首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effluents containing phosphorous as phosphate ions are frequently discharged in freshwater resources contributing to the eutrophication and directly interfering in the biological equilibrium. Clam shell residues and sewage sludge were combined for preparing efficient adsorbents for phosphate removal from aqueous medium. The adsorbents were characterized before and after adsorption testing, and the adsorption equilibrium and kinetics were investigated. Phosphate removal of 89?±?1% was attained for samples prepared with 0.1?< X <?1.0, where X corresponds to sewage sludge/clam shell mass ratio. The analyses of the experimental errors indicated that the phosphorous removal followed the Elovich kinetic model, which describes adsorption in very heterogeneous surfaces. On the other hand, the best modelling was achieved using the Koble–Corrigan isotherm model, which incorporate different aspects of both Langmuir and Freundlich isotherms to represent the equilibrium data. The observed adsorption capacity (21.4 mgP g?1) are comparable or greater to that observed for other adsorbents described in the literature.  相似文献   

2.
Soil amendment with hydrochar produced by hydrothermal carbonization of biomass is suggested as a simple, cheap, and effective method for increasing soil C. We traced C derived from corn silage hydrochar (δ13C of ?13?‰) added to “coarse” and “fine” textured soils (δ13C of ?27?‰ for native soil C (SOC)) over two cropping seasons. Respiration rates increased in both soils (p?<?0.001) following hydrochar addition, and most of this extra respiration was derived from hydrochar C. Dissolved losses accounted for ~5 % of added hydrochar C (p?<?0.001). After 1 year, 33?±?8 % of the added hydrochar C was lost from both soils. Decomposition rates for the roughly two thirds of hydrochar that remained were very low, with half-life for less estimated at 19 years. In addition, hydrochar-amended soils preserved 15?±?4 % more native SOC compared to controls (negative priming). Hydrochar negatively affected plant height (p?<?0.01) and biomass (p?<?0.05) in the first but not the second crop grown on both soils. Our results confirm previous laboratory studies showing that initially, hydrochar decomposes rapidly and limits plant growth. However, the negative priming effect and persistence of added hydrochar C after 1 year highlight its soil C sequestration potential, at least on decadal timescales.  相似文献   

3.
Bio-fertilizer application has been proposed as a strategy for enhancing soil fertility, regulating soil microflora composition, and improving crop yields, and it has been widely applied in the agricultural yields. However, the application of bio-fertilizer in grassland has been poorly studied. We conducted in situ and pot experiments to investigate the practical effects of different fertilization regimes on Leymus chinensis growth, with a focus on the potential microecological mechanisms underlying the responses of soil microbial composition. L. chinensis biomass was significantly (P?<?0.05) increased by treatment with 6000 kg ha?1 of Trichoderma bio-fertilizer compared with other treatments. We found a positive (R2 =?0.6274, P <?0.001) correlation between bacterial alpha diversity and L. chinensis biomass. Hierarchical cluster analysis and nonmetric multidimensional scaling (NMDS) revealed that soil bacterial and fungal community compositions were all separated according to the fertilization regime used. The relative abundance of the most beneficial genera in bio-fertilizer (BOF) (6000 kg ha?1Trichoderma bio-fertilizer) was significantly higher than in organic fertilizer (OF) (6000 kg ha?1 organic fertilizer) or in CK (non-amend fertilizer), there the potential pathogenic genera were reduced. There were significant negative (P?<?0.05) correlations between L. chinensis biomass and the relative abundance of several potential pathogenic genera. However, the relative abundance of most beneficial genera were significantly (P?<?0.05) positively correlated with L. chinensis biomass. Soil properties had different effects on these beneficial and on these pathogenic genera, further influencing L. chinensis biomass.  相似文献   

