首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Environmental pollution with chromium is due to residues of several industrial processes. Bioremediation is an alternative actually considered to remove Cr (VI) from the environment, using adapted organisms that grow in contaminated places. Have been conducted studies with fungi mechanisms of interaction with chromium, most of which have focused on processes biosorption, characterized it by passive binding of metal components of the cell surface, and bioaccumulation, wherein the metal entry to cells occurs with energy expenditure. The paper presents the results of studies carried out on sorption of chromium (VI) ions from aqueous solutions by Fusarium sp. and Myrothecium sp. Both biomasses have the ability to take up hexavalent chromium during the stationary phase of growth and as well inactive conditions. Fusarium sp. showed 26% of biosorption with active biomass and 64% in inactive biomass; meanwhile, Myrothecium sp. obtained 97 and 82%, respectively. Both fungi showed adjust to pseudo-second-order model in active (Fusarium sp. R 2 = 0.99; Myrothecium sp. R 2 = 0.96) and inactive biomass assay (Fusarium sp. R 2 = 0.99; Myrothecium sp. R 2 = 0.99). The data of the active biomass test also confirmed to the intraparticle diffusion model (Fusarium sp. R 2 = 0.98; Myrothecium sp. R 2 = 0.93). The results obtained through this investigation indicate the possibility of treating waste effluents containing hexavalent chromium using Fusarium sp. and Myrothecium sp.  相似文献   

2.
Although dilution of lake water has been used for improvement of water quality and algal blooms control, it has not necessarily succeeded to suppress the blooms. We hypothesized that the disappearance of algal blooms by dilution could be explained by flow regime, nutrient concentrations, and their interaction. This study investigated the effects of daily renewal rate (d), nitrogen (N) and phosphorus (P) concentration, and their interaction on the domination between Microcystis aeruginosa and Cyclotella sp. through a monoxenic culture experiment. The simulation model as functions of the N:P mass ratio and dilution rate (D) (calculated from d) was constructed, and the dominant characteristics of both species were predicted based on the model using parameters obtained in a monoculture experiment and our previous study. Results of monoxenic culture experiment revealed that M. aeruginosa dominated in all conditions (d = 5 or 15%; N = 1.0 or 2.5 or 5.0 mg-N L?1; P = 0.1 or 0.5 mg-P L?1) and the predicted cell densities were substantially correspondent to experimental data. Under various N:P ratios and D values, characteristics of domination for each species were predicted, indicating that Cyclotella sp. tended to be dominant under high P concentrations (P ≥ 0.36 mg-P L?1) when the N:P ratio was less than 7.0, and M. aeruginosa could not form algal blooms at the N:P ratio ≤ 7.0 (N ≤ 0.7 mg-N L?1). It was also suggested that the dilution rate leading to the Cyclotella sp. domination required 0.20 day?1 or higher regardless of the N:P ratios.
Graphical Abstract ? M. aeruginosa and Cyclotella sp. could be a superior competitor in nutrient-limited and nutrient-rich conditions, respectively. ? The simulation model in this study indicated that the predicted cell density and nutrient concentration were substantially correspondent to experimental data. ? The model predicted that Cyclotella sp. tended to be dominant at the P ≥ 0.36 mg-P L?1 when the N:P ratio was less than 7.0, and M. aeruginosa could not form algal blooms at the N:P ratio ≤ 7.0 (N ≤ 0.7 mg-N L?1).
  相似文献   

3.
The widely used plastic film containing di(2-ethylhexyl) phthalate (DEHP) in agriculture has caused serious soil pollution and poses risks to human health through the food chain. An effective DEHP degradation bacteria, Microbacterium sp. J-1, was newly isolated from landfill soil. Response surface methodology was successfully employed for optimization resulting in 96% degradation of DEHP (200 mg L?1) within 5 days. This strain degraded DEHP by hydrolysis of the ester bond and hydroxylation of the aromatic ring to form 2-ethyl hexanol, mono-(2-ethylhexyl) phthalate, phthalate acid, and protocatechuic acid, and subsequently transformed these compounds with a maximum specific degradation rate (q max), half-saturation constant (K s ), and inhibition constant (K i ) of 1.46 day?1, 180.2 mg L?1, and 332.8 mg L?1, respectively. Bioaugmentation of DEHP-contaminated soils with the strain J-1 greatly enhanced the DEHP dissipation rate (~88%). Moreover, this strain could efficiently colonize the rhizosphere soil of inoculated vegetables and further enhanced DEHP degradation (~97%), leading to a significant decrease (>70%) in DEHP accumulation in shoots and roots of the inoculated vegetables compared to uninoculated vegetables. The results highlighted the roles of the inoculated exogenous bacteria in simultaneously bioremediating contaminated soils and reducing bioaccumulation of DEHP in the edible part of the vegetable for food safety.  相似文献   

