首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simultaneous treatment of BOD, phosphorous and ammonia in artificial wastewater was carried out in biofilm reactors with Luffa cylíndrica as organic support and compared with PVC's support under variations of dissolved oxygen of 1.5 a 3.0 mg l?1 in the same reactor. During semicontinous treatment, the removal of BOD (92.5%) with Luffa cilíndrica was higher than PVC support (80%). Nitrification only existed at levels of oxygen of 3 mg l?1, showed in the effluent a final concentration of ammonium of 17 and 19 mg l?1 for Luffa cilíndrica and PVC support, respectively. In reactors with Luffa cilíndrica a higher percentage of P removal (40%) was reached, while no elimination in reactors with PVC was observed. The formation of anaerobic-aerobic zones inside the natural support probably allowed the increase in the efficiency of removal of phosphorous. Oxidation of organic matter, P removal and nitrification can be achieved with the variation of oxygen inside of the same biofilm reactor using L. cylindrical as support material.  相似文献   

2.
With the organic carbon of acetate (SBR-A) and propionate (SBR-P), the effect of organic carbon sources on nitrogen removal and nitrous oxide (N2O) emission in the multiple anoxic and aerobic process was investigated. The nitrogen removal percentages in SBR-A and SBR-P reactor were both 72%, and the phosphate removal percentages were 97 and 85.4%, respectively. During nitrification, both the NH4 +-N oxidation rate in the SBR-A and SBR-P had a small change without the influence of the addition of nitrite nitrogen (NO2 ?-N). With the addition of 10 mg/L NO2 ?-N, the nitrate nitrogen (NO3 ?-N) production rate, N2O accumulation rate and emission factor had increased. At the same time, the N2O emission factor of SBR-A and SBR-P reactors increased from 2.13 and 0.87% to 4.66 and 2.08%, respectively. During exogenous denitrification, when nitrite was used as electron acceptor, the N2O emission factors were 34.1 and 8.6 times more than those of NO3 ?-N as electron acceptor in SBR-A and SBR-P. During endogenous denitrification with NO2 ?-N as electron acceptor, the accumulation rate and emission factor of N2O were higher than those of NO3 ?-N as electron acceptor. High-throughput sequencing test showed that the dominant bacteria were Proteobacteria and Bacteroidetes in both reactors at the phylum level, while the main denitrification functional bacteria were Thauera sp., Zoogloea sp. and Dechloromonas sp. at the genus level.  相似文献   

3.
The herbicides 2,4-diclorophenoxiacetic and 4-chloro-2-methylphenoxyacetic acids (2,4-D and MCPA) are widely used in agricultural practices worldwide. Not only are these practices responsible of surface waters contamination, but also agrochemical industries through the discharge of their liquid effluents. In this investigation, the ability of a 2,4-D degrading Delftia sp. strain to degrade the related compound MCPA and a mixture of both herbicides was assessed in batch reactors. The strain was also employed to remove and detoxify both herbicides from a synthetic effluent in a continuous reactor. Batch experiments were conducted in a 2-L aerobic microfermentor, at 28 °C. Continuous experiments were carried out in an aerobic downflow fixed-bed reactor. Bacterial growth was evaluated by the plate count method. Degradation of the compounds was evaluated by UV spectrophotometry, gas chromatography (GC), and chemical oxygen demand (COD). Toxicity was assessed before and after the continuous process by using Lactuca sativa seeds as test organisms. Delftia sp. was able to degrade 100 mg L?1 of MCPA in 52 h. When the biodegradation assay was carried out with a mixture of 100 mg L?1 of each herbicide, the process was accomplished in 56 h. In the continuous reactor, the strain showed high efficiency in the simultaneous removal of 100 mg L?1 of each herbicide. Removals of 99.7, 99.5, and 95.0% were achieved for 2,4-D, MCPA, and COD, respectively. Samples from the influent of the continuous reactor showed high toxicity levels for Lactuca sativa seeds, while toxicity was not detected after the continuous process.  相似文献   

