首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the long-term effects of ultrafine tourmaline particles (UTPs) on the removal of nitrogen in wastewater, activated sludge viability and microbial population dynamics at low temperatures were investigated. Although there was no significant effect on the effluent concentrations of nitrogen after long-term exposure to 1 g/L UTPs at low temperatures, the oxidation rate of NH4+-N and the accumulation rate of NO2?-N increased and the formation rate of NO3?-N decreased during the aerobic phase of sequencing batch reactors. However, long-term exposure to 1 g/L UTPs did not significantly affect the microbial community richness and the community diversity of activated sludge at low temperatures. The mechanism of tourmaline was studied by assessing the dominant functional species involved in biological nitrogen removal from wastewater. It was found that 1 g/L UTPs increased the removal rate of nitrogen by reducing the relative abundance of nitrite oxidizing bacteria and increasing the relative abundance of ammonia oxidizing bacteria after long-term operation at low temperatures.  相似文献   

2.
Abstract

A sandy soil was amended with various rates (20 – 320 g air-dry weight basis of the amendments per kg of air-dry soil) of chicken manure (CM), sewage sludge (SS), and incinerated sewage sludge (ISS) and incubated for 100 days in a greenhouse at 15% (wt/wt) soil water content. At the beginning of incubation, NH4-N concentrations varied from 50 – 280 mg kg?1 in the CM amended soil with negligible amounts of NO3-N. Subsequently, the concentration of NH4-N decreased while that of NO3-N increased rapidly. In soil amended with SS at 20 – 80 g kg?1 rates, the NO3-N concentration increased sharply during the first 20 days, followed by a slow rate of increase over the rest of the incubation period. However, at a 160 g kg?1 SS rate, there were three distinct phases of NO3-N release which lasted for160 days. In the ISS amended soil, the nitrification process was completed during the initial 30 days, and the concentrations of NH4-N and NO3-N were lower than those for the other treatments. The mineralized N across different rates accounted for 20 – 36%, 16 – 40%, and 26 – 50% of the total N applied as CM, SS, and ISS, respectively.  相似文献   

3.
Simultaneous power generation and fecal wastewater treatment were investigated using a combined ABR-MFC-MEC system (anaerobic baffled reactor-microbial fuel cell-microbial electrolysis cell). The installation of multi-stage baffles can benefit retaining the suspended solids in the system and help separate the hydrolysis-acidification and the methanogen processes. The efficiencies of the nitrification-denitrification process were improved because of the weak current generation by coupling the microbial electrochemical device (MFC-MEC) with the ABR unit. Maximum removal rates for chemical oxygen demand (COD) and ammonia nitrogen (NH4 +-N) were 1.35 ± 0.05 kg COD/m3/day and 85.0 ± 0.4 g NH4 +-N/m3/day, respectively, while 45% of methane (CH4), 9% of carbon dioxide (CO2), and 45% of nitrogen gas (N2) contents in volume ratio were found in the collected gas phase. An average surplus output voltage of 452.5 ± 10.5 mV could be achieved from the combined system, when the initial COD concentration was 1500.0 ± 20.0 mg/L and the initial NH4 +-N concentration was 110.0 ± 5.0 mg/L, while the effluent COD could reach 50.0 mg/L with an HRT of 48 h. The combined process has the potential to treat fecal wastewater efficiently with nearly zero energy input and a fair bio-fuel production.  相似文献   