4.
The research goal was to determine if onsite wastewater system (OWS) density had an influence on the concentrations and watershed exports of Escherichia coli and enterococci in urbanizing watersheds. Eight watersheds with OWS densities ranging from <?0.1 to 1.88 systems ha?1 plus a watershed served by sewer (Sewer) and a mostly forested, natural watershed (Natural) in the Piedmont of North Carolina served as the study locations. Stream samples were collected approximately monthly during baseflow conditions between January 2015 and December 2016 (n?=?21). Median concentrations of E. coli (2014 most probable number (MPN) 100 mL?1) and enterococci (168 MPN 100 mL?1) were elevated in streams draining watersheds with a high density of OWS (>?0.77 system ha?1) relative to watersheds with a low (<?0.77 system ha?1) density (E. coli: 204 MPN 100 mL?1 and enterococci: 88 MPN 100 mL?1) and control watersheds (Natural: E. coli: 355 MPN 100 mL?1 and enterococci: 62 MPN 100 mL?1; Sewer: 177 MPN 100 mL?1 and 130 MPN 100 mL?1). Samples collected from watersheds with a high density of OWS had E. coli and enterococci concentrations that exceeded recommended thresholds 88 and 57% of times sampled, respectively. Results show that stream E. coli and enterococci concentrations and exports are influenced by the density of OWS in urbanizing watersheds. Cost share programs to help finance OWS repairs and maintenance are suggested to help improve water quality in watersheds with OWS.  相似文献   

5.
The adsorption of copper (Cu(II)) from aqueous solutions by activated Luffa cylindrica biochar fibres has been investigated by means of batch equilibrium experiments and FTIR spectroscopy. The effect of various physicochemical parameters, such as pH, initial metal concentration, ionic strength, mass of the adsorbent, contact time and temperature, has been evaluated by means of batch type adsorption experiments. FTIR spectroscopy, as well as acid-base titrations, was used for the characterization of the material and the surface species formed. According to the experimental results even at pH 3, the relative sorption is above 85% and the adsorption capacity of the activated biochar fibres for Cu(II) is q max = 248 g kg?1. Moreover, the interaction between the surface carboxylic moieties and Cu(II) results in the formation of very stable inner-sphere complexes (?G o = ?11.2 kJ mol?1 at pH 3 and ?22.4 kJ mol?1 at pH 5.5).  相似文献   

6.
Changes in the soil microbial communities and networks were monitored after planting the cover crop for 9 years. The field experiment included plots with a cover crop and without a cover crop but with weed control, and two subplots with or without chemical fertilizer (192 kg N ha?1, 108 kg P2O5 ha?1, and 168 kg K2O ha?1 each year). After applying the cover crop and chemical fertilizer for 9 years, the composition and activity of bacterial and fungal communities changed significantly (p?<?0.05), with the cover crop had greater effects than the chemical fertilizer on the composition of the soil microbial community. The relative abundances of 22 selected genera (in Firmicutes and Bacteroidetes) and two selected classes (Ascomycota) related to cover crop residue degradation increased significantly in the presence of the cover crop (p?<?0.05). Network analysis showed that the cover crop decreased the number of positive links between bacterial and fungal taxa by 25.33%, and increased the negative links by 22.89%. The positive links among bacterial taxa increased by 16.63% with the cover crop, mainly among Proteobacteria (increase of 39), Firmicutes (16), Actinobacteria (five), and Bacteroidetes (10). The links among fungal taxa were less than among bacterial taxa and were not significantly affected by cover crop. Taxa such as Thaumarchaeota, unidentified_Nitrospiraceae, unidentified_Nitrosomonadaceae, Faecalibacterium, Coprococcus_3, and Ruminococcaceae_NK4A214_group dominated the network without the cover crop but they were not dominant with the cover crop. The relative abundances of potential genes involved with the degradation of cellulose, hemicellulose, and cello-oligosaccharides increased significantly with the cover crop. Therefore, the SOC and TN contents were enhanced by the cover crop with the increase of the soil enzyme activities. Thus, the apple yield was improved by the cover crop.  相似文献   

7.
The concentrations of mercury, lead, cadmium, and arsenic were evaluated in 96 samples, 12 by each one of the following eight fish species: snook (Centropomus undecimalis), crevalle jack (Caranx hippos), Serra Spanish mackerel (Scomberomorus brasiliensis), southern red snapper (Lutjanus purpureus), blue runner (Caranx crysos), Atlantic tarpon (Megalops atlanticus), ladyfish (Elops saurus), and Atlantic goliath grouper (Epinephelus itajara), which were collected during 1 year in the Atrato River Delta in the Gulf of Urabá, Colombian Caribbean. Three fish were caught from each of the following sites the community usually uses to catch them (known as fishing grounds): Bahía Candelaria, Bahía Marirrío, Bocas del Roto, and Bocas del Atrato. The quantification of metals was performed by microwave-induced plasma-optical emission spectrometry. The Pb concentration fluctuated from 0.672 to 3.110 mg kg?1, surpassing the maximum permissible limit (MPL?=?0.3 mg kg?1) for human consumption for all species. The Hg concentration ranged between < Limit of detection and 6.303 mg kg?1, and in the crevalle jack and Atlantic tarpon, concentrations exceeded the MPL (0.5 mg kg?1). The levels of Cd and As were not significant in the studied species and did not exceed the MPL (0.05 mg kg?1).  相似文献   

8.

