investigated for arsenic (As) and pentachlorophenol (PCP) removal from polluted soils. This research first evaluates the use of chemical reagents (HCl, HNO3, H2SO4, lactic acid, NaOH, KOH, Ca(OH)2, and ethanol) for the leaching of As and PCP from polluted soils.

Materials and methods

A Box–Behnken experimental design was used to optimize the main operating parameters for soil washing. A laboratory-scale leaching process was applied to treat four soils polluted with both organic ([PCP] i ?=?2.5–30 mg kg?1) and inorganic ([As] i ?=?50–250 mg kg?1, [Cr] i ?=?35–220 mg kg?1, and [Cu] i ?=?80–350 mg kg?1) compounds.

Results and discussion

Removals of 72–89, 43–62, 52–68, and 64–98 % were obtained for As, Cr, Cu, and PCP, respectively, using the optimized operating conditions ([NaOH]?=?1 N, [cocamidopropylbetaine] i ?=?2 % w w?1, t?=?2 h, T?=?80 °C, and PD?=?10 %).

Conclusions

The use of NaOH, in combination with the surfactant, is efficient in reducing both organic and inorganic pollutants from soils with different levels of contamination.  相似文献   

3.

Purpose

Heavy metal distribution in soils is affected by soil aggregate fractionation. This study aimed to demons trate the aggregate-associated heavy metal concentrations and fractionations in “sandy,” “normal,” and “mud” soils from the restored brackish tidal marsh, oil exploitation zone, and tidal mudflat of the Yellow River Delta (YRD), China.

Materials and methods

Soil samples were sieved into the aggregates of >2, 0.25–2, 0.053–0.25, and <0.053 mm to determine the concentrations of exchangeable (F1), carbonate-bound (F2), reducible (F3), organic-bound (F4), and residual fraction (F5) of Cd, Cr, Cu, Ni, Pb, and Zn.

Results and discussion

The 0.25–2 mm aggregates presented the highest concentrations but the lowest mass loadings (4.23–12.18 %) for most metal fractions due to low percentages of 0.25–2 mm aggregates (1.85–3.12 %) in soils. Aggregates <0.053 mm took majority mass loadings of metals in sandy and normal soils (62.04–86.95 %). Most soil aggregates had residual Cr, Cu, Ni, Zn, and reducible Cd, Pb dominated in the total Cd, Cr, Cu, Ni, Pb, and Zn concentrations. Sandy soil contained relatively high F4, especially of Cu (F4) in 0.25–2 mm aggregates (10.22 mg kg?1), which may relate to significantly high organic carbon contents (23.92 g kg?1, P?<?0.05). Normal soil had the highest total concentrations of metals, especially of Cu, Ni, and Pb, which was attributed to the high F3 and F5 in the <0.053 mm aggregates. Although mud soil showed low total concentrations of heavy metals, the relatively high concentrations of bioavailable Cd and Cu resulted from the relatively high Cd (F2) and Cu (F2) in the >2 mm aggregates indicated contribution of carbonates to soil aggregation and metal adsorption in tidal mud flat.

Conclusions

Soil type and aggregate distribution were important factors controlling heavy metal concentration and fractionation in YRD wetland soil. Compared with mud soil, normal soil contained increased concentrations of F5 and F3 of metals in the 0.053–0.25 mm aggregate, and sandy soil contained increased concentrations of bioavailable and total Cr, Ni, and Zn with great contribution of mass loadings in the <0.053 mm aggregate. The results of this study suggested that oil exploitation and wetland restoration activities may influence the retention characteristics of heavy metals in tidal soils through variation of soil type and aggregate fractions.
  相似文献   

4.

Purpose

In situ immobilization of heavy metal-contaminated soils with the repeated incorporation of amendments can effectively reduce the bioavailability of soil heavy metals. However, the long-term application of amendments would lead to the destruction of soil structure and accumulation of soil toxic elements, ultimately affecting food security and quality. Thus, the sustainability of the amendments in a heavy metal-contaminated soil was evaluated from 2010 to 2012.

Materials and methods

Batch field experiments were conducted in the soils, which were amended with apatite (22.3 t ha?1), lime (4.45 t ha?1), and charcoal (66.8 t ha?1), respectively. The amendments were applied only one time in 2009, and ryegrass was sown each year. Ryegrass and setaria glauca (a kind of weed) were harvested each year. Concentrations of copper (Cu) and cadmium (Cd) were determined by batch experiments. Five fractions of Cu and Cd were evaluated by a sequential extraction procedure.