4.
Swine lagoon sludge is commonly applied to soil as a source of nitrogen (N) for crop production but the fate of applied N not recovered from the soil by the receiver crop has received little attention. The objectives of this study were to (1) assess the yield and N accumulation responses of corn (Zea mays L.) and wheat (Triticum aestivum) to different levels of N applied as swine lagoon sludge, (2) quantify recovery of residual N accumulation by the second and third crops after sludge application, and (3) evaluate the effect of different sludge N rates on nitrate (NO3-N) concentrations in the soil. Sludge N trials were conducted with wheat on two swine farms and with corn on one swine farm in the coastal plain of North Carolina. Agronomic optimum N rates for wheat grown at two locations was 360 kg total sludge N ha?1 and the optimum N rate for corn at one location was 327 kg total sludge N ha?1. Residual N recovered by subsequent wheat and corn crops following the corn crop that received lagoon sludge was 3 and 12 kg N ha?1, respectively, on a whole-plant basis and 2 and 10 kg N ha?1, respectively, on a grain basis at the agronomic optimum N rate for corn (327 kg sludge N ha?1). From the 327 kg ha?1 of sludge N applied to corn, 249 kg N ha?1 were not recovered after harvest of three crops for grain. Accumulation in recalcitrant soil organic N pools, ammonia (NH3) volatilization during sludge application, return of N in stover/straw to the soil, and leaching of NO3 from the root zone probably account for much of the nonutilized N. At the agronomic sludge N rate for corn (327 kg N ha?1), downward movement of NO3-N through the soil was similar to that for the 168 kg N ha?1 urea ammonium nitrate (UAN) treatment. Thus, potential N pollution of groundwater by land application of lagoon sludge would not exceed that caused by UAN application.  相似文献   

5.
Abstract

The effects of steam sterilization (SS), methyl bromide (MeBr) fumigation and chloropicrin (CP) fumigation on soil N dynamics and microbial properties were evaluated in a pot experiment. All disinfection treatments increased the NH+ 4-N level and inhibited nitrification. The additional NH+ 4-N in the CP treatment probably originated from the decomposition of microbial debris by surviving microbes, while that in the SS treatment was attributable to deamination processes of soil organic N occurring in a less labile fraction in addition to the decomposition of microbial debris. The MeBr fumigation increased the level of NH+ 4-N without changing the soil microbial biomass. Based on the determinations of soil microbial biomass, substrate utilization activity (Biolog method) and microbial community structure (phospholipid fatty acid method), the effects of the MeBr, CP and SS treatments on the microbial community were compared. The MeBr fumigation had relatively mild and short-term effects on microbial biomass and activity, but altered the community structure drastically by promoting the growth of gram-positive bacteria. The CP fumigation had large and long-term impacts on microbial biomass and activity; the community structure remained unaffected except for the gram-negative bacteria. Steam sterilization had severe and persistent effects on all parameters. The severity of the effects decreased in the order SS ≥ CP > MeBr.  相似文献   

6.
The aim of this study was to evaluate the sustainability of an agro-industry sludge as a nitrogen (N) fertilizer in perennial crops by assessing its dynamics of release of: 1) N as ammonium (NH4+)- and nitrate (NO3?)-N, and 2) carbon as soil respiration. In incubation assay, application of agro-industry sludge promoted the maximum NH4+-N concentration (50 mg kg?1) 2 h after application, then it decreased with time until day 26. NO3?-N increased, reaching the maximum between day 60 and day 100, according to a second degree function. Agro-industry sludge showed a slower release of NO3?-N compared with urea. Soil basal respiration and cumulative amount of carbon dioxide were higher in sludge from day 71 on. In field, soil NO3?-N increased after fertilization treatments and was higher in Calcari Stagnic Cambisols soil. Sludge showed a potential lower environment impact in terms of mineral N release, than urea.  相似文献   