4.
Pyrene is a dominant PAH in urban environments. It can combine with airborne particulates and accumulate on plant leaves. To investigate pyrene’s biodegradation potential, this study initially monitored the abundance of airborne and phyllosphere bacteria. The number of airborne pyrene-degrading bacteria ranged from 22 to 152 CFU m?3 air, and more bacteria were found in the proximity of the ornamental plant swath than along the roadside. Pyrene-degrading bacteria averaged 5 × 104 CFU g?1 on the leaves of all tested plant species and accounted for approximately 7% of the total population. Four pyrene-degrading bacteria were isolated from I. coccinea to use as model phyllosphere bacteria. To increase the bioavailability of pyrene, a lipopeptide biosurfactant was applied. Kocuria sp. IC3 showed the highest pyrene degradation in the medium containing biosurfactant. The removal of deposited pyrene at 30 μg g?1 leaf was monitored in a glass chamber containing I. coccinea twigs. After 14 days, leaves containing both Kocuria sp. IC3 and 0.1× CMC biosurfactant showed 100% pyrene removal with the most abundant bacteria. The system with biosurfactant alone also enhanced the activities of phyllosphere bacteria with 94% pyrene removal. Consequently, the bioremediation of deposited pyrene could be achieved by spraying biosurfactant on ornamental shrubs.  相似文献   

5.
In the present study, the immobilizing fermentation characteristics and o-chlorophenol biodegradation of Rhodopseudomonas palustris using mycelial pellets as a biomass carrier were investigated. To improve the o-chlorophenol degradation efficiency of the combined mycelial pellets, eight cultivation variables including glucose concentration, yeast extract concentration, spore inoculum size, pH, and agitation speed were optimized with an integrated strategy involving a combination of statistical designs. First, Plackett-Burman experiments identified glucose, yeast extract, and spore inoculum size as three statistically significant factors important for o-chlorophenol removal. Then, the steepest ascent method was used to access the optimal region of these significant factors. Finally, response surface methodology by Box-Behnken optimization was used to examine the mutual interactions among these three variables to determine their optimal levels. The ideal culture conditions for maximum o-chlorophenol removal according to a second-order polynomial model were as follows: 15.60 g/L glucose, 3.09 g/L yeast extract, and 9% (v/v) spore inoculum size, resulting in an expected o-chlorophenol removal rate of 92.60% with an o-chlorophenol initial concentration of 50 mg/L and 96-h culture time. The correlation coefficient (R 2 = 0.9933) indicated excellent agreement between the experimental and predicted values, whereas a fair association was observed between the predicted model values and those obtained from subsequent experimentation at the optimized conditions.  相似文献   

6.
An airlift biofilm reactor was employed to study phenol biodegradation by Pseudomonas putida. Hydrodynamic tests were also conducted in a conventional column to facilitate the comparison of the dynamic behavior in different types of columns. The three-phase airlift column offered better aeration than the conventional column as liquid and solid circulation in the downcomer favored bubble breakup, increasing oxygen dissolved in the liquid phase and favoring the phenol biodegradation process. Kinetic parameters of phenol biodegradation by P. putida were obtained in an agitated batch reactor, with the initial phenol concentration varying from 10 to 750 mg/L. Experimental data were fitted using different microbial growth models found in literature. The Yano and Koga model, which considers the formation of multiple inactive enzyme–substrate complexes, fitted well with our experimental data, with a correlation coefficient, R 2 = 0.952. An internal loop airlift bioreactor was used for aerobic phenol biodegradation in which polystyrene particles were utilized to support biomass immobilization. Several tests were performed by varying the influent phenol concentration, hydraulic retention time, upstream flow, and superficial air velocity. It was concluded that until an influent phenol concentration of approximately 300 mg/L, phenol acted as the limiting substrate. For higher phenol concentrations, oxygen became the limiting substrate. An increase in the oxygen concentration resulted in the complete consumption of phenol under high phenol concentration of 500 mg/L.  相似文献   

