首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Selenium (Se) is an essential element for human and livestock with antioxidant and anticancer characteristics. Although Se is not an essential element for plants, it has been reported that it can improve plant growth. This experiment was conducted at the Isfahan University of Technology in winter 2010. The experiment was factorial based on a completely randomized design (CRD) with four replications. Se was added to nutrient solution in four concentrations 2, 4, and 6 mg/L sodium selenite (Na2SeO3). Root volume, fresh and dry weights of shoots and roots, number and weight of fruits, chlorophyll content, and photosynthesis traits [photosynthesis rate, stomata internal carbon dioxide (CO2) concentration, stomata conductance] were measured. Results showed that Se increased root dry weight. Fresh and dry weights of shoot increased in the 2 mg/L Se treatment and decreased at the higher level of Se. Chlorophyll content and photosynthesis rate were not affected by Se. Stomata internal CO2 concentration and stomata conductance decreased by Se addition. Overall, Se at 2 mg/L application rate was effective in some physiological characteristics of cucumber.  相似文献   

2.
Abstract

The influence of silicon (Si) (2.5 mM), sodium chloride (NaCl) (100 mM), and Si (2.5 mM) + NaCl (97.5 mM) supply on chlorophyll content, chlorophyll fluorescence, the concentration of malondialdehyde (MDA), H2O2 level, and activities of superoxide dismutase (SOD; E.C.1.15.1.1.), ascorbate peroxidase (APx; E.C.1.11.1.11.), catalase (CAT; E.C.1.11.1.6.), guaiacol peroxidase (G-POD; E.C.1.11.1.7.) enzymes, and protein content were studied in tomato (Lycopersicon esculentum Mill c.v.) leaves over 10-day and 27-day periods. The results indicated that silicon partially offset the negative impacts of NaCl stress with increased the tolerance of tomato plants to NaCl salinity by raising SOD and CAT activities, chlorophyll content, and photochemical efficiency of PSII. Salt stress decreased SOD and CAT activities and soluble protein content in the leaves. However, addition of silicon to the nutrient solution enhanced SOD and CAT activities and protein content in tomato leaves under salt stress. In contrast, salt stress slightly promoted APx activity and considerably increased H2O2 level and MDA concentration and Si addition slightly decreased APx activity and significantly reduced H2O2 level and MDA concentration in the leaves of salt-treated plants. G-POD activity was slightly decreased by addition of salt and Si. Enhanced activities of SOD and CAT by Si addition may protect the plant tissues from oxidative damage induced by salt, thus mitigating salt toxicity and improving the growth of tomato plants. These results confirm that the scavenging system forms the primary defense line in protecting oxidative damage under stress in crop plants.  相似文献   

3.
Abstract

For high plant growth and efficient production, manufacture of new nano-fertilizers is an important strategy to repair the nutrients shortage. Copper ferrite nanoparticles (CuFe2O4 NPs) were manufactured via co-precipitation method with the aim to understand the role of different concentration of them (0.0, 0.04, 0.2, 1, and 5?ppm) on growth, chlorophyll content and antioxidant enzymes activities of cucumber plants grown in hydroponic system. The prepared sample was studied by various mechanisms such as: X-ray diffraction (XRD), Infrared spectroscopy and vibrating sample magnetometer. XRD pattern implies the nanocrystalline nature of the synthesized sample, where the crystallite size is 30.7?nm. Exposure to CuFe2O4 NPs caused an increase in the fresh weight and protein content of cucumber plants. Also, superoxide dismutase and peroxidase activities of cucumber shoots and roots were significantly increased. The uptake of Fe and Cu by cucumber tissues was significantly enhanced by application of CuFe2O4 NPs. Abbreviations CCI chlorophyll content index

CuFe2O4 NPs copper ferrite nanoparticles

FW fresh weight

ICP inductively coupled plasma

IR infrared spectroscopy

O2˙ˉ superoxide anion;