7.
A laboratory mesocosm experiment was performed to study the effects of copper-enriched sewage sludge application on a mesofauna community. For 12 weeks, characteristics and changes in this defined and artificial mesofauna community structure were monitored as well as the dynamics of leaf litter decomposition. The mesofauna community comprised six species of Collembola (Folsomia fimetaria, Isotomurus prasinus, Lepidocyrtus cyaneus, Mesaphorura macrochaeta, Parisotoma notabilis, Protaphorura armata), two species of acari Oribatida (Achipteria coleoptrata, Adoristes sp.), one species of acari Gamasida (Hypoaspis aculeifer) and one species of enchytraeid (Enchytraeus crypticus). Three treatments included the addition of 22 g dry weight (DW) sludge spiked with 0, 200 and 1,000 mg Cu kg?1 DW sludge in each mesocosm, and one treatment had 66 g DW sludge spiked with 1,000 mg Cu kg?1 DW sludge added in each mesocosm. Copper, complexed with sludge due to a favourable pH, had no effect on community and litter parameters when added to low amount of sludge. In contrast, tripling the sludge dose in addition to a high dose of Cu changed in time the sludge and leaf chemical composition as well as mesofauna community structure. Responses of the mesofauna to this treatment differed between species. The abundance of species such as I. prasinus, L. cyaneus, M. macrochaeta and P. notabilis decreased, whereas the abundance of H. aculeifer increased and became dominant.  相似文献   

8.
A strengthened constructed rapid infiltration (SCRI) system is a sewage treatment system derived from a constructed rapid infiltration (CRI) system. The SCRI tank structure primarily includes saturated and non-saturated layers. The degradation of the chemical oxygen demand (COD) and the conversion of ammonia nitrogen (NH4 +-N) are primarily performed in a non-saturated layer. To study the COD and NH4 +-N removal process in a non-saturated layer, two organic glass columns with a radius of 2.5 cm and a height of 70 cm were loaded with layers of soil from the Shunyi district of Beijing. The primary goal of this research is to quantify the removal effect factors and the relationship of the COD and NH4 +-N in the non-saturated layer. The SCRI system functioned successfully under a wetting-drying ratio of 1:5 with hydraulic loading at 1.0 m3/ (m2·d) for over 2 months. Our results show that the removal rate of NH4 +-N is approximately 69.11%, and the removal efficiency of COD is approximately 90.46%. The removal of COD is only slightly affected by pH, while the removal of NH4 +-N is greatly influenced by pH.  相似文献   

9.
几种植物去除污染水体中养分效果研究   总被引:6,自引:0,他引:6  
对城市尾水和人工模拟富营养化水体进行了静态培养试验.通过比较不同植物对城市尾水中氮、磷去除效果,以及它们在不同磷浓度条件下对不同形态氮素去除效果研究,目的在于筛选出适合治理富养分污染水体的植物品种.研究结果表明,空心菜(Ipomiea aquatica)、酸模(Rumex acetosa)、莎草(Cyperus glomeratus)3种植物都能很好地吸收尾水中的营养物质,且生长状况良好.经3种植物处理的城市尾水,其氮、磷浓度随水培时间的增加而降低.莎草、酸模对污水中TN的去除率达90%以上,其中莎草最高,达93.4%;空心菜对全磷的去除率最高达76.9%.NH_4~+-N在处理前期变化显著,且莎草的净化效果最好达94.4%;污水中NO_3~--N含量随着水培时间的增加而逐渐下降,但在试验后期NO_3~--N又有所增加.酸模去除NO_3~--N效果最好,达65.4%.另外3种植物对NH4+-N和NO_3~--N都具有一定的吸收作用,并且优先吸收NH_4~+-N.且从对于NH_4~+-N和NO_3~--N净化效果看,莎草>酸模>空心菜.  相似文献   

10.
Abstract

In this paper, we proposed a new approach for on-site colorimetric analysis of ferrous ions (Fe2+) and ammonium-nitrogen (NH4 +-N) using a soil color meter as an alternative method to conventional spectrophotometry. The soil color meter we used can express solution color numerically on the basis of L*a*b* color space. After coloring of water by the 1, 10 phenanthroline method and the Indophenol blue method, the color of solution was measured by the soil color meter. A linear relationship between Fe2+ and a* or b* values, and systematic change of NH4 +-N with L* value, enable us to make a calibration curve. The Fe2+ and NH4 +-N concentrations in groundwater samples (Fe2+: 0.3–1.3 mg L?1; NH4 +-N: 0.02–0.62 mg L?1) determined by the proposed method agreed well with those determined by conventional spectrophotometry with the difference being ± 0.05 mg L?1 and ± 0.02 mg L?1, respectively. Since a similar apparatus is widely used in the soil science field, this technique would facilitate field surveys.  相似文献   

11.