Purpose

Soil macropores play a principal role in water infiltration but they are highly variable. The objectives of this study were (1) to investigate the temporal change in macropores of an Ultisol as affected by land use and slope position and (2) to analyze contribution of macropores to water infiltration.

Materials and methods

Water infiltration was measured at upper and lower slopes in citrus orchard and watermelon field once every 2 months for 1 year using tension infiltrometers at a successive pressure head from ?12, ?6, ?3, to 0 hPa.

Results and discussion

Hydraulic conductivity (K) was significantly affected by land use and slope position except at 0 hPa pressure head, showing a significant temporal variation. Effective macroporosity, derived from the increment of hydraulic conductivity between ?3 and 0 hPa, showed a significant temporal variation. Such temporal variation was land use (P?<?0.05) and slope position (P?<?0.001) dependent. Despite of low proportion in total soil volume (averaged 3.5 cm3 m?3), the macropores contributed 47 % of water flux on average. The macroporosity was more stable and higher in the citrus orchard (2.43 cm3 m?3, coefficient of variance (CV)?=?75 %) than in the watermelon field (1.72 cm3 m?3, CV?=?117 %) and contributed more to infiltration in the citrus orchard (60 %, CV?=?16 %) than in the watermelon field (33 %, CV?=?43 %) as well, because tillage was operated only in the watermelon field.

Conclusions

No-tillage increased water conducting macropores but did not increase hydraulic conductivity irrespective of slope position.
  相似文献   

9.

Purpose

The dynamics and uncertainties in wetland methane budgets affected by the introduction of Alnus trabeculosa H. necessitate research on production of methane by methanogenic archaea and consumption by methane-oxidizing microorganisms simultaneously.

Materials and methods

This study investigated methane emission in situ by the closed chamber method, and methanogenic and methanotrophic communities using denatured gradient gel electrophoresis (DGGE) and quantitative PCR based on mcrA (methyl coenzyme M reductase), pmoA (particulate methane monooxygenase) genes in the rhizosphere and non-rhizosphere soils in the indigenous pure Phragmites australis T., and A. trabeculosaP. australis mixed communities in Chongxi wetland.

Results and discussion

Methane flux rate from the pure P. australis community was 2.4 times larger than that of A. trabeculosaP. australis mixed community in the rhizosphere and 1.7 times larger in the non-rhizosphere, respectively. The abundance of methanogens was lower in the mixed community soils (3.56?×?103–6.90?×?103 copies g?1 dry soil) compared with the P. australis community (1.47?×?104–1.89?×?104 copies g?1 dry soil), whereas the methanotrophs showed an opposite trend (2.08?×?106–1.39?×?106 copies g?1 dry soil for P. australis and 6.20?×?106–1.99?×?106 copies g?1 dry soil for mixed community soil). A liner relationship between methane emission rates against pmoA/mcrA ratios (R 2?=?0.5818, p?<?0.05, n?=?15) was observed. The community structures of the methane-cycling microorganism based on mcrA and pmoA suggested that acetoclastic methanogens belonging to Methanosarcinaceae and a particular type II methanotroph, Methylocystis, were dominant in these two plant communities.