POD peroxidase

ROS reactive oxygen species

SOD superoxide dismutase

TF translocation factor

VSM vibrating sample magnetometer

XRD X-ray diffraction

  相似文献   

4.
A stable and efficient Fe2O3/expanded perlite (Fe2O3-Ep) composite catalyst was synthesized by a simple hydrothermal method for degradation of refractory contaminants in heterogeneous photo-Fenton system. X-ray diffraction and FT-IR analyses confirmed the presence of the Fe2O3 in the synthesized catalyst. The catalytic activity of the Fe2O3-Ep catalyst was evaluated by the degradation of rhodamine B (RhB, 5 mg/L) and metronidazole (MET, 5 mg/L) in the presence of H2O2 under visible light irradiation. The Fe2O3-Ep catalyst exhibited high efficiency for degradation of RhB at a wide pH range from 2 to 10 and showed excellent catalytic property for decomposition of MET as well. The degradation ratio of RhB was achieved 99%, and the removal ratio of COD was 62% within 90 min at the best experimental conditions (0.5 g/L of Fe2O3-Ep catalyst, 2 mL/L of H2O2). Furthermore, iron leaching of the Fe2O3-Ep catalyst during the catalytic degradation reaction was negligible and the catalyst still exhibited high catalytic activity and stability after five cycles. These results show that the catalyst can be used as a highly efficient heterogeneous photo-Fenton catalyst for the degradation of non-biodegradable refractory pollutants in water.  相似文献   

5.
Applied-field Mössbauer spectra are reported for selected synthetic samples of α-Fe1-xAlxOOH, γ-Fe1-xAlxOOH, δ-FeOOH, α-(Fe1-xAlx)2O3 and γ-Fe2O3. Field strengths of up to 90 kOe were used at temperatures of mostly 4.2 K. The effects of the Al substitution and/or the crystallinity are discussed. Specific characteristics of the spectra are enlightened which might serve as complimentary sources of information for the characterization of soil oxides and oxyhydroxides. It is pointed out that several questions remain unanswered to date and that further systematic research is justified.  相似文献   

6.
Photosynthetic Response of Maize Plants Against Cadmium and Paraquat Impact   总被引:1,自引:0,他引:1  
The effects of cadmium (Cd) and/or paraquat (PQ) toxicity on photosynthesis in maize leaves were examined by measurement of gas exchange and chlorophyll content in hydroponically cultured plants. It was found that growth rate was distinctly influenced only by 100 µM Cd treatment. Chlorophyll a and chlorophyll b decreased along with the increase of Cd concentration, while PQ spraying, alone and combined with Cd, increased chlorophyll a content on the third and seventh experimental days. Generally, carotenoid content increased in response to Cd and PQ and reached the highest levels at 100 µM Cd. Rate of photosynthesis in maize decreased after Cd treatment. CO2 assimilation was approximately 60% reduced at 50 µM Cd and 70% reduced in the presence of 100 µM Cd. PQ toxicity was partly overcome after the third day of exposure. Transpiration and stomatal conductance in maize leaves decreased on the third day along with Cd concentration and PQ spraying, except for the 25-µM Cd-treated plants. On the tenth day, the 25-µM Cd-treated plants and those from PQ-treated variants showed an increase of transpiration and stomatal conductance. Maize exhibited an ability to accumulate Cd in high quantities, especially in the roots—over 4,500 mg Cd/kg dry weight.  相似文献   