Purpose

Treated and processed sewage sludges (biosolids) generated during the treatment of wastewater usually contain substantial concentrations of nutrients, especially phosphorus, which is essential for plant growth. Sewage sludge therefore can be used as an alternative fertiliser in agriculture. But since sewage sludge could also contain pollutants, analysis and ecotoxicological tests on affected soil and stream water organisms are necessary in order to guarantee its harmless use.

Materials and methods

Three test species were chosen to cover the environmental compartments, water, sediment and soil. The following test species and parameters were applied to evaluate the acute effects of three sewage sludge samples: Lemna minor (growth inhibition, discolouration and colony breakup), Gammarus fossarum (mortality, behaviour) and Eisenia fetida (avoidance behaviour). Chemical assessment included nutrients, organic pollutants and heavy metals.

Results and discussion

The assessment of a non-dewatered sludge (S1) sample resulted in an inhibition of growth of L. minor starting from 0.6 g total solid (TS)?l?1 after 7 days (EC50 1.2 g TS l?1). G. fossarum displayed significantly decreased movement activity at 0.5 and 1.2 g TS l?1 sludge concentration during an exposure time of 2 days, leading to decreased survival after 4 days of exposure in 0.5 g TS l?1 (LC50 0.5 g TS l?1). After 2 days, E. fetida exhibited an increased avoidance behaviour of contaminated soil from 0.2 g TS kg?1 sewage sludge (EC50 0.4 g TS kg?1). The dewatered sludge samples (S2 and S3) had a lower toxic effect on the test organisms. G. fossarum was the most sensitive test species in the applied test setups. The realistic application amounts of the tested sewage sludge samples of approximately 6.0 g TS kg?1 (maximum allowed application amount of sewage sludge) and approximately 3 g TS kg?1 (maximum agronomical relevant application amount) in worst case studies are higher than the analysed EC50/LC50 values of S1 and of the LC50 (G. fossarum) of S2 and S3.

Conclusions

All three tested sewage sludge samples have to be classified as toxic at high concentration levels under laboratory conditions. Realistic output quantities of S1 will negatively influence soil invertebrates and freshwater organisms (plants and crustacean), whereas the dewatered sludge samples will most likely not have any acute toxic effect on the test organisms in the field. Test with environmental samples should be conducted in order to support this hypothesis.
  相似文献   

12.
Hydroponics culture generates large amounts of wastewater that are highly concentrated in nitrate and phosphorus but contains almost no organic carbon. Constructed wetlands (CWs) have been proposed to treat this type of effluent, but little is known about the performance of these systems in treating hydroponic wastewater. In addition, obtaining satisfactory winter performances from CWs operated in cold climates remains a challenge, as biological pathways are often slowed down or inhibited. The main objective of this study was to assess the effect of plant species (Typha sp., Phragmites australis, and Phalaris arundinacea) and the addition of organic carbon on nutrient removal in winter. The experimental setup consisted of 16 subsurface flow CW mesocosms (1 m2, HRT of 3 days) fed with 30 L?d1 of synthetic hydroponics wastewater, with half of the mesocosms fed with an additional source of organic carbon (sucrose). Carbon addition had a significant impact on nitrate and phosphate removal, with removal means of 4.9 g m-2?d-1 of NO3-N and 0.5 g m-2 d-1 of PO4-P. Planted mesocosms were generally more efficient than unplanted controls. Furthermore, we found significant differences among plant treatments for NO3-N (highest removal with P. arundinacea) and COD (highest removal with P. australis/Typha sp.). Overall, planted wetlands with added organic carbon represent the best combination to treat hydroponics wastewater during the winter.  相似文献   