Results and discussion

Ryegrass grew well in the amended soils in the first year, but it failed to grow in all the soils in the third year. However, setaria glauca could grow with higher biomass in all the amended soils. The treatment of apatite combined with plants was more effective than lime and charcoal treatments in removing Cu and Cd from the contaminated soils by taking biomass into account. Apatite had the best sustainable effect on alleviating soil acidification. The Cu and Cd concentrations of CaCl2-extractable and exchangeable fractions decreased with the application of amendments. Moreover, apatite and lime could effectively maintain the bioavailability of Cu and Cd low.

Conclusions

Apatite had a better sustainable effect on the remediation of heavy metal-contaminated soils than lime and charcoal. Although all the amendment treated soils did not reduce soil total concentrations of Cu and Cd, they could effectively reduce the environmental risk of the contaminated soils. The findings could be effectively used for in situ remediation of heavy metal-contaminated soils.
  相似文献   

5.
Abstract: The fraction distributions of heavy metals have attracted more attention because of the relationship between the toxicity and their speciation. Heavy‐metal fraction distributions in soil contaminated with mine tailings (soil A) and in soil irrigated with mine wastewater (soil B), before and after treatment with disodium ethylenediaminetetraacetic acid (EDTA), were analyzed with Tessier's sequential extraction procedures. The total contents of lead (Pb), cadmium (Cd), copper (Cu), and zinc (Zn) exceeded the maximum permissible levels by 5.1, 33.3, 3.1, and 8.0 times in soil A and by 2.6, 12.0, 0.2, and 1.9 times in soil B, respectively. The results showed that both soils had high levels of heavy‐metal pollution. Although the fractions were found in different distribution before extraction, the residual fraction was found to be the predominant fraction of the four heavy metals. There was a small amount of exchangeable fraction of heavy metals in both contaminated soils. Furthermore, in this study, the extraction efficiencies of Pb, Cd, and Cu were higher than those of Zn. After extraction, the concentrations of exchangeable Pb, Cd, Cu, and Zn increased 84.7 mg·kg?1, 0.3 mg·kg?1, 4.1 mg·kg?1, and 39.9 mg·kg?1 in soil A and 48.7 mg·kg?1, 0.6 mg·kg?1, 2.7 mg·kg?1, and 44.1 mg·kg?1 in soil B, respectively. The concentrations of carbonate, iron and manganese oxides, organic matter, and residue of heavy metals decreased. This implies that EDTA increased metal mobility and bioavailability and may lead to groundwater contamination.  相似文献   

6.
Abstract

Copper (Cu) is an important heavy metal to be considered in soil contamination, because high concentrations of copper in soil produce toxic effects and may accumulate in plant tissues. In Australia's oldest sewage irrigation farm, located in Werribee, Victoria, soil in the land filtration area is contaminated by Cu. However, Cu content in herbage tissues is in the normal range and has been trending downward since 1979. Therefore, studies on the sorption capacity and sequential extraction of Cu in soil at the Werribee Farm is of significance, not only for better understanding the mechanism of transport, chemical processes, and plant uptake of Cu, but also in providing information for the practical management of sewage farm soils. Methods of combining sorption isotherms with sequential extraction procedures were adopted, and the results showed that the soil in the land filtration area at Werribee Farm has a high sorption capacity for Cu, and distribution coefficients, Kf of Cu, were 629 L kg?1 in surface soils (0–20 cm) and 335 L kg?1 in subsurface soils (20–40 cm). The sequential extraction fractions demonstrate that exchangeable and carbonate fractions are very low, only comprising 3.49 to 5.49% of total copper. The other fractions are also discussed. This characteristic of Cu in soil is related to the low concentration of Cu in plant tissues.  相似文献   

7.
This study investigated the use of waste amendments (green waste compost (GWC) and water treatment sludge (WTS) cake) in improving the nutrient and revegetation status of contaminated soil obtained from a former industrial site that has heavy metal and hydrocarbon contamination. The waste amendments were mixed with the contaminated soil at application rates equivalent to 90 and 180 t ha?1 (wet weight) and placed in plastic pots. The unamended soil serves as the control. Reed canary grass and white mustard were allowed to grow on the amended and unamended contaminated soil in the glass house. After a 30- day growth period, soil nutrient status was observed and was found to be higher in the amended contaminated soil than the control. In the amended soil, organic matter, total nitrogen, total potassium and soil nitrate were highest in contaminated soil amended with GWC at 180 t ha?1 and lowest in contaminated soil amended with WTS cake at 90 t ha?1. Above-ground dry mass of reed canary grass and white mustard grown on amended contaminated soil increased by 120–222% and 130–337%, respectively, as compared to the control, showing that improved fertility of contaminated soils thereafter, enhanced revegetation.  相似文献   