7.
Microbiological activities are essential in the bioremediation of polluted soils. The enzymatic activities of microorganisms are usually used as a biological indicator of soil health. The aim of this work was to observe the catalase, acid phosphatase (AcP), and alkaline phosphatase (AlP) activities in soil that was amended with agro-industrial by-products and macronutrients during the process of total petroleum hydrocarbon (TPH) removal. To this end, microcosm tests were performed with soil and agro-industrial by-products ratios of 100:2:2, for soil:sugarcane bagasse pith:filter cake mud (SSF); 100:2, for both soil:sugarcane bagasse pith (SS); and for soil filter cake mud (SF). The macronutrients—carbon, nitrogen, and phosphorus—in the experimental treatments were adjusted to 100:10:1 with a solution of NH4NO3 and K2HPO4. The best TPH removal (51.4%) was obtained with SSF at 15 days. In addition, a significant correlation was observed between TPH removal and AlP as well as AcP (r = 0.74, p < 0.0001; r = 0.70, p < 0.0107, respectively). Fungi growth was also correlated with both AlP (r = 0.97, p < 0.0001) and AcP (r = 0.95, p < 0.0001) activities. Besides, bacterial and fungi growth showed a correlation with TPH (r = 0.86, p < 0.001; r = 0.77, p < 0.0034, respectively). It could be said that the agro-industrial by-products and macronutrients contributed to pollutant removal from the oil-polluted soil at relatively short amount of time. In addition, the enzymatic activities were increased after the treatment; in this study, the high sensitivity enzyme was AlP, and it could be used as an indirect indicator of oil pollutant removal.  相似文献   

8.
Effects of ethanol and nitrate on linear alkyl benzene sulfonate (LAS) degradation were investigated using central composite design. At experimental design, removal of 99.9% was observed in batch reactors (1 L) with 9.8 to 41.2 mg L?1 of LAS. The batch reactors were kept under agitation at 120 rpm and 30 °C. Ethanol (co-substrate) and nitrate (electron acceptor) were statistically significant factors (p?<?0.05) in surfactant removal. Optimal values were 97.5 and 88 mg L?1 for ethanol and nitrate, respectively. LAS removal was kinetically investigated by varying surfactant concentration while using optimal values. Batch I (27 mg L?1 LAS) exhibited greater degradation rate (KLAS) (0.054 h?1) in the presence of ethanol and nitrate. Nonetheless, in Batch II (60 mg L?1 LAS), the KLAS values decreased in those reactors probably due to inhibition by excess substrate for same concentrations of nitrate and ethanol added in reactors. As LAS concentration increased, the dominance of bacterial populations also increased, whereas diversity index decreased from 2.8 (inoculum) to 2.4 and 2.5 for reactors with both added nitrate and ethanol and those with only added ethanol, respectively. Probably, a selection of microbial populations occurred in relation to LAS concentration. The nitrate and ethanol, at able concentration, made it possible the induction of denitrifying microrganisms foward to LAS removal.  相似文献   

9.
A novel tellurite-resistant photosynthetic bacterium, Rhodopseudomonas palustris strain TX618, was isolated from wastewater and reduction of tellurite by this strain was investigated. The results showed that Rhodopseudomonas palustris strain TX618 could reduce tellurite to elemental tellurium, both anaerobically and aerobically. During anaerobic and illuminated growth, strain TX618 possessed a high-level resistance and removal efficiency to tellurite, that it could resist up to 180 mg/L Na2TeO3 in the medium and removed 91.9% of 90 mg/L Na2TeO3 over 8 days. The high efficiency in the removal of tellurite could sustain wide variations in pH (5.0–9.0), temperature (20–40 °C), light intensity (1500–3000 lx), and initial tellurium concentration (30–180 mg/L Na2TeO3). It could be observed by scanning electron micrograph (SEM), transmission electron micrograph (TEM), and X-ray diffraction (XRD) analysis that the cells suffered serious deformation due to the toxicity of tellurite, and the less toxic black precipaite (Te0) generated by bioreduction of tellurite mostly located in the central cytoplasm. This is the first study to observe that Rhodopseudomonas palustris can reduce tellurite to elemental tellurium, which will provide a new microbial species for bioremediation and biotransformation of toxic tellurite.  相似文献   

10.
In this study, the long-term effects of ultrafine tourmaline particles (UTPs) on the removal of nitrogen in wastewater, activated sludge viability and microbial population dynamics at low temperatures were investigated. Although there was no significant effect on the effluent concentrations of nitrogen after long-term exposure to 1 g/L UTPs at low temperatures, the oxidation rate of NH4+-N and the accumulation rate of NO2?-N increased and the formation rate of NO3?-N decreased during the aerobic phase of sequencing batch reactors. However, long-term exposure to 1 g/L UTPs did not significantly affect the microbial community richness and the community diversity of activated sludge at low temperatures. The mechanism of tourmaline was studied by assessing the dominant functional species involved in biological nitrogen removal from wastewater. It was found that 1 g/L UTPs increased the removal rate of nitrogen by reducing the relative abundance of nitrite oxidizing bacteria and increasing the relative abundance of ammonia oxidizing bacteria after long-term operation at low temperatures.  相似文献   