7.
A sand culture experiment was carried out to study the effects of sulfur deprivation on heat stress tolerance of two cluster bean (Cymopsis tetragonoloba L. Taub) cultivars (GC-1 and Pusa Nau Bahar (PNB)). Three weeks old sulfur-starved and sulfur-supplemented plants were subjected to heat stress (45°C/35°C) treatment for 24 h. Total dry weight, chlorophyll content, Chlorophyll a:b ratio, electrolyte leakage, malondialdehyde (MDA) accumulation, H2O2 content, sugar, glucose-6-phosphate (G-6-P), fructose-6-phosphate (F-6-P), ascorbate and glutathione concentrations and antioxidant enzyme activity (superoxide dismutase (SOD) and catalase (CAT)) were monitored, at the end of the heat stress treatment. Heat stress enhanced and sulfur starvation depleted the contents of sugar metabolites, but the accumulation of sugar, G-6-P and F-6-P were not related with heat stress tolerance. Antioxidant enzyme activities of SOD and CAT were influenced significantly more by sulfur starvation than heat stress. The results showed that under heat stress, the addition of sulfur helps to mitigate the oxidative damage in both the cultivars. However, GC-1 was more heat tolerant as it was characterized by significantly higher total dry weight, chlorophyll content, ascorbate and glutathione content and lower H2O2, MDA, electrolyte leakage than PNB.  相似文献   

8.
The contamination of drinking water with arsenic has been a problem in a lot of countries around the world because of its toxicological and carcinogenic effects on human health. Porous materials modified with Fe3O4 nanoparticles (Fe3O4 NPs) represent convenient removers for that contaminant. A co-precipitation method of Fe(III) and Fe(II) in alkaline media was applied to obtain Fe3O4 NPs. In a first stage, single nanoparticles were synthesized and stabilized with carboxylic acids. A characterization with attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, and X-ray diffraction (XRD) confirms a magnetite-type structure. Moreover, transmission electron microscopy (TEM) and calculations from XRD data using Scherrer’s equation indicate an average particle size of 13 nm and an average crystallite size of 10 nm, both independent of the stabilizer used. Then, the co-precipitation method studied was applied to modify kaolin, bentonite, diatomite, and silica and thus prepare magnetic composites having support-magnetite weight ratios of 2:1. Among them, silica-modified material presented the best hydraulic characteristics, an important aspect for large-scale applications such as removal under gravity. This composite has the capacity to remove up to 80 and 70% for initial concentrations of 25 and 50 μg/L, respectively, representing a convenient remover for processes developed in subsequent stages or in continuous flow.  相似文献   

9.
Different from direct application of free nanoparticles (NPs) in water treatment, a composite material is used to reduce the release and potential toxic effects of NPs with maintained adsorption capacity and kinetics. Novel monolithic composites with TiO2 NPs incorporated into the walls of macroporous cryogels were synthesized and evaluated for material characteristics and their efficiency for removal of Pb(II) from aqueous solution in batch test and continuous mode. The uniformly distributed 6% TiO2-cryogel is shown to be optimal for minimizing TiO2 NP losses while maximizing Pb(II) removal. Under (25.0 ± 0.1) °C with the initial Pb(II) concentration of 10 mg/l, TiO2-cryogels exhibit excellent adsorption characteristic for Pb(II) removal with adsorption capacity up to 23.27 mg/g TiO2, which is even a little higher than that of TiO2 NPs (21.58 mg/g TiO2), and the results fit well with Langmuir–Freundlich isotherm. Both adsorbents work well in higher pH range with the highest removal rate at pH 6 for TiO2-cryogel, and the adsorption mechanism might be strong chemical interaction. Pseudo-second-order process can better describe the adsorption process rather than pseudo-first-order for both adsorbents. The external mass transfer process of Pb(II) on TiO2 NPs is much faster than that on TiO2-cryogel, and the ultimate equilibrium time is about the same (3 h) on both adsorbents. The synthesized composites could also withstand a continuous treatment, and the effect of competing and co-existing constituents such as Cd2+, SO4 2? and dissolved organic matter (DOM) is almost negligible. The composite design with small particles embedded into cryogels is proved to successfully keep the adsorption activity of TiO2 NPs and prevent them from releasing into the environment in engineering practice.  相似文献   