4.
C-banded pattern in two accessions of Thinopyrum bessarabicum (Save ex Rayss) A. Löve (2n = 2x = 14, EbEb) and their idiogram was established. C-banding analysis was further used to identify the chromosomes of Tritipyrum amphiploid (2n = 6x = 42, AABBEbEb) and a BC1F2 genotype from wheat and Tritipyrum. Two 18S-26S rDNA loci were detected on Th. bessarabicum chromosomes by in situ hybridization using an 18S-26S rDNA probe. Eb chromosomes in Tritipyrum generally were identified by their distinctive C-banding patterns which reflected heterochromatin regions. C-banding procedure resulted in sharp and distinct bands in one or both ends of Eb chromosomes without interval bands. Observed C-bands in Eb genome mainly reflected the telomeric and subtelomeric sequences which also showed more strong signals in genomic in situ hybridization. Results showed the importance of the C-banding technique as a screening tool in identification of addition and substitution lines in the progenies of wheat and Tritipyrum crosses during segregating generations.  相似文献   

5.

Purpose

This work investigated changes in priming effects and the taxonomy of soil microbial communities after being amended with plant feedstock and its corresponding biochar.

Materials and methods

A soil incubation was conducted for 180 days to monitor the mineralization and evolution of soil-primed C after addition of maize and its biochar pyrolysed at 450 °C. Responses of individual microbial taxa were identified and compared using the next-generation sequencing method.

Results and discussion

Cumulative CO2 showed similar trends but different magnitudes in soil supplied with feedstock and its biochar. Feedstock addition resulted in a positive priming effect of 1999 mg C kg?1 soil (+253.7 %) while biochar gave negative primed C of ?872.1 mg C kg?1 soil (?254.3 %). Linear relationships between mineralized material and mineralized soil C were detected. Most priming occurred in the first 15 days, indicating co-metabolism. Differences in priming may be explained by differences in properties of plant material, especially the water-extractable organic C. Predominant phyla were affiliated to Acidobacteria, Actinobacteria, Chloroflexi, Gemmatimonadetes, Firmicutes, Planctomycetes, Proteobacteria, Verrucomicrobia, Ascomycota, Basidiomycota, Blastocladiomycota, Chytridiomycota, Zygomycota, Euryarchaeota, and Thaumarchaeota during decomposition. Cluster analysis resulted in separate phylogenetic grouping of feedstock and biochar. Bacteria (Acidobacteria, Firmicutes, Gemmatimonadetes, Planctomycetes), fungi (Ascomycota), and archaea (Euryarchaeota) were closely correlated to primed soil C (R 2?=??0.98, ?0.99, 0.84, 0.81, 0.91, and 0.91, respectively).

Conclusions

Quality of plant materials (especially labile C) shifted microbial community (specific microbial taxa) responses, resulting in a distinctive priming intensity, giving a better understanding of the functional role of soil microbial community as an important driver of priming effect.
  相似文献   