11.
The inhibitory effect of seven different metals on the specific anammox activity of granular biomass, collected from a single stage partial nitritation/anammox reactor, was evaluated. The concentration of each metal that led to a 50% inhibition concentration (IC50) was 19.3 mg Cu+2/L, 26.9 mg Cr+2/L, 45.6 mg Pb+2/L, 59.1 mg Zn+2/L, 69.2 mg Ni+2/L, 174.6 mg Cd+2/L, and 175.8 mg Mn+2/L. In experiments performed with granules mechanically disintegrated (flocculent-like sludge), the IC50 for Cd+2 corresponded to a concentration of 93.1 mg Cd+2/L. These results indicate that the granular structure might act as a physical barrier to protect anammox bacteria from toxics. Furthermore, the presence of an external layer of ammonia oxidizing bacteria seems to mitigate the inhibitory effect of the metals, as the values of IC50 obtained in this study for anammox activity were higher than those previously reported for anammox granules. Additionally, the results obtained confirmed that copper is one of the most inhibitory metals for anammox activity and revealed that chromium, scarcely studied yet, has a similar potential inhibitory effect.  相似文献   

12.
Glyphosate is an herbicide commonly used worldwide for weed control and generally applied as part of a formulated product, such as Roundup. Contamination of surface water by glyphosate-based herbicides can cause deleterious effects in organisms, mainly in aquatic systems near to intensive agricultural areas (e.g., transgenic soybean crops). Given the lack of toxicological information concerning effects of glyphosate-based herbicides on tropical aquatic ecosystems, we aimed to evaluate the lethal and sub-lethal effects of Roundup Original® on the dipteran Chironomus xanthus. The endpoints evaluated included survival, growth, and emergence. The results showed that the 48 h LC50 for glyphosate to C. xanthus was 251.5 mg a.e./L. Larval growth of C. xanthus was reduced under glyphosate exposure (LOEC for body length = 12.06 mg/L; LOEC for head capsule width = 0.49 mg/L). No effects were observed in terms of cumulative percentage of imagoes emergence. However, low concentrations of glyphosate caused delayed emergence of females (at 1.53 mg/L) and induced fast emergence of males (at 0.49 mg/L), compared to control treatment. The deleterious effects of environmental relevant concentrations of glyphosate (0.7 mg/L) observed in terms of C. xanthus growth and development suggest that glyphosate-based herbicides can have negative consequences for aquatic non-target invertebrates such as Chironomus. Multigerational assays are needed to assess the long term effects of glyphosate on C. xanthus populations. Finally, our study adds ecotoxicological data on the effects of glyphosate-based herbicides on tropical freshwater invertebrates.  相似文献   

13.
The study aimed to explore the short-term and long-term effects of tourmaline on activated sludge viability and biological nutrient removal performance. The experimental results indicated that ultrafine tourmaline particles (1 g/L) promoted sludge viability, the reaction rates, and relative enzyme activities in wastewater nitrogen removal. The difference between short-term and long-term effects of tourmaline was not significant. Although the NH4 +-N removal rate and NO3 ?-N formation rate in the presence of 1 g/L ultrafine tourmaline particles were increased to 13.8 and 6.8 mg/L?h, which were higher than those in the control (11.0 and 6.0 mg/L?h), short-term and long-term exposure to 1 g/L ultrafine tourmaline particles did not change the effluent concentrations of ammonia nitrogen, nitrite, and nitrate because the relative substrate concentrations were low in the influent. Denaturing gradient gel electrophoresis (DGGE) analysis results indicated that the microorganism community structures including the whole bacteria community, ammonia-oxidizing bacteria community, or the whole fungi community were not changed after the long-term exposure to 1 g/L ultrafine tourmaline particles, and Shannon diversity indices (H′) assays revealed that the diversities of community structures were not changed after the exposure to 1 g/L ultrafine tourmaline particles.  相似文献   