10.
The degradation and transformation of p-nitrophenol (PNP) was evaluated with as-prepared iron oxides (γ-FeOOH, Fe3O4, and α-Fe2O3) as catalyst. Results showed that α-Fe2O3 exhibited higher catalytic activity than the other two samples for reduction transformation and oxidative degradation of PNP. α-Fe2O3 showed higher surface-bound Fe(II) contents in the presence of oxalic acid and stronger affinity to PNP, leading to an increase in PNP reductive transformation. And α-Fe2O3 could effectively adsorb visible light and hinder the recombination of charge carriers, resulting in higher oxidative degradation activity. p-Aminophenol (PAP), as the main reduction transformation product of PNP, could be removed further by oxidative degradation in the reaction system itself. A possible mechanism was suggested for the comprehensive effect of PNP degradation during the reaction process.  相似文献   

11.
Abstract

The effect of five rock phosphates with different solubility (from Algeria, North Florida, North Carolina, Senegal, and Morocco) and that of single superphosphate (SSP) alone or with lime was investigated on the root colonization of red clover with indigenous arbuscular mycorrhizal fungi (AMF). In a pot experiment, the phosphorus (P) sources were applied at four rates (0, 100, 400, and 1600 mg total P2O5 kg?1 dry soil) to an acidic sandy soil (Nyírlugos) and to an acidic clay loam soil (Ragály). The arbuscule content of the roots was more sensitive to various rock phosphates than the infection frequency. No mycorrhizal colonization of roots was observed in the Nyírlugos soil at the 1600 mg P2O5 kg?1 level of SSP or in either soil at the 1600 mg P2O5 kg?1 level of SSP+lime, indicating that the mycorrhizal dependency of the host was eliminated by the highest soluble P concentrations in the soil.  相似文献   

12.
Boron (B) is one of the essential nutrients for the growth of plants, but its high concentrations are toxic for plants. Thus, B toxicity is a big challenge in crop cultivation. Nitric oxide (NO) is a small signaling molecule that has cytoprotective roles in plants. We investigated whether exogenous sodium nitroprusside (SNP), which is a NO donor, may succeed to alleviate B-induced toxicity in wheat cultivars. Seedlings were grown for 10 days in a growth chamber at 25°C with 16 hr light–8 hr dark photo cycle. After high B application, the effects of SNP on growth parameters; electrolyte leakage (EL); changes in reactive oxygen species [contents of hydrogen peroxide (H2O2), malondialdehyde (MDA), and proline]; the activities of antioxidant enzymes [glutathione peroxidase (GSHPx), glutathione reductase (GR), and glutathione S-transferase (GST)] and nitrate reductase (NR); and low molecular weight organic acid (LMWOAs) contents and also chlorophyll and total carotenoid contents were investigated in both shoots and roots of two different wheat cultivars. All experiments were carried out in triplicate. 0.2 mM SNP application ameliorated the chlorophyll and total carotenoid contents, and growth parameters such as shoot length, root length, and fresh weight in both wheat cultivars exposed to B stress. SNP reduced the B-induced lipid peroxidation, EL, and proline and H2O2 content in wheat cultivars. SNP application also increased the activities of NR and antioxidant enzymes, including GSHPx, GR, and GST in wheat cultivars exposed to B toxicity. All of the tested LMWOAs including succinic, propionic, butyric, oxalic, formic, malic, malonic, and benzoic acids were increased by SNP treatment in the shoots and roots of both wheat cultivars exposed to B toxicity. In conclusion, results obtained from this study have demonstrated that interactive effects of SNP with B considerably reduced the toxic effects of B in wheat cultivars.  相似文献   

13.
Two hydroponic culture experiments were conducted to investigate cadmium (Cd)‐induced oxidative stress in winter wheat (Triticum aestivum L.) seedlings and the effects of L‐Galactono‐1, 4‐lactone (GalL), the biosynthetic precursor of the antioxidant ascorbate (AsA), on the oxidative stress induced by Cd. In experiment 1, with application of Cd (0, 10, 25, 50 µM) in nutrient solution, hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels as well as membrane permeability in both shoots and roots were significantly increased, indicating Cd‐induced oxidative stress and lipid peroxidation as well as plasma‐membrane damage in the plants. In experiment 2, H2O2 levels in plants exposed to Cd were significantly reduced by the addition of GalL (25 mM), associated with increased activities of peroxidase (POD), indicating that GalL alleviated the oxidative stress induced by Cd. Unexpectedly, however, the MDA levels were not reduced by the addition of GalL. Does Cd also induce lipid peroxidation directly besides via formation of reactive oxygen species (ROS)? This needs further study.  相似文献   