13.
Seven experimental pilot-scale subsurface vertical-flow constructed wetlands were designed to assess the effect of plants [Typha latifolia L. (cattail)], intermittent artificial aeration and the use of polyhedron hollow polypropylene balls (PHPB) as part of the wetland substrate on nutrient removal from eutrophic Jinhe River water in Tianjin, China. During the entire running period, observations indicated that plants played a negligible role in chemical oxygen demand (COD) removal but significantly enhanced ammonia–nitrogen (NH4–N), nitrate–nitrogen (NO3–N) total nitrogen (TN), soluble reactive phosphorus (SRP) and total phosphorus (TP) removal. The introduction of intermittent artificial aeration and the presence of PHPB could both improve COD, NH4–N, TN, SRP and TP removal. Furthermore, aerated wetlands containing PHPB performed best; the following improvements were noted: 10.38 g COD/m2 day, 1.34 g NH4–N/m2 day, 1.04 g TN/m2 day, 0.07 g SRP/m2 day and 0.07 g TP/m2 day removal, if compared to non-aerated wetlands without PHPB being presented.  相似文献   

14.
Understanding the temporal distribution of NO3-N leaching losses from subsurface drained ‘tile’ fields as a function of climate and management practices can help develop strategies for its mitigation. A field study was conducted from 1999 through 2003 to investigate effects of the most vulnerable application of pig manure (fall application and chisel plow), safe application of pig manure (spring application and no-tillage) and common application of artificial nitrogen (UAN spring application and chisel plow) on NO3-N leaching losses to subsurface drainage water beneath corn (Zea mays L.)–soybean (Glycine max L.) rotation systems as a randomized complete block design. The N application rates averaged over five years ranged from 166 kg-N ha?1 for spring applied manure to 170 kg-N ha?1 for UAN and 172 kg-N ha?1 for fall applied manure. Tillage and nitrogen source effects on tile flow and NO3-N leaching losses were not significant (P?<?0.05). Fall applied manure with CP resulted in significantly greater corn grain yield (10.8 vs 10.4 Mg ha?1) compared with the spring manure-NT system. Corn plots with the spring applied manure-NT system gave relatively lower flow weighted NO3-N concentration of 13.2 mg l?1 in comparison to corn plots with fall manure-CP (21.6 mg l?1) and UAN-CP systems (15.9 mg l?1). Averaged across five years, about 60% of tile flow and NO3-N leaching losses exited the fields during March through May. Growing season precipitation and cycles of wet and dry years primarily controlled NO3-N leaching losses from tile drained fields. These results suggest that spring applied manure has potential to reduce NO3-N concentrations in subsurface drainage water and also strategies need to be developed to reduce early spring NO3-N leaching losses.  相似文献   

15.
Many farmlands are periodically flooded or ponded by excessive precipitation resulting in changes to soil chemical and biochemical properties. In this study, one set (eight treatments with four replications) of field-moist surface soils (0–15 cm) and their air-dried counterparts obtained from a long-term liming experiment were incubated at 30 °C under waterlogged conditions for 10 days, and the amounts of net NH4 +-N released (soluble and exchangeable) were determined after extraction with 4 M KCl. Another set of three surface soils were used to evaluate the effect of six heavy metals on the NH4 +-N release under waterlogged conditions. Results showed that increasing the liming rate from 0 to 17,930 kg ha?1 effective calcium carbonate equivalent increased the average soil pH from 4.98 to 7.06, averages of the amounts of NH4 +-N released ranged from 1.6 to 5.2 mg N kg?1 field-moist soil, and the corresponding amounts released in air-dried soils ranged from 18.9 to 32.9 mg N kg?1 soil. This increase of the amount NH4 +-N released in air-dried soil samples is presumably due to a slaking effect. At 5 mmol kg?1 soil, all six heavy metals inhibited the NH4 +-N released. The relative effectiveness of the heavy metals in inhibition of the NH4 +-N released varied among the three soils. Lead(II) was the most effective inhibitor of NH 4 +-N release in Clarion and Harps soils and Cd(II) in Harps soil. Cobalt(II), Cu(II), and Cd(II) were the least effective inhibitors of NH4 +-N release in Clarion, Harps, and Okoboji soils, respectively.  相似文献   