8.
Abstract

Two Ferralsols (350 and 600 g kg?1 clay) from the Brazilian Cerrado Region were evaluated for long‐term effects (5 and 8 years) of no tillage on carbon (C) stocks in particulate (>53 µm) and mineral‐associated (<53 µm) soil organic matter (SOM) fractions. Carbon stocks in particulate SOM increased under no tillage compared with conventional tillage, and the rate was higher in the clayey soil (0.62 Mg C ha?1 yr?1) than in the sandy clay loam soil (0.31 Mg C ha?1 yr?1). In contrast, the mineral‐associated SOM in the top soil layer (0–20 cm) was not affected by tillage system. Sequestration of atmospheric C in tropical no‐tillage soils seems to be due to accumulation of C in labile SOM fractions, with highest rates in clayey soils probably due to physical protection.  相似文献   

9.

Purpose

The purpose of the present study was to investigate the distribution of antimony (Sb) and its species in soil fractions in order to understand better the real risk associated with Sb in the environment.

Materials and methods

Nine surface soil samples contaminated from lead/zinc and iron smelting operations and coal fired power plants were examined using: (1) four-step sequential extraction procedure (BCR); (2) two-step sequential extraction including ethylenediaminetetraacetic acid (EDTA), sodium hydroxide (NaOH) and NH4F; and (3) single extraction with EDTA and NaOH. Liquid phase extraction was used for redox speciation of Sb. The distribution of Sb between soil fulvic and humic acids was determined after their chemical separation. The concentrations of Sb were measured by electrothermal atomic absorption spectrometry.

Results and discussion

The main part of total Sb (2.5–105 mg?kg?1) was associated with the residual fraction in all soils. The exchangeable/carbonate-bound concentrations were 0.83–4.7 % of total Sb. Up to 6.8 % was in the reducible and up to 1.4 % was in the oxidizable fraction. EDTA removed 7.2–11.4 % of total content. Sb(V) was the predominant form in acetic acid and EDTA extracts. Single extraction with 0.1 mol?l?1 NaOH released up to 13.7 % of soil antimony. The main part of Sb was complexed to the higher molecular weight fraction of soil-derived humic substances.

Conclusions

For highly contaminated soils, 4 % solubility in acetic acid could represent risk of contamination of ground water under specific conditions. Also, the relatively high phytoavailable Sb (7–11 %) can represent a significant proportion in highly polluted soils. Pentavalent antimony was the main antimony species extracted from soils. The main part of the organically antimony was found to be present as complexes with higher molecular weight humic acids fraction.  相似文献   

10.
This study evaluated the effects of phosphorus (P) fertilizer levels on inorganic P fractions. Wheat cultivars (Azadi and Marvdasht) were grown in the soils amended with the four rates of P fertilizer levels (no fertilizer, 10, 15, and 25 mg available P kg?1 soil). Soils were sampled from rhizosphere and non-rhizosphere areas after 6 weeks. The mean of all P fractions was significantly different in various P fertilizer levels. The smallest and the largest amounts of all P fractions were observed in the soil with no P and in 25 mg kg?1 soil P level, respectively. The Azadi cultivar, as P-efficient, showed the smallest increase in soil P fractions with increasing soil P levels. The means of all P fractions except Al-phosphates (Al-P) were significantly higher in non-rhizosphere soil. There were differences between these cultivars associated with the more inaccessible fractions at the 15 mg P kg?1 soil level.  相似文献   