6.
Changes in the soil microbial communities and networks were monitored after planting the cover crop for 9 years. The field experiment included plots with a cover crop and without a cover crop but with weed control, and two subplots with or without chemical fertilizer (192 kg N ha?1, 108 kg P2O5 ha?1, and 168 kg K2O ha?1 each year). After applying the cover crop and chemical fertilizer for 9 years, the composition and activity of bacterial and fungal communities changed significantly (p?<?0.05), with the cover crop had greater effects than the chemical fertilizer on the composition of the soil microbial community. The relative abundances of 22 selected genera (in Firmicutes and Bacteroidetes) and two selected classes (Ascomycota) related to cover crop residue degradation increased significantly in the presence of the cover crop (p?<?0.05). Network analysis showed that the cover crop decreased the number of positive links between bacterial and fungal taxa by 25.33%, and increased the negative links by 22.89%. The positive links among bacterial taxa increased by 16.63% with the cover crop, mainly among Proteobacteria (increase of 39), Firmicutes (16), Actinobacteria (five), and Bacteroidetes (10). The links among fungal taxa were less than among bacterial taxa and were not significantly affected by cover crop. Taxa such as Thaumarchaeota, unidentified_Nitrospiraceae, unidentified_Nitrosomonadaceae, Faecalibacterium, Coprococcus_3, and Ruminococcaceae_NK4A214_group dominated the network without the cover crop but they were not dominant with the cover crop. The relative abundances of potential genes involved with the degradation of cellulose, hemicellulose, and cello-oligosaccharides increased significantly with the cover crop. Therefore, the SOC and TN contents were enhanced by the cover crop with the increase of the soil enzyme activities. Thus, the apple yield was improved by the cover crop.  相似文献   

7.
In the present study, the immobilizing fermentation characteristics and o-chlorophenol biodegradation of Rhodopseudomonas palustris using mycelial pellets as a biomass carrier were investigated. To improve the o-chlorophenol degradation efficiency of the combined mycelial pellets, eight cultivation variables including glucose concentration, yeast extract concentration, spore inoculum size, pH, and agitation speed were optimized with an integrated strategy involving a combination of statistical designs. First, Plackett-Burman experiments identified glucose, yeast extract, and spore inoculum size as three statistically significant factors important for o-chlorophenol removal. Then, the steepest ascent method was used to access the optimal region of these significant factors. Finally, response surface methodology by Box-Behnken optimization was used to examine the mutual interactions among these three variables to determine their optimal levels. The ideal culture conditions for maximum o-chlorophenol removal according to a second-order polynomial model were as follows: 15.60 g/L glucose, 3.09 g/L yeast extract, and 9% (v/v) spore inoculum size, resulting in an expected o-chlorophenol removal rate of 92.60% with an o-chlorophenol initial concentration of 50 mg/L and 96-h culture time. The correlation coefficient (R 2 = 0.9933) indicated excellent agreement between the experimental and predicted values, whereas a fair association was observed between the predicted model values and those obtained from subsequent experimentation at the optimized conditions.  相似文献   

8.
Penguins can bioaccumulate metals, a portion of which can be deposited in the environment through organic remains such as excrement, carcasses, and eggshells. In order to determine Cu and Pb concentrations and their relationship to soil, organic matter and grain size were determined in 27 samples collected in zones without penguins, penguin transit zones, and Adelie (Pygoscelis adeliae), Chinstrap (P. antarctica), and Gentoo penguin (P. papua) colonies on the Ardley Peninsula, Maritime Antarctica. An atomic absorption spectrophotometry analysis was carried out, organic matter was determined by loss on ignition, and grain size was measured with a laser diffraction particle size analyzer. The principal component analysis shows a relationship between the variables Cu, Pb, and grain size and areas with penguin presence. Cu concentrations in soils varied among areas (χ2, 15.707; p =?0.0004), with higher concentrations in transit zones and penguin colonies (142.63 and 140.79 mg/kg, respectively) than in zones without penguins (83.33 mg/kg). Pb concentrations in soils also varied among areas (χ2, 6.5029; p =?0.0387), and were higher in transit zones (5.92 mg/kg) than in the penguin colonies (4.45 mg/kg). Grain size differed significantly among areas (χ2, 13.506; p =?0.0012), with higher values in transit zones (avg. 37.38 μm) than in penguin colonies (avg. 26.93 μm) and zones without penguins (avg. 20.72 μm). Organic matter did not differ significantly among the studied zones (χ2, 2.0882; p =?0.3520). There is a positive correlation between Cu-Pb (Rho, 0.5532; p =?0.0028), Cu-grain size (Rho, 0.4756; p =?0.0130) and Pb-grain size (Rho, 0.4879; p =?0.0098). The presence of penguins increases Cu concentrations in Antarctic soils due to its bioaccumulation and elimination through excrement; however, the presence of penguins has a minor influence on Pb concentration in soil, probably because this metal is stored efficiently in bones, feathers, and eggshells.  相似文献   

9.