Conclusions

The introduction of A. trabeculosa would promote the proliferation of methanotrophs, especially the dominant Methylocystis, but not methanogens, ultimately diminishing methane emission in the wetland.
  相似文献   

10.
Soil components from different environments (forest (OF), semiarid (SZ), and sand (AS)) were separated from fulvic and humic substances, characterized by DRX, EDS(SEM), and zero-charge points were determined. The sorption of U(VI) by these materials was determined considering contact time, concentration of U(VI), pH, ionic strength, and presence of sodium chloride and humic acids. The time to reach the kinetic sorption equilibrium was ca. 1 min for the components of the SZ and AS soils, whereas those from OF required longer times. The zero-charge points of the materials indicate that in the experimental conditions, the surfaces of the materials are positively charged, as are uranyl ions. The sorption kinetic data were well fitted to the pseudo-second-order model, which indicates chemical sorption. The maximum sorption capacities for U(VI) obtained from data fitted to the Langmuir model of OF and SZ were 49 and 19.8 mg g?1 respectively. Sorption isotherm data for AS were best fitted to the Freundlich model (qe?=?5.4 mg g?1). The maximum values of distribution coefficients (Kd) were 23?±?7 L kg?1, 545?±?64 L kg?1, and 1178?±?229 L kg?1 for AS, SZ, and OF, respectively; these values may depend on pH, contact time, initial concentration of U(VI), and the composition of the materials. Sodium chloride in the aqueous solutions affects U(VI) sorption by the materials SZ and AS. The effect of humic acids depends on pH, only in acid media soluble humate complexes may be formed.  相似文献   

11.
The use of plants for ecological remediation is an important method of controlling heavy metals in polluted land. Cotinus coggygria is a landscape plant that is used extensively in landscaping and afforestation. In this study, the cadmium tolerance level of C. coggygria was evaluated using electrical impedance spectroscopy (EIS) to lay a theoretical foundation for broad applications of this species in Cd-polluted areas and provide theoretical support to broaden the application range of the EIS technique. Two-year-old potted seedlings of C. coggygria were placed in a greenhouse to analyse the changes in the growth, water content and EIS parameters of the roots following treatment with different Cd concentrations (50, 100, 200, 500, 1000 and 1500 mg kg?1), and soil without added Cd was used as the control. The roots grew well following Cd treatments of 50 and 100 mg kg?1. The Cd contents increased with the increase in Cd concentration in the soil. However, the lowest root Cd content was found at 4 months of treatment. The extracellular resistance re and the intracellular resistance ri increased first overall and then decreased with the increasing Cd concentration, and both parameters increased with a longer treatment duration. The water content had a significant negative correlation with the Cd content (P?<?0.01) and the re (P?<?0.05). C. coggygria could tolerate a soil Cd concentration of 100 mg kg?1. There was a turning point in the growth, water content and EIS parameters of the C. coggygria roots when the soil Cd concentration reached 200 mg kg?1. The root water content and re could reflect the level of Cd tolerance in C. coggygria.  相似文献   

12.
Phosphorus is one of the key elements causing lake eutrophication. This paper deals with phosphate removal by Sponge iron in batch and fixed-bed operation. Isotherm and kinetic studies are conducted. The isotherm data is described by the Freundlich and Langmuir model, while the kinetic data of adsorption is fitted by the pseudo-second-order kinetic model. The saturated adsorption capacity of Langmuir isothermal equation is about 3.25 mg/g. The concomitant anions have adverse effect on phosphate adsorption and the effects follow the order: NO3??>?Cl??>?SO42?. The phosphate adsorption capacities of SI were improved significantly under the acidic condition. The results of the fixed-bed operation show that, with the increase of the influent phosphate concentrations, the breakthrough curve becomes steeper while the break point time decrease. According to the Adams–Bohart model, the critical height of the column decrease from 0.135 to 0.105 m when the contact time increased from 10 to 30 min with the influent concentration of 1.0 mg/L. According to BDST model, the critical bed depth is 0.15 m when the influent concentration of phosphate is 1.0 mg/L and the contact time (h) is 20 min.  相似文献   

13.
Comamonas sp. UVS was able to decolorize Reactive Blue HERD (RBHERD) dye (50 mg L?1) within 6 h under static condition. The maximum dye concentration degraded was 1,200 mg L?1 within 210 h. A numerical simulation with the model gives an optimal value of 35.71?±?0.696 mg dye g?1 cell h?1 for maximum rate (Vmax) and 112.35?±?0.34 mg L?1 for the Michaelis constant (Km). Comamonas sp. UVS has capability of decolorization of RBHERD in the presence of Mg2+, Ca2+, Cd2+, and Zn2+, whereas decolorization was completely inhibited by Cu2+. Metal ions also affected the levels of biotransformation enzymes during decolorization of RBHERD. Comamonas sp. UVS was also able to decolorize textile effluent with significant reduction in COD. The biodegradation of RBHERD dye was monitored by UV–vis spectroscopy, FTIR spectroscopy, and HPLC.  相似文献   