11.
Landuse can alter soil organic carbon (SOC) fractions by affecting carbon inflows and outflows. This study evaluated changes in SOC fractions in response to different landuses under variable rainfalls. We compared cropland, grassland and forest soils in high rainfall (Islamabad ~1142 mm) and low rainfall (Chakwal ~667 mm) areas of Pothwar dryland, Pakistan. Forest soils in both rainfall areas had highest SOC (11.32 g kg?1), particulate organic carbon (POC, 1.70 g kg?1), mineral-associated organic carbon (MOC, 7.17 g kg?1) and aggregate-associated organic carbon (AOC, 7.86 g kg?1). However, in rangeland and cropland soils, these varied with rainfall. Under high rainfall, SOC and MOC were 12% and 17% higher in rangeland than in cropland while POC and AOC were equal. Under low rainfall, SOC and MOC were higher in rangeland than in cropland by 7.21 and 1.79 g kg?1 at 0–15 cm and equal at 15–30 cm depth. POC and AOC were higher in rangeland than in cropland, in both depths. Averagely, SOC, POC, MOC and AOC were 26%, 68%, 76% and 30% higher in high rainfall than in low rainfall soils. Sensitivity of SOC fractions to landuses observed under different rainfalls could provide useful information for soil management in subtropical drylands.  相似文献   

12.

Purpose

Sugarcane waste products (boiler ash, filter cake, and vinasse) from an ethanol production plant were used as soil amendments by adding 3 % (w/w) in single and/or in combination, with a research focus towards stabilization of cadmium (Cd) and zinc (Zn) in contaminated soils. The objective of this laboratory study was to evaluate the effects of adding these sugarcane waste products on bioavailability of Cd and Zn over time (aging) in Cd- and Zn-contaminated agricultural soils of Thailand.

Materials and methods

Two agricultural contaminated soils of low (<3 mg kg?1) and high (10–15 mg kg?1) Cd concentrations were collected from Tak Province, Northwest Thailand. Fourteen treatments were sampled at 2-week intervals for 84 days for metal bioavailability using BCR extraction procedures (proposed by The Standards, Measurements and Testing Programme of the European Union, SM&T) that determined exchangeable (BCR1), reducible (BCR2), oxidizable (BCR3), and residual (BCR4) fractions, and total concentration was determined using aqua regia digestion and microwave digestion.

Results and discussion

Cd was potentially bioavailable, predominantly in exchangeable (BCR1) and reducible (BCR2) fractions, while the higher contribution of Zn was more prevalent in refractory fractions (BCR2 and BCR4). Aging had an influence on fractionation of Cd and Zn, most notably in the first two fractions (BCR1 and BCR2) of BCR sequential extraction, which resulted in reduction of exchangeable Cd during the first few weeks of incubation (T?=?0 to 28 days). At the end of pot experiment, the exchangeable Cd fraction in the low Cd (LCdS) soil was reduced from 2.3 to 4.7 % and 9.4 to 39.9 % in low and high Cd (HCdS)-contaminated soils, respectively, as compared to nonamended soils.

Conclusions

The observed reduction in exchangeable Cd (BCR1) in the amended soils at the 3 % (w/w) application rate, the low total metal concentrations, and the significant amount of essential plant nutrients (N, P, and K) within these waste products highlight the benefits of amending metal-rich soils with them.  相似文献   

13.
Abstract

To evaluate the content of nitrogen (N) fractions of agricultural soils in Java, Indonesia, in relation to soil type and land use, 46 surface soil samples, 23 from paddy and 23 from upland, were collected throughout Java to include various types of soils. Soil N was separated into four fractions according to form and availability: inorganic extractable nitrogen (Iex-N), fixed ammonium nitrogen (Ifix-N), organic mineralizable nitrogen (Omin-N) and organic stable nitrogen (Osta-N). The total-N content was determined by the dry combustion method. The Iex-N content was determined by extraction with a 2 mol L?1 potassium chloride (KCl) solution and the Ifix-N content by extraction with an hydrofluoric and hydrochloric acid (HF-HCl) solution after removal of organic-N. The Omin-N content was evaluated as the potentially mineralizable N based on a long-term incubation method. The Osta-N content was calculated as the difference between the contents of total-N and the three other fractions. The total-N content was 2.06 g kg?1 on average. The contents of Iex-N, Ifix-N, Omin-N and Osta-N were 25.8, 99.1, 103 and 1,832 mg kg?1, respectively, and corresponded to 1.3, 4.8, 5.0 and 88.9% of the total-N. Hence, available (Iex-N and Omin-N) and stable (Ifix-N and Osta-N) fractions accounted for 6.3% and 93.7% of the total-N, respectively. Correlation analysis indicated that the contents of total-N and Osta-N had positive correlation with (Alo + 1/2Feo) as an index of amorphous minerals (p < 0.01), suggesting strong influence of volcanic materials for the accumulation of organic matter in Java soils. The content of Ifix-N had a positive correlation with nonexchangeable potassium (K) content (p < 0.01), suggesting the contribution of 2:1 clay minerals which can fix both ammonium (NH4+) and K+ in their interlayer sites. On the contrary, Omin-N did not have any significant correlation with soil properties, implying the importance of management for the improvement of the available N level in soils, rather than intrinsic soil properties. Soil N status further showed strong topographical trends depending on the elevation where soil developed. The contents of total N, Iex-N, Ifix-N, Omin-N and Osta-N in Java soils were on average 80, 69, 90, 65 and 80% of those in Japanese soils, respectively, suggesting that the soil N level in Java was lower than that in Japan, probably due to accelerated decomposition of organic matter, especially degradable fractions, reflecting high temperature, but that the level was relatively high for tropical soils due to the effect of volcanic materials. In conclusion, these results should be taken into account for the sustainable management of soil N in agricultural fields in Java, Indonesia.  相似文献   