Purpose

Despite its importance, anammox (anaerobic ammonium oxidation) in estuarine sediment systems remains poorly understood, particularly at the continental scale. This study aimed to understand the abundance, diversity, and activity of anammox bacteria and to determine the main factors influencing the anammox process in estuarine sediments in China.

Materials and methods

Estuarine sediments were collected from 18 estuaries spanning over 4000 km. Experiments using an 15 N–tracer, quantitative PCR, and clone library construction were used to determine the activity, abundance, and diversity of anammox bacteria. The impact of environmental factors on anammox processes was also determined.

Results and discussion

The abundance of the anammox-specific hydrazine synthase (hzsB) gene ranged from 1.8 × 105 ± 3.4 × 104 to 3.6 × 108 ± 7.5 × 107 copies g?1 dw. Candidatus Scalindua, Brocadia, Kuenenia, Jettenia, and two novel unidentified clusters were detected, with Scalindua dominating the anammox population. Additionally, the abundances of Scalindua, Kuenenia, and Brocadia were found to be significantly correlated with latitude. The anammox rates ranged from 0.29 ± 0.15 to 13.68 ± 3.98 nmol N g?1 dw h?1 and contributed to 2.39–82.61% of total N2 production. Pearson correlation analysis revealed that the anammox rate was positively correlated with total nitrogen, total carbon, and temperature, and was negatively correlated with dissolved oxygen (DO). The key factors influencing the hzsB gene abundance were ammonium concentration, salinity, and DO. Ammonium concentration, pH, temperature, and latitude were main variables shaping the anammox-associated bacterial community.

Conclusions

Our results suggested that anammox bacteria are ubiquitous in coastal estuaries in China and underline the importance of anammox resulting in N loss at a continental scale.
  相似文献   

10.
11.
The genus Zanthoxylum, belonging to Rutaceae, has a long history of cultivation both for economic and chemical values in China. To effectively conserve and sustainably utilize this genus resource, a study on genetic diversity and relationships of Zanthoxylum germplasms was carried out by employing SRAP markers. We used 16 primer combinations to assess genetic variations and relationships among 175 accessions from eight cultivated provenances, including Shandong, Henan, Shanxi, Shaanxi, Gansu, Sichuan, Guizhou and Yunnan. A total of 145 clear repetitive and intense bands were yielded, and the percentage of polymorphic bands was 100 % for per primer combination, indicating a relatively high diversity among Zanthoxylum germplasms. From a geographic perspective, the highest genetic diversity level was observed within Guizhou provenance (N a  = 1.97, Ne = 1.52, H = 0.31, I = 0.46) while Henan provenance had the lowest genetic diversity (N a  = 1.68, Ne = 1.45, H = 0.25, I = 0.37). Based on AMOVA results, the abundant genetic variation was mainly caused by variation of intra-provenances (84.96 %), rather than among provenances (15.038 %). The results indicated low genetic differentiation (G st  = 0.133) and high gene flow (N m  = 3.2605) among provenances. The neighbor-joining tree revealed that the 175 accessions could be divided into four groups, and groupings indicated a divergence between the cultivated accessions of Zanthoxylum bungeanum Maxim. and Z. armatum DC. Moreover, three accessions of Z. piperitum DC. var. inerme without prickles introduced from Japan gathered one cluster. Cluster IV is composed of accessions of different geographical origin, including 11 wild species and 10 cultivated accessions of Z. bungeanum. The cluster analysis also reflected a relatively close relationship between the geographical origins and the classification of accessions in cluster I. Structure analysis indicated that collected Zanthoxylum accessions could be divided into two major groups. The information obtained from our research would benefit to make use of Zanthoxylum germplasms and assist the management of a Zanthoxylum germplasms collection.  相似文献   