14.
Here, we report results from a field experiment investigating the application of biochars, lime, organic fertilizer, and their combinations. Soil pH was increased by ameliorants. Wheat biochar produced the largest increase, of approximately 2 pH units, and mixed treatment (one third rice husk biochar, one third lime, and one third organic fertilizer) also caused large increases, of almost 1 pH unit. There was strong evidence that the ratio of ammonia-oxidizing archaea to ammonia-oxidizing bacteria (AOB) abundance greatly increased with decreased soil pH, indicating that soil pH was an important factor affecting the abundance of AOB. High-throughput MiSeq sequencing showed that the soil ameliorants significantly increased the relative abundances of Nitrosomonas and Nitrospira. Soil pH was an important determinant of the bacterial community composition and diversity. Our study suggests that the ameliorants (biochar, lime, organic fertilizer, and their combinations) change soil nitrification by altering nitrifying bacteria abundance, diversity, and composition, caused by the changed soil pH.  相似文献   

15.

Purpose

Sampling and analysis of greenhouse soils were conducted in Shouguang, China, to study continuous excessive fertilization effect on nitrifying microbial community dynamics in greenhouse environment.

Materials and methods

Potential nitrification activity (PNA), abundance, and structure of nitrifying microbial communities as well as the correlations with soil properties were investigated.

Results and discussion

Short-term excessive fertilization increased soil nutrient contents and the diversity of nitrifying microbial communities under greenhouse cultivation. However, the abundance and diversity of nitrifying communities decreased greatly due to the increase of soil acidity and salinity after 14 years of high fertilization in greenhouse. There was a significant positive correlation between soil PNA and the abundance of ammonia-oxidizing bacteria (AOB) but not that of ammonia-oxidizing archaea (AOA) in topsoil (0–20 cm) when pH ≥7. Soil PNA and AOB were strongly influenced by soil pH. The groups of Nitrososphaeraceae, Nitrosomonadaceae, and Nitrospiraceae were predominant in the AOA, AOB, and nitrite-oxidizing bacteria (NOB) communities, respectively. Nitrifying community structure was significantly correlated with soil electrical salinity (EC), organic carbon (OC), and nitrate nitrogen (NO3 ?–N) content by redundancy analysis (RDA).

Conclusions

Nitrification was predominated by AOB in greenhouse topsoil with high fertilizer loads. Soil salinity, OC, NO3 ?–N content, and pH affected by continuous excessive fertilization were the major edaphic factors in shaping nitrifying community structure in greenhouse soils.
  相似文献   

16.
Eleven indigenous arsenic-tolerant fungi were isolated from arsenic-contaminated mine tailing and identified by molecular biology methods. Among them, Aspergillus oryzae (denoted as A. oryzae TLWK-09) had high tolerance and bioaccumulation of As(V). The maximum tolerance to As(V) concentration of A. oryzae TLWK-09 reached 5000 mg/L. As(V) bioaccumulation on A. oryzae TLWK-09 in the aqueous system was investigated under different environmental conditions such as mycelia dosage, contact time, pH, and ionic strength. Bioaccumulation data of As(V) were fitted to Langmuir model, and the maximum uptake capacity of A. oryzae TLWK-09 for As(V) was 54.12 mg/g at 301 K. The morphological structures of mycelia changed obviously under As(V) stress by scanning electron microscope (SEM) and transmission electron microscope (TEM) analysis. The analysis of Fourier transform infrared spectroscopy (FTIR) indicated the presence of carboxyl, hydroxyl, and amino groups on the fungal mycelia, which showed that these groups accounted for As(V) bioaccumulation. These results suggested that A. oryzae TLWK-09 could be an efficient and promising bioremediation material for As(V) pollution.  相似文献   