14.

Purpose

The main objectives of the study were to (1) develop a one-step facile procedure for synthesizing a new chemical amendment agent with three chelating groups for solidifying multiple heavy metals, called sixthio guanidine acid (SGA), using guanidine hydrochloride and carbon disulfide as raw reactants and (2) assess its biodegradability, solidification effectiveness, and leachability in remedying soils contaminated with multiple heavy metals of various concentrations compared with other traditional amendment agents.

Materials and methods

Polluted soil samples were collected near a metalliferous mining site of Qixiashan in the southeast of Nanjing, China. Their concentrations were determined at 22.15–320 mg kg?1 for As, 3.30–29.31 mg kg?1 for Cd, 115.66–158.65 mg kg?1 for Ni, 165.04–1677.06 mg kg?1 for Pb, and 355.6–2426.91 mg kg?1 for Zn. Biodegradability of SGA was assessed in accordance with GB/T 21831-2008 and OECD-301D. Total concentration of heavy metals was determined according to ISO11466:1995. A modified three-step sequential Community Bureau of Reference (BCR) extraction procedure was used to examine speciation of heavy metals in the soil sample, and concentrations of heavy metals were measured by using inductively coupling plasma optical emission spectrometry (ICP-OES). Leachate extraction tests were carried out before and after the soil sample was solidified with different amendments in accordance with HJ/T 557-2009.

Results and discussion

It is found that the optimal conditions for SGA synthesis are a molar ratio of 4:1, a reaction temperature of 40 °C, and a reaction time of 2 h. Under such conditions, SGA yield is achieved as high as 91.5 %. The bioavailability and mobility of As, Cd, Ni, Pb, and Zn in highly contaminated soils can be reduced via using SGA. Our results indicate that SGA is nonbiodegradative and much more effective than other traditional chemical amendment agents in that it is highly effective in comprehensively solidifying As, Cd, Ni, and Pb.

Conclusions

SGA has the potential for comprehensive in situ remediation of soils contaminated with several heavy metal elements of various concentration levels, and such findings may be used as a guide to design new chemical amendment agents for rehabilitating soils contaminated with heavy metals.
  相似文献   

15.
Forms of Cu, Ni, and Zn in the contaminated soils of the Sudbury mining/smelting district were studied to assess metal mobility and plant availability. Soil, tufted grass (Deschampsia caespitosa (L.) Beauv.), tickle grass (Agrostis scabra Willd.), dwarf birch (Betula pumila L. var. glandulifera Regel) and white birch (Betula paprifera Marsh.) leaf and twig samples were taken from 20 locations around three Cu-Ni smelters. The sampling sites were collected to cover a wide range of soil pH and soil Cu and Ni concentrations. The water-soluble, exchangeable, sodium acetate-soluble, and total concentrations of the metals in the soils were analyzed. The soils were contaminated with Cu and Ni up to 2000 µg g?1. Zinc concentrations were also elevated in some samples above the normal soil level of 100 µg g?1. The mobility of Cu and Zn, expressed as the proportion of metals in Fl and F2 forms, increased with soil pH decrease. A strong positive correlation was found between the soil exchangeable (F2) Ni and the soil pH. Concentrations of Cu and Ni in birch twigs showed a good linear relationship with exchangeable forms of the metals in soils. A highly significant correlation was also found between total Ni in soils and the metal content of the twigs. No significant correlation was found between Zn concentrations in the soils and plants. Birch twigs are a good indicator (better than leaves) of Cu and Ni contamination of the Sudbury soils. The mobile forms of Cu and Ni and low pH seem to be the main factors that will control the success of revegetation. Strong variability of the soil metal mobility requires any reclamation effort be site-specific.  相似文献   