14.
Since the development of effective N2O mitigation options is a key challenge for future agricultural practice, we studied the interactive effect of tillage systems on fertilizer-derived N2O emissions and the abundance of microbial communities involved in N2O production and reduction. Soil samples from 0–10 cm and 10–20 cm depth of reduced tillage and ploughed plots were incubated with dairy slurry (SL) and manure compost (MC) in comparison with calcium ammonium nitrate (CAN) and an unfertilized control (ZERO) for 42 days. N2O and CO2 fluxes, ammonium, nitrate, dissolved organic C, and functional gene abundances (16S rRNA gene, nirK, nirS, nosZ, bacterial and archaeal amoA) were regularly monitored. Averaged across all soil samples, N2O emissions decreased in the order CAN and SL (CAN?=?748.8?±?206.3, SL?=?489.4?±?107.2 μg kg?1) followed by MC (284.2?±?67.3 μg kg?1) and ZERO (29.1?±?5.9 μg kg?1). Highest cumulative N2O emissions were found in 10–20 cm of the reduced tilled soil in CAN and SL. N2O fluxes were assigned to ammonium as source in CAN and SL and correlated positively to bacterial amoA abundances. Additionally, nosZ abundances correlated negatively to N2O fluxes in the organic fertilizer treatments. Soils showed a gradient in soil organic C, 16S rRNA, nirK, and nosZ with greater amounts in the 0–10 than 10–20 cm layer. Abundances of bacterial and archaeal amoA were higher in reduced tilled soil compared to ploughed soils. The study highlights that tillage system induced biophysicochemical stratification impacts net N2O emissions within the soil profile according to N and C species added during fertilization.  相似文献   

15.

Purpose

Antimony (Sb) contamination in the environment is a worldwide concern. To address such contamination issues, we studied the adsorption of Sb in four different types of soils. We investigated the main chemical and physical factors that influenced the adsorption of Sb, and distinguished between the different adsorption abilities of naturally occurring crystalline and amorphous iron (Fe) compounds in these soils.

Materials and methods

Adsorption of Sb in ferrosol, primosol, isohumosol, and sandy soil was studied using batch experiments. Transmission electron microscopy and X-ray photoelectron spectroscopy were used to examine the character and location of Sb adsorbed on individual particles in these soils without affecting its geochemical environment. In addition, the crystalline and amorphous Fe compounds in these soils were separated and analyzed using X-ray diffraction. The relationship between these Fe compounds and Sb adsorption was also explored.

Results and discussion

The sorption capacities of the four soils increased on addition of Sb in solution, reaching values of 10.8, 4.33, 5.45, and 1.19 g kg?1 for ferrosol, primosol, isohumosol, and sandy soil, respectively. The adsorption of Sb in ferrosol was much higher than for other soils because of its higher Fe oxide content. In fact, the Sb content adsorbed on ferrosol showed a good exponential relationship with its Fe content. The X-ray photoelectron spectroscopy results indicated that the Fe2p and O1s binding energies decreased after the adsorption of Sb in the ferrosol. This suggests that an electron transfer occurred between Sb and Fe through an oxidation-reduction reaction, after Sb adsorption in the ferrosol.

Conclusions

The adsorption abilities of Sb in the four soils were in the order of ferrosol > isohumosol > primosol > sandy soil. The amounts of Sb adsorbed by these soils were significantly positively correlated with their Fe contents (Sb?=??3.78?+?2.88?×?Fe, P?<?0.01), but were negatively correlated with their sand contents (Sb?=?12.30???0.12?×?Sand, P?<?0.01). The X-ray diffraction analysis results showed that crystalline Fe compounds have a higher capacity for Sb adsorption than amorphous Fe compounds.
  相似文献   