16.
Ong  S. L.  Liu  Y.  Lee  L. Y.  Hu  J. Y.  Ng  W. J. 《Water, air, and soil pollution》2004,157(1-4):245-256
A lab-scale novel biofilm reactor system, Ultra-Compact Biofilm Reactor (UCBR), was studied to investigate its performance and operational characteristics for domestic sewage treatment. The reactor was operated at four different hydraulic retention times, namely, 90, 60, 30 and 15 min. The operating ranges of volumetric loading rates in terms of COD, BOD5, NH+ 4-N and TKN were 5.6-62.1 kg COD/m3 d, 2.6-32.5 BOD5/m3 d, 0.6-3.2 kg NH+ 4-N/m3 d and 0.82-6.2 kg TKN/m3 d, respectively. The COD, BOD5 and NH+ 4-N removal efficiencies at 90-min hydraulic retention time (HRT) and 60-min HRT could exceed 80%, 90% and 99%, respectively. The corresponding maximum biomass concentrations were 12.0 g/L and 15.0 g/L at 90-min HRT and 60-min HRT, respectively. At 30-min HRT, the biomass concentration increased to a maximum of 24.0 g/L. However, COD and BOD5 removal efficiencies decreased to 75% and 80%, respectively, while the NH+ 4-N nitrification efficiency decreased to only 25% to 30%. These observations suggested that high biomass concentration alone was not sufficient to provide a high removal capacity in a UCBR. Further reduction in HRT to 15 min led to an excessive biomass decline from 22.5 g/L to 4.0 g/L. On the whole, the UCBR was able to sustain COD removal and NH+ 4-N conversion of up to 5.96-18.70 kg COD/m3 d and 0.73-1.00 kg NH+ 4-N/m3 d, respectively.  相似文献   

17.
In this study, five different fillers: coal ash, fiber-ball, polypropylene, ceramic, and polyhedron empty ball were used for cultivating nitrifying bacteria by increasing influent ammonia concentration gradually in sequencing batch reactors (SBRs). The results of ammonia removal performance showed that the reactor with coal ash has the highest NH4 +-N removal rate all the time. The ammonia removal rate of it averagely reached ≥ 95% under the condition of hydraulic retention time (HRT), dissolved oxygen (DO), pH was 12 h, 4.5 ± 0.5 mg/L, 7.5–8.5, respectively, even when the ammonia nitrogen loading reached 1000 mg/L. MiSeq Highthrough sequence was used for analyzing microbial community. The results revealed that obvious variation have occurred among the reactors after 48 days of operation; however, Nitrosomonas was enriched in large amount and became the dominant genus except in the reactor with polypropylene. Compared with other carriers, coal ash can enrich more nitrifying bacteria, the cell biomass of Nitrosomonas increased from 12.25 to 384.18 mg/L, which was 5.5 times more than the negative control. The use of coal ash as filler realizes the enrichment of a large amount of nitrifying bacteria in a short period, which guarantees a highly efficient nitrification.  相似文献   

18.

Purpose

Fenugreek (Trigonella foenum-graecum L.) is a medicinal plant with antidiabetic effects. Chromium has been related to better glucose tolerance in humans. The objective of this study was to determine whether tannery sludge could be used for Cr biofortification of fenugreek.

Materials and methods

Soil was mixed with tannery sludge containing 6.03 g Cr kg?1. All Cr was in the form of Cr(III). Three treatments were disposed: control without sludge, and two treatments with 10 and 20 g sludge kg?1, respectively. Control and the 10 g sludge kg?1 treatments received NPK fertilizer to adjust the concentrations of major mineral nutrients to similar levels in all treatments. Soils were potted and planted with fenugreek. Plants harvested at the initial flowering stage were analysed for total Cr, Fe, Zn and Pb. Sequential soil extraction was applied to obtain operationally defined soil Cr fractions.