14.
Different concentrations of selenium (Se6+) were added in order to detect the rules of Se absorption, transportation, and distribution in seedlings of Ziyang xiangcheng. After two months of treatments, seedling growth parameters, Se concentrations in different parts, and rhizosphere microbial counts were detected. We found 1–8 mg Se6+/L treatments promoted plant growth, especially at 2 mg/L. The seedling Se concentrations were also improved with the increase of Se dose. Both Se concentrations and total Se content were the largest in leaves, followed by roots and stems. The counts of bacteria and fungi were maximized at the dose of 2 mg Se6+/L. With the increase of Se dose, Se transaction factors were reduced. Moreover, bioconcentration factors (BCFs) viz BCFroot/soil and BCFstem/soil were maximized at the dose of 2 mg/L Se6+. These results indicated that the optimized growth Se content is at the dose of 2 mg Se6+/L.  相似文献   

15.
One aluminum (Al)-sensitive (B-73) and two Al-tolerant (F-2 and L-2039) maize genotypes were subjected to Al stress (100 μM Al) under two nitrogen (N) treatments [13.2 mM nitrate (NO3?) and 8.3 mM NO3? + 4.9 mM ammonium (NH4+)]. Growth parameters, chlorophyll, root N and NO3? contents, root nicotinamide adenine dinucleotide (NADH-) and nicotinamide adenine dinucleotide phosphate (NADPH)-nitrate reductase, glutamine synthetase, and glutamate dehydrogenase activities were determined. Aluminum significantly decreased growth and chlorophyll content in Al-sensitive genotype. Nitrate accumulation in roots was increased by Al in tolerant plants. In the sensitive genotype, Al suppressed all enzymes in NO3? plants, while in NO3?/NH4+ plants the suppression was less severe, and NADPH-nitrate reductase was even stimulated. In tolerant NO3?plants, glutamate dehydrogenase was stimulated in F-2 and glutamine synthetase suppressed in L-2039 genotype. In tolerant NO3?/NH4+- plants, all enzymes were stimulated by Al, which may be attributed to their participation in defense mechanisms.  相似文献   

16.
This study was conducted to evaluate the roles of glycine betaine (GB) in mitigating deleterious effect of salt stress on lettuce. Lettuce plants were subjected to two salinity (0 and 100 mmol l?1 NaCl) and four GB levels (0, 5, 10, 25 mmol l?1). Salinity resulted in a remarkable decrease in growth parameters, relative leaf water content and stomatal conductance. Plants subjected to salt stress exhibited an increase in membrane permeability (MP), lipid peroxidation (MDA), leaf chlorophyll reading value, H2O2 and sugar content. Exogenous foliar applications of GB reduced MP, MDA and H2O2 content in salt-stressed lettuce plants. Salt stress increased Na and generally decreased other nutrient elements. GB reduced Na accumulation, but significantly increased other element contents under salinity conditions. The study showed that gibberellic acid (GA) and salicylic acid (SA) content in salt-stressed plants were lower than those of nonstressed plants. However, salinity conditions generally increased the abscisic acid content. GB treatments elevated the concentrations of GA, SA and indole acetic acid (IAA) at especially 10 and 25 mmol l?1 GB under salt stress conditions. It could be concluded that exogenous GB applications could ameliorate the harmful effects of salt stress in lettuce.  相似文献   