16.
Acute (24 h) and sublethal (35 days) effects of cadmium chloride (CdCl2) were examined in Cirrhinus mrigala using various endpoints (accumulation pattern, thyroid hormones (THs), and antioxidants). The mean concentrations of CdCl2 for 24 and 96 h were found to be 35.974 and 22.387 mg L?l, respectively. LC50 concentration of CdCl2 for 24 h (35.97 mg L?l) was used for the acute study. For the sublethal studies, fish were exposed to 3.59 mg L?1 (Treatment I) and 7.19 mg L?1 (Treatment II) corresponding to 1/10th and 1/5th of 24 h LC50 of the CdCl2. During acute exposure, higher accumulation of CdCl2 was noticed in the gill, liver, and kidney of C. mrigala, which is found in the order gill > liver > kidney tissues. Similarly, in sublethal treatments (Treatment I and II), a concentration and time-dependent increase of CdCl2 accumulation was noticed in the order of gill > liver > kidney. GSH, GST, and GPx activities were found to be relatively lower from the treated groups in both acute and sublethal treatments. However, LPO activity was significantly increased in CdCl2-treated fish C. mrigala. Further, plasma T3 reduction was more pronounced than T4 in acute study. During sublethal treatments, both T4 and T3 levels showed a continuous decrease as the exposure period extended. All the values in this study were statically significant (P < 0.01 and P < 0.05).  相似文献   

17.
Applications of dairy farm effluents to land may lead to ammonia (NH3) volatilization and nitrous oxide (N2O) emissions. Nitrogen (N) transformation process inhibitors, such as urease inhibitors (UIs) and nitrification inhibitors (NIs), have been used to reduce NH3 and N2O losses derived from agricultural N sources. The objective of this study was to examine the effects of amending dairy effluents with UI (N-(n-butyl) thiophosphoric triamide (NBTPT)) and NI (dicyandiamide (DCD)) on NH3 and N2O emissions. Treatments included either fresh or stored manure and either fresh or stored farm dairy effluent (FDE), with and without NBTPT (0.25 g kg?1 N) or DCD (10 kg ha?1), applied to a pasture on a free-draining volcanic parent material soil. The nutrient loading rate of FDE and manure, which had different dry matter contents (about 2 and 11 %, respectively) was 100 kg N ha?1. Application of manure and FDE led to NH3 volatilization (15, 1, 17 and 0.4 % of applied N in fresh manure, fresh FDE, stored manure and stored FDE, respectively). With UI (NBTPT), NH3 volatilization from fresh manure was significantly (P?<?0.05) decreased to 8 % from 15 % of applied N, but the UI did not significantly reduce NH3 volatilization from fresh FDE. The N2O emission factors (amount of N2O–N emitted as a percentage of applied N) for fresh manure, fresh FDE and stored FDE were 0.13?±?0.02, 0.14?±?0.03 and 0.03?±?0.01 %, respectively. The NI (DCD) was effective in decreasing N2O emissions from stored FDE, fresh FDE and fresh manure by 90, 51 and 46 % (P?<?0.05), respectively. All types of effluent increased pasture production over the first 21 days after application (P?<?0.05). The addition of DCD resulted in an increase in pasture production at first harvest on day 21 (P?<?0.05). This study illustrates that UIs and NIs can be effective in mitigating NH3 and N2O emissions from land-applied dairy effluents.  相似文献   

18.
The objective of this study was to evaluate the influence of the soil parameters (particle size, initial contamination level, etc.) on the performances of an attrition process to remove As, Cr, Cu, pentachlorophenol (PCP) and dioxins and furans (PCDD/F). Five different contaminated soils were wet-sieved to isolate five soil fractions (<?0.250, 0.250–1, 1–4, 4–12 and >?12 mm). Five attrition steps of 20 min each, carried out in the presence of a biodegradable surfactant ([BW]?=?2%, w w?1) at room temperature with a pulp density fixed at 40% (w w?1), were applied to the coarse soil fractions (>?0.250 mm) of different soils. The results showed good performances of the attrition process to simultaneously remove PCP and PCDD/F from contaminated soil fractions initially containing between 1.1 and 13 mg of PCP kg?1 (dry basis) and between 1795 and 5720 ng TEQ of PCDD/F kg?1. It appeared that the amounts of contaminants removed were significantly correlated (p value?<?0.05, R 2?=?0.96) with the initial amounts of PCP and PCDD/F, regardless of the particle size of the soils studied. The nature of the soil (granulometric distribution, pH, total organic carbon (TOC) (organic matter) and diverse industrial origin) slightly and negatively influenced the efficiency of organic contaminants removals using attrition. However, the attrition treatment allowed an efficient removal of both PCP and PCDD/F from the coarse fraction of contaminated soil, despite the nature of the soil.  相似文献   

19.