Results and discussion

Total Cr in all treatments was below or within the allowable range for agricultural soils (100–150 mg kg?1). In control soils, most Cr was in the residual fraction (HF/HClO4 digest). Tannery sludge-amended soils incorporated most Cr into the moderately reducible fraction (oxalic acid/ammonium oxalate extract). In fenugreek shoots, Cr concentrations reached 3.2 mg Cr kg?1, a higher concentration than that reported for other leafy vegetables. Lead concentrations in plant shoots from this treatment were enhanced but hardly exceeded 1 mg Pb kg?1.

Conclusions

Tannery sludge-amended soils containing Cr within the range of permissible concentrations can increase shoot Cr in fenugreek. Only sludge with low Pb concentrations should be used for Cr biofortification of fenugreek.  相似文献   

19.
Abstract

The aim of this study was to assess the mitigating effects of lime nitrogen (calcium cyanamide) and dicyandiamide (DCD) application on nitrous oxide (N2O) emissions from fields of green tea [Camellia sinensis (L.) Kuntze]. The study was conducted in experimental tea fields in which the fertilizer application rate was 544 kg nitrogen (N) ha?1 yr?1 for 2 years. The mean cumulative N2O flux from the soil between the canopies of tea plants for 2 years was 7.1 ± 0.9 kg N ha?1 yr?1 in control plots. The cumulative N2O flux in the plots supplemented with lime nitrogen was 3.5 ± 0.1 kgN ha?1, approximately 51% lower than that in control plots. This reduction was due to the inhibition of nitrification by DCD, which was produced from the lime nitrogen. In addition, the increase in soil pH by lime in the lime nitrogen may also be another reason for the decreased N2O emissions from soil in LN plots. Meanwhile, the cumulative N2O flux in DCD plots was not significantly different from that in control plots. The seasonal variability in N2O emissions in DCD plots differed from that in control plots and application of DCD sometimes increased N2O emissions from tea field soil. The nitrification inhibition effect of lime nitrogen and DCD helped to delay nitrification of ammonium-nitrogen (NH4+-N), leading to high NH4+-N concentrations and a high ratio of NH4+-N /nitrate-nitrogen (NO3-N) in the soil. The inhibitors delayed the formation of NO3-N in soil. N uptake by tea plants was almost the same among all three treatments.  相似文献   

20.
The sampling and analysis properties of 1-stage and 2-stage filter-pack methods were studied in detail in monitoring of sulphur and nitrogen containing inorganic gases and particles (sulphur dioxide, sulphate, sum of nitric acid and nitrate and total ammonium). The limit of detection and the limit of quantitation for 24-h samples were estimated using the results of a short-term field experiment completed with available data from long-term monitoring and internal quality assurance. Furthermore, the combined expanded measurement uncertainty including sampling and analysis (Utot) was estimated for filter-pack methods in order to give a tool for distinguishing long-term trends in air quality from the measurement variability. Utot was found to be very near the analytical uncertainty when measuring higher air concentration levels, being ± 4.0% for sulphur concentrations?>?1.0 μg m?3, ± 3.0% for sulphate concentrations?>?0.5 μg m?3, ± 3.5% for the sum of nitrate and nitric acid concentrations?>?0.3 μg m?3 and ± 4.5% for total ammonium concentrations?>?0.8 μg m?3. At the lower air concentration range Utot increases significantly due to the field blank values. The precision of the 24-h filter-pack sample results expressed by means of modified median absolute difference (M.MAD) and coefficient of variance (CoV) gave 8.3% for sulphur dioxide and 5.4% for particulate sulphate. For the sum of gaseous nitric acid and particulate nitrate the CoV was 5.5% and for total ammonium 4.3%. In addition the suitability of the 24-h filter-pack methods in weekly sampling was proved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号