17.
The aim of this article is the determination of uranium accumulation in plants tissue in shoots and roots of corn—maize (Zea mays), grown on two types of soils, pseudogley and chernozem, together with its phytotoxic effect on the plant growth and development. The soils was contaminated with different rates (10 to 1,000 mg U(VI) kg?1) of uranyl nitrate (UO2(NO3)2·6H2O). Vegetative tests performed with maize indicated uranium phytotoxic effect on plant height, yield, and germination of seeds. This effect was stronger on the plants grown on pseudogley in comparison with those grown on chernozem. Soil properties determined the tolerance and accumulation of U in plants. A linear dependence between the content of uranium in soil and in plants tissue, including maximal content of 1,000 mg U?kg?1, indicates that maize could be used for phytoremediation of uranium-contaminated soils.  相似文献   

18.
The aim of this research was to study the role of nitric oxide (NO) in alleviating iron deficiency induced chlorosis of peanut (Arachis hypogaea L.). For this study, sodium nitroprusside (SNP) was used to supply NO for hydroponic peanut plants. After 18 days, the peanut seedlings growing without iron exhibited significant leaf interveinal chlorosis, and this iron-deficiency induced symptom was completely prevented by NO. An increased content of chlorophyll and active iron was observed in NO-treated young leaves, suggesting an improvement of iron availability in plants. In addition, the improved rhizosphere acidification and increased secretion of organic acids by root in NO-treated plants suggesting that NO is effective in modulating iron uptake and transport inside the peanut plants. Furthermore, NO treatment alleviated the increased accumulation of superoxide anion (O2??) and malondialdehyde (MDA), and modulated the antioxidant enzymes. However, the SNP with a prior sunlight treatment that does not release NO had no significant effect on the chlorophyll levels in iron-deficient plants. Therefore, these results support a physiological action of NO on the availability, uptake and transport of iron in the plant.  相似文献   

19.
Fifteen citrus varieties (four varieties of limes/lemons, three varieties of mandarins, and eight varieties of sweet oranges) were tested in a row-to-row multireplicate field experiment on Typic Rhodustalf. Pre-bearing growth behavior of different citrus varieties showed a significant difference (P ≤ 0.05) with respect to canopy volume (1.221 m3 with Bearss lemon and 0.220 m3 with Cara Cara Navel) governed by changes in different rhizospheric properties (soil-available nutrients, soil microbial population, and soil microbial biomass nutrients). Response in canopy volume was more governed by soil microbial biomass nutrients [carbon (Cmic), nitrogen (Nmic), and phosphorus (Pmic)] followed soil microbial population and soil available nutrients in decreasing order. Indices developed through diagnosis and recommendation integrated system further helped in partitioning interrhizosphere nutrient deficiencies. These studies suggested that (i) biological properties of rhizosphere soils of limes and lemons were of much superior quality and (ii) rhizospheric biological properties are transformed according to plant species and variety.  相似文献   

20.
The importance of cyanobacterial polysaccharides of biological soil crusts in sand surface stabilization and soil nutrient retention has been long acknowledged. However, the role of cyanobacterial polysaccharides as a source of nutrition to vascular plants in crusted areas is ignored. In this study, the chemical composition of the polysaccharide synthesized by Phormidium tenue and the effects of its presence on seed germination and seedling metabolism of the shrub Caragana korshinskii were investigated. The crude polysaccharide synthesized by P. tenue was composed of 15 % protein and 58 % carbohydrate and showed the presence of 12 different types of monosaccharides. The addition of the polysaccharide significantly (P?<?0.05) increased seed germination and metabolic activity of the seedling of the shrub C. korshinskii. The optimal concentration for vigor index, root length, root vigor, and total N and P contents was 10 mg/L polysaccharide; for the germination rate, nitrate reductase activity, carbohydrate content, chlorophyll, and Mg2+ content, the optimal was 60 mg/L polysaccharide, while for K+ and Ca2+ contents, photosynthetic efficiency and superoxide dismutase activity was 120 mg/L. The presence of the polysaccharide increased seed germination rate, ion uptake, and photosynthetic activity by affecting the electron transport chain and decreased oxidative damage by eliminating reactive oxygen species in C. korshinskii, thus promoting shrub performance in crusted desert areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号