16.
Copper/zinc bioaccumulation and the effect of phytotoxicity on the growth of lettuce (Lactuca sativa L.) were studied in plastic vessels containing (i) non-contaminated soil, (ii) copper-contaminated soils at concentrations of 75.0 and 125.0 mg kg?1, (iii) zinc-contaminated soils at concentrations of 1200 and 2400 mg kg?1, and (iv) soil enriched with swine manure. Copper and zinc concentrations in lettuce leaves were determined by flame atomic absorption spectrometry during 42 days of growth. Copper concentrations from 0.92 to 13.06 mg kg?1 were found in lettuce leaves grown in copper-contaminated soils and zinc concentrations from 58.13 to 177.85 mg kg?1 were found in lettuce leaves grown in zinc-contaminated soils. Copper and zinc concentrations in lettuce leaves grown in swine manure-enriched soils ranged from 0.82 to 8.33 and 0.68 to 13.27 mg kg?1, respectively. Copper and zinc bioaccumulation caused a decrease in lettuce growth in metal-contaminated soils and an increase in phytotoxicity effects when compared to growth in non-contaminated and manure-enriched soils. These findings were confirmed by measuring leaf areas and biomasses. Copper was less toxic to lettuce than zinc due to the different concentrations in the soil. Lettuce growth and development was better in the swine manure-enriched soil than non-contaminated soil, which indicates that swine manure is a safe agricultural biofertilizer when used in appropriate amounts to avoid metal bioaccumulation in soil and plants.  相似文献   

17.
The establishment of a complementary grass cover on vineyard soils can promote sustainability of the affected environment. In this work, we used an acid vineyard soil with total Cu concentration 188 mg kg?1 to study the influence of pine bark amendment on Lolium perenne growth and Cu uptake. The results indicate that the pine bark amendment did not cause a significant increase in the mass of the shoots of Lolium perenne, but favored the root biomass: 0.034 g for control and 0.061 g for soil samples amended with 48 g kg?1 of pine bark. Moreover, the pine bark amendment decreased Cu concentration in both, shoots (50 mg kg?1 for control soil and 29 mg kg?1 for soil amended with 48 g kg?1 pine bark) and roots (250 mg kg?1 for control soil and 64 mg kg?1 for soil amended with 48 g kg?1 pine bark). The main factor responsible for these results was a significant decrease of the most mobile fractions of Cu in the soil. Those fractions were extracted using ammonium acetate, ammonium chloride, sodium salt of ethylene-diamine-tetraacetic acid (EDTA-Na), and diethylene-triamine-pentaacetic acid (DTPA).  相似文献   

18.
Surface and subsurface horizons of 16 representative sugarcane growing soils with varying soil properties in the eastern region of Thailand were collected to determine the potassium (K) fertility status and its availability by using the quantity/intensity relationship (potential buffering capacity of K (PBCk)). The results showed that most soils had a low K fertility status and lack of reserved K from K-bearing minerals. The PBCk values of the studied soils ranged from 3.75 to 168 cmol kg?1/(mol L?1)1/2, and the coarse-textured soil group showed much lower PBCk values; these results suggested a low capability of these soils to replenish K removal by plant uptake compared with that of the fine-textured soil group. The negative delta K (ΔK°) values of the coarse-textured soil group also indicated a large quantity of readily available K for plant uptake that easily leaches at the same time. The higher K activity ratio (ARke) of the coarse-textured soil group (>0.001 mol L?1)1/2) than that of the fine-textured soil group (<0.001 mol L?1)1/2) suggested that readily available K was desorbed from the non-specific sites of 1:1 clay minerals and specific sites of 2:1 clay minerals, respectively. The ΔK° value of the studied soils was more significantly correlated to K concentration in sugarcane stalks (R2 = 0.64) than that of readily available K content (R2 = 0.54). Therefore, the results of this study suggested that ΔK° represents a better parameter to estimate K availability in these soils compared to conventional ammonium acetate (NH4OAc)-extractable K content.  相似文献   