17.
The mean seasonal rates of the ammonia nitrogen emission from a soddy-podzolic soil under an oxalis-bilberry birch forest in Yaroslavl oblast were measured from May to October in 2005 and 2006 and comprised 27 ± 14 and 25 ± 11 μg N/m2 per day, which corresponded to 44 ± 23 and 32 ± 15 g N/ha, respectively. The maximum rates of the emission had a positive correlation with the soil temperature (r = 0.77 and 0.82, respectively) and a negative correlation with the soil water content (r = 0.3 and 0.54). The coefficients of the multiple correlation between these parameters were 0.82 and 0.84, respectively (at p = 0.16). The mean seasonal rate of the ammonia nitrogen emission from a soddy-podzolic soil under an herbaceous meadow in 2006 reached 155 ± 80 μg N/m2 per day, or 160 ± 80 g N/ha. The rates of the ammonia emission during the growing season correlated with the soil temperature (r = 0.81 at p = 0.03). A method for measuring the ammonia emission from soils was proposed.  相似文献   

18.
A bioadsorbent formulated with a secondary raw material, consisting of grape marc, subjected to a bioxidize process and entrapped in calcium alginate beads, was used for the desalination of water containing copper(II) sulfate. Experiments were established under different experimental conditions varying the concentration of contaminant, the amount of bioadsorbent, and the extraction time through response surface methodology. The most significant variable in the removal of copper(II) sulfate was the amount of bioadsorbent employed, followed by the extraction time; whereas, the adsorbent capacity was more influenced by the amount of contaminant and the amount of bioadsorbent used. At the highest concentration of copper(II) sulfate (0.15 mol/L), the equations obtained predict that the bioadsorbent has a capacity of 2785 mg/g and produces a copper(II) removal about 43% using low adsorbent/water ratios, 1:10 (v/v), and maximum extraction times; whereas, it would remove 97.2% of copper(II) sulfate in 5 min, using adsorbent/water ratios close to 1:2 (v/v), with capacity values, in this case, around 1800 mg/g. The encapsulation of the bioxidize adsorbent increased its capacity to 30% and allowed the precipitation of sulfate ions as calcium sulfate. The results obtained in this work could presume advances for promoting the industrial symbiosis between winery and environmental industries.
Graphical abstract Utilization of secondary raw material, consisting of bioxidize grape marc from winery industry, as bioadsorbent encapsulated in calcium alginate beads, for the removal of copper(II) sulfate from water
  相似文献   

19.
Atrazine degradation in soil microbial fuel cells (MFCs) under different anode depths and initial concentrations is investigated for different redox soil conditions, and the microbial communities in the anode and different layers are evaluated. Atrazine degradation is fastest in the upper layer (aerobiotic), followed by the lower layer (anaerobic). A removal efficiency and a half-life of 91.69% and 40 days, respectively, are reported for an anode depth of 4 cm. The degradation rate is found to be dependent on current generation in the soil MFCs rather than on electrode spacing. Furthermore, the degradation rate is inhibited when the initial atrazine concentration is increased from 100 to 750 mg/kg. Meanwhile, the exoelectrogenic bacteria, Deltaproteobacteria and Geobacter, are enriched on the anode and the lower layer in the soil MFCs, while atrazine-degrading Pseudomonas is only observed in very low proportions. In particular, the relative abundances of Deltaproteobacteria and Geobacter are higher for lower initial atrazine concentrations. These results demonstrate that the mechanism of atrazine degradation in soil MFCs is dependent on bioelectrochemistry rather than on microbial degradation.  相似文献   

20.
Municipal wastewaters with industrial discharges typically contain heavy metals which may inhibit the biological processes in wastewater treatment plants. In this study, copper inhibition on strict nitrifiers in a suspended growth (SG) reactor and a combined attached and suspended growth (A&SG) reactor was compared. Both reactors were subjected to a continuous copper input of 5 mg/L. When the accumulated total copper concentration in the reactor were approximately 25 mg/L (due to sorption to the biomass), a sharp decrease in nitrification (increase in inhibition) were observed in the SG reactor while nitrification remained the same for the A&SG reactor indicating that attached growth systems were more robust against copper toxicity than suspended growth systems. Using MINTEQA2, the concentrations of various chemical species were estimated and, of the different species present, adsorbed copper in the biomass and aqueous Cu(NH3)4 +2 were found to positively correlate with percent inhibition of nitrification. Based on the changes in the concentrations of the two species, Cu(NH3)4 +2 was probably the main chemical species responsible for inhibition of nitrification. This study has implications for wastewater treatment plants treating wastewaters with high ammonia and copper present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号