12.
Lima bean (Phaseolus lunatus L.) is an important food source in Brazil, especially in the northeast region, where its production and consumption are high. The goals of the present study were to estimate natural outcrossing rates and genetic diversity levels of Lima bean from Brazil, using ten microsatellite loci to obtain information for their conservation and breeding. Fourteen accessions were selected from an experiment in field with open-pollinated and with the presence of pollinating insects. Twelve seeds of each of the 14 selected accessions were grown in screenhouse for tissue harvest and DNA extraction. The multilocus model was used to determine the reproductive system. The outcrossing rate was 38.1 % (tm = 0.381; ts = 0.078), and the results indicated a mixed mating system with a predominance of selfing (1 ? tm = 61.9 %). The biparental inbreeding rate was high (t m  ? t s  = 0.303) and the multilocus correlated paternity was quite high (r p(m) = 0.889), indicating that the progeny was mostly composed of full sibs. The average effective number of pollen donors per maternal plant (N ep ) was low (1.12), and the fixation index for maternal genotypes (F m ) was 0.945, indicating that most genitors resulted from inbreeding. The studied families presented considerable genetic variability: A = 6.10;  %P = 30; H e  = 0.60 and H o  = 0.077. Total diversity was high (H T = 0.596), and a portion was distributed within families (H S = 0.058). In addition, diversity was higher between families (D ST = 0.538), and genetic differentiation was high (G ST = 0.902). The results presented here can be used in the implementation of Lima bean conservation and breeding programs in Brazil.  相似文献   

13.
A hybrid between Erianthus arundinaceus (Retz.) Jeswiet and Saccharum spontaneum L. which are wild related species of sugarcane (Saccharum L., Family Poaceae), was repeatedly crossed as female parent with sugarcane commercial varieties to develop near commercial sugarcane clones. The cytoplasm type of the hybrid derivatives were confirmed to be of E. arundinaceus through the mitochondrial and chloroplast DNA polymorphism of nad 4/3-4 intron segment and psbC–trnS segment, respectively. The E. arundinaceus × S. spontaneum hybrid with somatic chromosome number 2n = 62 was confirmed to have 30 chromosomes from E. arundinaceus through genomic in situ hybridization (GISH). The (E. arundinaceus × S. spontaneum) × sugarcane hybrid (2n = 118) had 24 chromosomes from E. arundinaceus whereas its next generation hybrid with sugarcane (2n = 108) had only 12 Erianthus chromosomes. The commercial sugarcane hybrid Co 15015, which is the third generation hybrid with 2n = 106 was confirmed to have two E. arundinaceus chromosomes through GISH. It is the first report of sugarcane with both alien cytoplasm and chromosome contributions from E. arundinaceus.  相似文献   

14.
We evaluated the impact of exponential fertilization in nursery and weed removal in the field on growth and nitrogen (N) retranslocation and uptake from the soil of jack pine (Pinus banksiana Lamb.) seedlings planted on an oil sands reclaimed soil. Exponential fertilization is a method of supplying nutrients at an exponential rate to achieve constant internal nutrient concentrations in seedlings without changing their size during their growth in the nursery. The N retranslocation in seedlings was traced using 15N isotope labeling. Exponential fertilization increased nutrient reserve in the seedling in nursery production, and increased height (P = 0.003), root collar diameter (P < 0.001), total biomass (P < 0.001), and N content (P < 0.001) of seedlings at the end of first growing season in the field growth. Conventionally fertilized seedlings allocated a greater percent of biomass to roots than to current-year needles. The 15N isotope analysis showed that 59 to 82% of total N demand of new growth was met by retranslocation from old tissues. Exponential fertilization increased N retranslocation by 147% (P < 0.001) and N uptake from the soil by 175% (P = 0.012). Weed removal marginally increased (P = 0.077) N uptake from the soil but decreased (P = 0.046) N retranslocation with no net effect on total N content in new tissues. We conclude that exponential fertilization improves the early growth of jack pine and can help improve revegetation in reclaiming disturbed oil sands sites.  相似文献   

15.
Developing a molecular tool kit for hybrid breeding of Osmanthus species and related genera is an important step in creating a systematic breeding program for this species. To date, molecular resources have been aimed solely at Osmanthus fragrans with little work to develop markers for other species and cultivars. The objectives of this study were to (1) determine cross-transferability of O. fragrans and Chionanthus retusus derived SSRs in diverse Osmanthus taxa, (2) quantify the influence of locus-specific factors on cross-transferability, and (3) determine the genetic relationships between accessions. We tested 70 SSR markers derived from O. fragrans and C. retusus in 24 accessions of Osmanthus. Sixty-seven markers showed transfer to at least one other Osmanthus species with an overall transfer rate of 84% of loci across taxa. Genotyping with 42 microsatellite markers yielded a total of 367 loci. Number of alleles per locus ranged from 2 to 17 with a mean of 8.7 ± 4.8. Mean observed and expected heterozygosities were 0.560 ± 0.225 and 0.688 ± 0.230, respectively. Percent of polymorphic loci ranged from 40% in Osmanthus delavayi to 100% in O. fragrans. Osmanthus fragrans had the highest mean number of alleles per locus (4.2) while O. delavayi had the lowest (1.1). A reduced suite of eight-markers can distinguish between accessions with non-exclusion probabilities of identity from 3.91E?04 to 2.90E?07. The SSR markers described herein will be immediately useful to characterize germplasm, identify hybrids, and aid in understanding the level of genetic diversity and relationships within the cultivated germplasm.  相似文献   