19.
Investigations were made on living strains of fungi in a bioremediation process of three metal (lead) contaminated soils. Three saprotrophic fungi (Aspergillus niger, Penicillium bilaiae, and a Penicillium sp.) were exposed to poor and rich nutrient conditions (no carbon availability or 0.11 M d-glucose, respectively) and metal stress (25 µM lead or contaminated soils) for 5 days. Exudation of low molecular weight organic acids was investigated as a response to the metal and nutrient conditions. Main organic acids identified were oxalic acid (A. niger) and citric acid (P. bilaiae). Exudation rates of oxalate decreased in response to lead exposure, while exudation rates of citrate were less affected. Total production under poor nutrient conditions was low, except for A. niger, for which no significant difference was found between the poor and rich control. Maximum exudation rates were 20 µmol oxalic acid g?1 biomass h?1 (A. niger) and 20 µmol citric acid g?1 biomass h?1 (P. bilaiae), in the presence of the contaminated soil, but only 5 µmol organic acids g?1 biomass h?1, in total, for the Penicillium sp. There was a significant mobilization of metals from the soils in the carbon rich treatments and maximum release of Pb was 12% from the soils after 5 days. This was not sufficient to bring down the remaining concentration to the target level 300 mg kg?1 from initial levels of 3,800, 1,600, and 370 mg kg?1in the three soils. Target levels for Ni, Zn, and Cu, were 120, 500, and 200 mg kg?1, respectively, and were prior to the bioremediation already below these concentrations (except for Cu Soil 1). However, maximum release of Ni, Zn, and Cu was 28%, 35%, and 90%, respectively. The release of metals was related to the production of chelating acids, but also to the pH-decrease. This illustrates the potential to use fungi exudates in bioremediation of contaminated soil. Nonetheless, the extent of the generation of organic acids is depending on several processes and mechanisms that need to be further investigated.  相似文献   

20.
Abstract

Speciation study of microelements in soils is useful to assess their retention and release by the soil to the plant. Laboratory and greenhouse investigations were conducted for five soils of different agro‐ecological zones (viz., Bhuna, Delhi, Cooch‐Behar, Gurgaon, and Pabra) with diverse physicochemical properties to study the distribution of zinc (Zn) among the soil fractions with respect to the availability of Zn species for uptake by rice plant. A sequential extraction procedure was used that fractionated total soil Zn into water‐soluble (WS), exchangeable (EX), specifically adsorbed (SA), acid‐soluble (AS), manganese (Mn)‐oxide‐occluded (Mn‐OX), organic‐matter‐occluded (OM), amorphous iron (Fe)‐oxide‐bound (AFe‐OX), crystalline Fe‐oxide‐bound (CFe‐OX), and residual (RES) forms. There was a wide variation in the magnitude of these fractions among the soils. The studies revealed that more than 90% of the total Zn content occurred in the relatively inactive clay lattice and other mineral‐bound form (RES) and that only a small fraction occurred in the forms of WS, EX, OM, AFe‐OX, and CFe‐OX. Rice (Oryza sativa L.) cultivars differ widely in their sensitivity to Zn deficiency. Results suggested that Zn in water‐soluble, organic complexes, exchange positions, and amorphous sesquioxides were the fractions (pools) that played a key role in the uptake of Zn by the rice varieties (viz., Pusa‐933‐87‐1‐11‐88‐1‐2‐1, Pusa‐44, Pusa‐834, Jaya, and Pusa‐677). Isotopic ally exchangeable Zn (labile Zn) was recorded higher in Typic Ustrochrept of Pabra soil, and uptake of Zn by rice cultivars was also higher in this soil. The kinetic parameters such as maximum influx at high concentrations (Imax) and nutrient concentration in solution where influx is one half of Imax (Km) behaved differentially with respect to varieties. The highest Imax value recorded was 9.2×10?7 µmol cm?2 s?1 at the 5 mg kg?1 Zn rate for Pusa‐933‐87‐1‐11‐88‐1‐2‐1, and the same was lowest for Pusa‐44, being 4.6×10?7 µmol cm?2 s?1 at the 5 mg kg?1 Zn rate. The Km value was highest for Pusa‐44 (2.1×10?4µmol cm?2 s?1) and lowest for Pusa‐933‐87‐1‐11‐88‐1‐2‐1 (1.20×10?4µmol cm?2 s?1). The availability of Zn to rice cultivars in Typic Ustrochrepts of Bhuna and Delhi soils, which are characterized by higher activation energy and entropy factor, was accompanied by breakage of bonds or by significant structural changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号