Purpose

The present study was carried out in Roro region, Chaibasa, Jharkhand, India, to assess the impact of chromite–asbestos mine waste (CMW) on a nearby agroecosystem. The role of metal-accumulating grass–legume association in facilitating phytoremediation was investigated.

Materials and methods

Soil and plant samples were collected from (i) chromite–asbestos mine waste (CMW) with Cynodon dactylon, Sorghastrum nutans, and Acacia concinna; (ii) contaminated agricultural soil-1 (CAS1) from a foothill with Cajanus cajan; (iii) contaminated agricultural soil-2 (CAS2) distantly located from the hill, cultivated with Oryza sativa and Zea mays; and (iv) unpolluted control soil (CS). Total metal concentrations were quantified in both soils and plants by digesting the samples using HNO3, HF, HClO4 (5:1:1; v/v/v), and HNO3 and HClO4 (5:1; v/v), respectively, and analyzed under flame atomic absorption spectrophotometry. Metal grouping and site grouping cluster analysis was executed to group the metals and sampling sites. Translocation factor (TF) and bioconcentration factor (BCF) were calculated to determine the phytoremediation efficiency of grasses and legumes.

Results and discussion

Results indicate that total metal concentrations in the CMW were in the order of Cr?>?Ni?>?Mn?>?Cu?>?Pb?>?Co?>?Zn?>?Cd. High concentrations of Cr (1983 mg kg?1) and Ni (1293 mg kg?1) with a very strong contamination factor were found in the CAS, which exceeds the soil threshold limits. Further, metal and site grouping cluster analysis also revealed that Cr and Ni were closely linked with each other and the CMW was the main source of contamination. Among all the metals, Cr and Ni were mainly accumulated in grasses (C. dactylon and S. nutans) and legumes (A. concinna and C. cajan) as compared to cereals (Z. mays and O. sativa). The TF of Cr was >1 for grasses. Except for Zn, the BCF for all the metals were <1 in roots and shoots of all the plants and cereals.

Conclusions

The present study revealed that abandoned CMW is the source of contamination for agriculture lands. Phytoremediation relies on suitable plants with metal-scavenging properties. Grass–legume cover (C. dactylon, S. nutans, A. concinna, and C. cajan) has the ability to accumulate metals and act as a potential barrier for metal transport, which facilitate the phytoremediation of the CMW. Possibilities for enhancing the barrier function of the grass–legume cover need to be explored with other low-cost agronomic amendments and the role of rhizospheric organisms.
  相似文献   

20.
The impacts of soil erosion on soil structure, nutrient, and microflora have been extensively studied but little is known about the responses of autotrophic bacterial community and associated carbon (C)-fixing potential to soil erosion. In this study, three abandoned croplands (ES1, ES2, and ES3) and three check dams (DS1, DS2, and DS3) in the Qiaozi watershed of Chinese Loess Plateau were selected as eroding sites and depositional sites, respectively, to evaluate the impacts of soil erosion on autotrophic bacterial community and associated C-fixing potential. Lower abundance and diversity of autotrophic bacteria were observed in nutrient-poor depositional sites compared with nutrient-rich eroding sites. However, the relative abundances of obligate autotrophic bacteria, such as Thiobacillus and Synechococcus, were significantly enhanced in depositional sites. Deposition of nutrient-poor soil contributed to the growth of obligate autotrophic bacteria. The maximum microbial C-fixing rate was observed in DS1 site (5.568?±?1.503 Mg C km?2 year?1), followed by DS3 site (5.306?±?2.130 Mg C km?2 year?1), and the minimum was observed in ES2 site (0.839?±?0.558 Mg C km?2 year?1). Soil deposition significantly enhanced microbial C-fixing rate. Assuming a total erosion area of 1.09?×?107 km2, microbial C-fixing potential in eroded landscape can range from 0.01 to 0.06 Pg C year?1. But its effect on the C pool recovery of degraded soil is limited. Dissolved organic C (DOC) was the main explanatory factor for the variation in soil microbial C-fixing rate (72.0%, P?=?0.000).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号