16.
Comamonas sp. UVS was able to decolorize Reactive Blue HERD (RBHERD) dye (50 mg L?1) within 6 h under static condition. The maximum dye concentration degraded was 1,200 mg L?1 within 210 h. A numerical simulation with the model gives an optimal value of 35.71?±?0.696 mg dye g?1 cell h?1 for maximum rate (Vmax) and 112.35?±?0.34 mg L?1 for the Michaelis constant (Km). Comamonas sp. UVS has capability of decolorization of RBHERD in the presence of Mg2+, Ca2+, Cd2+, and Zn2+, whereas decolorization was completely inhibited by Cu2+. Metal ions also affected the levels of biotransformation enzymes during decolorization of RBHERD. Comamonas sp. UVS was also able to decolorize textile effluent with significant reduction in COD. The biodegradation of RBHERD dye was monitored by UV–vis spectroscopy, FTIR spectroscopy, and HPLC.  相似文献   

17.
The concentrations of mercury, lead, cadmium, and arsenic were evaluated in 96 samples, 12 by each one of the following eight fish species: snook (Centropomus undecimalis), crevalle jack (Caranx hippos), Serra Spanish mackerel (Scomberomorus brasiliensis), southern red snapper (Lutjanus purpureus), blue runner (Caranx crysos), Atlantic tarpon (Megalops atlanticus), ladyfish (Elops saurus), and Atlantic goliath grouper (Epinephelus itajara), which were collected during 1 year in the Atrato River Delta in the Gulf of Urabá, Colombian Caribbean. Three fish were caught from each of the following sites the community usually uses to catch them (known as fishing grounds): Bahía Candelaria, Bahía Marirrío, Bocas del Roto, and Bocas del Atrato. The quantification of metals was performed by microwave-induced plasma-optical emission spectrometry. The Pb concentration fluctuated from 0.672 to 3.110 mg kg?1, surpassing the maximum permissible limit (MPL?=?0.3 mg kg?1) for human consumption for all species. The Hg concentration ranged between < Limit of detection and 6.303 mg kg?1, and in the crevalle jack and Atlantic tarpon, concentrations exceeded the MPL (0.5 mg kg?1). The levels of Cd and As were not significant in the studied species and did not exceed the MPL (0.05 mg kg?1).  相似文献   

18.
Bio-fertilizer application has been proposed as a strategy for enhancing soil fertility, regulating soil microflora composition, and improving crop yields, and it has been widely applied in the agricultural yields. However, the application of bio-fertilizer in grassland has been poorly studied. We conducted in situ and pot experiments to investigate the practical effects of different fertilization regimes on Leymus chinensis growth, with a focus on the potential microecological mechanisms underlying the responses of soil microbial composition. L. chinensis biomass was significantly (P?<?0.05) increased by treatment with 6000 kg ha?1 of Trichoderma bio-fertilizer compared with other treatments. We found a positive (R2 =?0.6274, P <?0.001) correlation between bacterial alpha diversity and L. chinensis biomass. Hierarchical cluster analysis and nonmetric multidimensional scaling (NMDS) revealed that soil bacterial and fungal community compositions were all separated according to the fertilization regime used. The relative abundance of the most beneficial genera in bio-fertilizer (BOF) (6000 kg ha?1Trichoderma bio-fertilizer) was significantly higher than in organic fertilizer (OF) (6000 kg ha?1 organic fertilizer) or in CK (non-amend fertilizer), there the potential pathogenic genera were reduced. There were significant negative (P?<?0.05) correlations between L. chinensis biomass and the relative abundance of several potential pathogenic genera. However, the relative abundance of most beneficial genera were significantly (P?<?0.05) positively correlated with L. chinensis biomass. Soil properties had different effects on these beneficial and on these pathogenic genera, further influencing L. chinensis biomass.  相似文献   

19.
The use of plants for ecological remediation is an important method of controlling heavy metals in polluted land. Cotinus coggygria is a landscape plant that is used extensively in landscaping and afforestation. In this study, the cadmium tolerance level of C. coggygria was evaluated using electrical impedance spectroscopy (EIS) to lay a theoretical foundation for broad applications of this species in Cd-polluted areas and provide theoretical support to broaden the application range of the EIS technique. Two-year-old potted seedlings of C. coggygria were placed in a greenhouse to analyse the changes in the growth, water content and EIS parameters of the roots following treatment with different Cd concentrations (50, 100, 200, 500, 1000 and 1500 mg kg?1), and soil without added Cd was used as the control. The roots grew well following Cd treatments of 50 and 100 mg kg?1. The Cd contents increased with the increase in Cd concentration in the soil. However, the lowest root Cd content was found at 4 months of treatment. The extracellular resistance re and the intracellular resistance ri increased first overall and then decreased with the increasing Cd concentration, and both parameters increased with a longer treatment duration. The water content had a significant negative correlation with the Cd content (P?<?0.01) and the re (P?<?0.05). C. coggygria could tolerate a soil Cd concentration of 100 mg kg?1. There was a turning point in the growth, water content and EIS parameters of the C. coggygria roots when the soil Cd concentration reached 200 mg kg?1. The root water content and re could reflect the level of Cd tolerance in C. coggygria.  相似文献   

20.

Purpose

Geobacteraceae are important dissimilatory Fe (III)-reducing microorganisms, influencing the cycling of metals, nutrients as well as the degradation of organic contaminants. However, little is known about their distribution, diversity, and abundance of Geobacteraceae and the effects of environment factors and geographic distance on the distribution and diversity of Geobacteraceae in paddy soils remain unclear. Therefore, the objectives of this study were to investigate the distribution, diversity, and abundance of Geobacteraceae in paddy soils and to determine key factors in shaping the Geobacteraceae distribution, environmental factors, geographic distance, or both and to quantify their contribution to Geobacteraceae variation.

Materials and methods

Illumina sequencing and quantitative real-time PCR using a primer set targeting 16S rRNA genes of bacteria affiliated with the family Geobacteraceae were employed to measure the community composition, diversity, and abundance patterns of 16S rRNA genes of Geobacteraceae in 16 samples collected from north to south of China. MRT, Mantel test, and VPA were used to analyze the relationship between communities of Geobacteraceae and environmental factors and geographic distance.

Results and discussion

Quantitative PCR showed that the abundance of 16S rRNA genes of Geobacteraceae ranged from (1.20?±?0.18)?×?108 to 1.13?×?109?±?2.25?×?108 copies per gram of soil (dry weight) across different types of soils. Illumina sequencing results showed Geobacter was the dominant genus within the family of Geobacteraceae. Multivariate regression tree (MRT) analysis showed that soil amorphous iron contributed more (22.46 %) to the variation of dominant species of Geobacteraceae than other examined soil chemical factors such as pH (14.52 %), ammonium (5.12 %), and dissolved organic carbon (4.74 %). Additionally, more geographically distant sites harbored less similar communities. Variance partitioning analysis (VPA) showed that geographic distance contributed more to the variation of Geobacteraceae than any other factor, although the environmental factors explained more variation when combined. So, we detected the uneven distribution of Geobacteraceae in paddy soils of China and demonstrated that Geobacteraceae community composition was strongly associated with geographic distance and soil chemical factors including aFe, pH, Fe, DOC, C:N, and NO3 ?-N. These results greatly expand the knowledge of the distribution of Geobacteraceae in environments, particularly in terrestrial ecosystems.

Conclusions

Our results showed that geographic distance and amorphous iron played important roles in shaping Geobacteraceae community composition and revealed that both geographic distance and soil properties governed Geobacteraceae biogeography in paddy soils. Our findings will be critical in facilitating the prediction of element cycling by incorporating information on functional microbial communities into current biogeochemical models.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号